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Abstract—In this paper, a novel framework for rich-media
object retrieval is described. The searchable items are media
representations consisting of multiple modalities, such as 2-D im-
ages, 3-D objects and audio files, which share a common semantic
concept. The proposed method utilizes the low-level descriptors of
each separate modality to construct a new low-dimensional feature
space, where all media objects can be mapped irrespective of their
constituting modalities. While most of the existing state-of-the-art
approaches support queries of one single modality at a time,
the proposed one allows querying with multiple modalities si-
multaneously, through efficient multimodal query formulation,
and retrieves multimodal results of any available type. Finally,
a multimedia indexing scheme is adopted to tackle the problem
of large scale media retrieval. The present framework proposes
significant advances over existing methods and can be easily
extended to involve as many heterogeneous modalities as possible.
Experiments performed on two multimodal datasets demonstrate
the effectiveness of the proposed method in multimodal search
and retrieval.

Index Terms—Manifold learning, multimedia description, mul-
timedia indexing, multimodal search and retrieval.

I. INTRODUCTION

T HE amount of multimedia content, which is available in
the Internet, is increasing at an incredible pace. This is

not surprising, since media creation, even by nonprofessional
users, has been enhanced through the widespread availability of
digital recording devices, improved modeling tools, advanced
scanning mechanisms as well as display and rendering devices.
This increasing amount of multimedia data intensifies the need
for effective search through the various online media databases.
Moving beyond traditional text-based retrieval approaches,

a lot of research has been conducted on developing methods
for content-based multimedia retrieval. The latter are based on
the extraction of low-level features (e.g., color, texture, shape,
etc.) automatically from content. While there are numerous
content-based techniques that achieve retrieval of one single
modality, such as 3-D objects [1]–[4], [39], images [5]–[7],
video [8]–[10], or audio [11]–[13], only few are able to retrieve
multiple modalities simultaneously.
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Cross-media retrieval, which has been introduced in the latest
years, comprises all content-based multimedia search methods
that take as input a query of one modality to retrieve results of
another modality. That is, given as query the image of a dog
(2-D), to be able to retrieve similar 3-D (dogs) objects. Moving
beyond cross-media retrieval, multimodal retrieval allows users
to enter multimodal queries and retrieve multiple types of media
simultaneously. Both cross-modal andmultimodal retrieval pro-
vide a significant step towards content-based multimedia re-
trieval, since users will be able to search and retrieve content
of any type using a single unified retrieval framework and not
a specialized system for each separate media type. Moreover,
through multimodal retrieval, users will be able to enter mul-
tiple queries simultaneously, thus, retrieving more relevant re-
sults. However, this is a highly complicated process, since it re-
quires successful modeling of the low-level feature associations
among the different modalities.

A. Background and Related Work

In content-based multimedia retrieval, low-level descrip-
tors, irrespective of the media type, are usually represented
as high-dimensional vectors in the Euclidean space. Then,
similarity matching between these vectors is performed by ap-
plying, usually, classical Euclidean metrics on their descriptor
vectors. In most cases though, low-level descriptors follow a
nonlinear manifold structure, which makes Euclidean metrics
inappropriate. By properly unfolding this manifold structure,
a more representative feature space of lower dimension is
achieved.Manifold learning approaches have been already fol-
lowed by many content-based search methods [14]–[16], which
deal with one single modality, and significantly improve their
retrieval performance. This concept can be easily extended
to address cross-modal or multimodal retrieval problems,
where descriptors from different modalities are mapped to the
same low-dimensional manifold and reduce the multimodal
similarity matching problem to a simple distance metric on
this manifold. The most representative attempts in this field
are given in the sequel. It should be noted that the following
methods deal with cross-media and not multimodal retrieval,
which is the main contribution of the present work.
Yang et al. [17] proposed a cross-media retrieval method,

which connects various semantically-similar media types,
aiming to retrieve results of different modalities compared to
a given query. They introduced a structure called multimedia
document (MMD) to define a set of multimedia objects (im-
ages, audio, and text) that carry the same semantics. The paper
presented the concept of MMD distance, which intuitively
merges the dissimilarities between different modalities as a
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weighted sum of their mono-modal distances, based on each
individual precision-recall performance. Using this MMD
distance measure, all-to-all distances were computed, which
were then used as input to a multidimensional scaling method
to create a multimedia correlation space (MMCS), where every
MMD is represented as a data point. In this space, a ranking
algorithm was applied, called ranking with local regression and
global alignment (LRGA), which learns a Laplacian matrix
from data ranking. This algorithm uses a local linear regression
model for each data point and then it globally aligns all of them
through a unified objective function.
Although the above approach manages to associate dif-

ferent media types in the retrieval procedure, it has several
weaknesses. Firstly, the MMD distance measure effectively
merges multimedia information; however, it might significantly
minimize the contribution of a specific modality, if its average
retrieval accuracy (usually measured by precision/recall) is
low. Furthermore, the computation of MMD distances implies
the creation of a pre-calculated all-to-all distance matrix. This
is not an efficient procedure when dealing with very large
multimedia databases, since the size of the distance matrix
becomes prohibitive as the database size increases. Another
important issue is that the retrieval procedure proposed in
[17] supports only mono-modal queries (cross-media retrieval).
When a query object does not belong to the database, the closest
database objects of the same modality are initially retrieved
and their host MMDs are regarded as queries henceforth.
Similarly in [18], Zhang et al. investigated the intra- and

inter-media correlations to build a map from heterogeneous
multi-modal feature spaces, called “multimedia bags”, into
a semantic subspace created using Laplacian eigenmaps,
called multi-modality Laplacian eigenmaps semantic subspace
(MLESS). The different modalities supported are text, image,
and audio. In the retrieval phase, queries can be either mul-
timedia bags, if they belong to the database, or mono-modal
media instances, otherwise. In the second case, the mono-modal
neighbors of the query are found and the query is mapped into
the center of their neighborhood in MLESS.
Furthermore,Wu et al. [19] proposed another cross-media re-

trieval method, which constructs an isomorphic subspace based
on canonical correlation analysis (CCA) and thus called CCA
subspace, to learn multi-modal correlations of media objects.
A general distance function is defined in the CCA subspace
using polar coordinates. When the query belongs to the data-
base, the -nearest neighbors of every modality are found and
all of them are presented as results. These results can be further
improved through one or more relevance feedback iterations.
When a query does not belong to the database, -nearest neigh-
bors of the same modality are retrieved and their average coor-
dinates in CCA subspace form a new query in CCA. The latter is
used as input to retrieve cross-media results. Here, cross-media
results depend highly on mono-modal neighbors, as well as on
the user’s judgement to mark the relevant ones.
A method for cross-modal association called cross-modal

factor analysis (CFA) was introduced in [20]. The method
achieves significant dimensionality reduction, while it ef-
fectively identifies the correlations between two different
modalities. The method is tested in cross-media retrieval and

demonstrates superior performance than similar approaches,
such as canonical correlation analysis [22] and latent semantic
indexing [21]. In [23], authors introduced a cross-media re-
trieval method based on mining the co-existence information
of the heterogeneous media objects and users’ relevance feed-
backs, while in [24], they extended their work by proposing
a structure for cross-media indexing over large multi-modal
media databases. In [25], an approach for cross-media informa-
tion aggregation was presented, which adopts online newspaper
articles and TV newscasts as information sources to deliver a
service made up of items including both contributions. In order
to achieve information aggregation, the method is based on
the concept of semantic relevance and on a novel asymmetric
aggregation function. Finally, in [26], authors used kernel
canonical correlation to build a kernel space where global
inter-media correlation is analyzed. Correlations among text,
image, and audio are analyzed to understand their underlying
semantics. The method achieves significant retrieval accuracy
for queries that do not belong to the database; however, it
supports queries of only a single modality at a time.
Apart from cross-media retrieval, manifold ranking has been

also used to improve the retrieval performance of methods that
deal with mono-modal data [27]. In [14], Ohbuchi et al. pro-
posed a framework for similarity comparison of shape features
extracted from 3-D models. The overall scheme is divided into
two phases: the learning phase and the retrieval phase. During
the first one, shape features are extracted from the 3-D models
and after subsampling them, unsupervised learning results in
a lower dimensional manifold. Then, an approximation of the
manifold is created using a neural network and features of all
3-D models are mapped to the lower dimensional space. During
the retrieval phase, the query’s features are projected onto the
approximated manifold and distances with all 3-D models are
computed so as to identify the closest matches.
Another dimensionality reduction algorithm similar to LE

is the locally linear embedding (LLE) [15]. It performs un-
supervised learning as well, by computing low-dimensional
neighborhood preserving embeddings of high-dimensional
data. In LLE, the data points in the high-dimensional space are
represented as a linear combination of their nearest neighbors,
thereby assuming that the manifold is locally linear. In the
low-dimensional space it attempts to retain the weights of the
linear combinations.
He et al. [16] introduced a manifold-ranking-based image

retrieval (MRBIR) scheme, which measures the relevance be-
tween the query and the database images by exploring the re-
lationship of all the data points in the feature space. Firstly,
MRBIR forms a weighted graph regarding the data points as
nodes. A positive ranking score is assigned to each query, while
zero to the remaining points, and then all points spread their
scores to the nearby points based on the weights of the graph.
This step is repeated until a global stable state is reached. Fi-
nally, all points except for the query have their own scores ac-
cording to which they are ranked. A modified version of the pre-
vious approach, the “modified manifold ranking (MMR)” algo-
rithm [4], was proposed for the improvement of the 3-D shape
retrieval performance. The significant points of this modified
algorithm is that: 1) it creates a graph by connecting edges be-



736 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 3, JUNE 2012

tween the models and their nearest neighbors, 2) it assigns a
weight to every edge based on that rank, and 3) it labels not
only the query but the nearest neighbor as well. Inspired by
the previous manifold ranking application on mono-modal data,
the authors of [28] tried to extend this graph-based semi-super-
vised learning to multi-modal data. In order to achieve multi-
modality, they created an independent graph for each kind of
feature from one modality and the learning task was formulated
as inferring from the constrains in every graph as well as super-
vision information, if available.
In this paper, a novel framework for multimodal retrieval is

proposed. The framework enables search and retrieval of sev-
eral media types, namely 3-D objects, images, and sounds, using
as query any of the above types or combinations of them. This
is achieved by mapping the low-level descriptors of the dif-
ferent modalities into the same low-dimensional feature space.
By moving to this new feature space, multimedia data are not
treated as separate media items but as rich media representa-
tions. The method is novel in the sense that queries may con-
sist of multiple modalities simultaneously and retrieve results
of multiple modalities as well. Another innovative feature of
the proposed method is that it can be applied even to very large
multimedia databases, by exploiting an appropriate large-scale
indexing scheme. Finally, the method can be easily extended in
order to address a wider variety of media types and application
paradigms. Specific innovative steps are proposed throughout
the whole framework and analyzed in detail. Experiments per-
formed on two multimodal datasets prove the superiority and
the efficiency of the proposed framework even for cross-modal
retrieval.
The rest of the paper is organized as follows: In Section II, an

overview of the proposed framework is available. In Section III,
the creation of the multimodal feature space, using Laplacian
eigenmaps, is analyzed. Large-scale indexing, which is used to
make the proposed method applicable to large databases, is de-
scribed in Section IV. Section V presents the multimodal search
and retrieval process, while Section VI analyzes the experi-
mental results. Finally, conclusions are drawn in Section VII.

II. METHOD OVERVIEW AND INNOVATIONS

When dealing with multimodal search and retrieval, it is
much more convenient to enclose multiple media types, which
share the same semantics, into a media container, and label the
entire container with the semantic concept, instead of labeling
each media instance separately. This approach has been already
followed in both [17] and [18], where authors introduced new
structures to organize data based on their semantic correlations,
namely multimedia documents (MMDs) and multimedia bags,
respectively. Following the same concept, we adopted the term
MMD to refer to rich multimedia representations. An example
of an MMD is given in Fig. 1. This describes the physical entity
“My_Dog” and consists of the 3-D representation (VRML
model), multiple 2-D views (jpeg images) of the dog, as well as
its sound (wav file of the barking sound). In the current work,
3-D objects, 2-D images, and sounds are considered as the
constituting modalities of MMDs.
The proposed framework is depicted in the block diagrams

presented in Figs. 2 and 3. The whole framework is separated in

Fig. 1. Example of MMD, which describes the physical entity “My_Dog”.

Fig. 2. Creation of the multimodal feature space.

Fig. 3. Multimodal search and retrieval. Training phase: the RBF is trained
using as input the descriptor vectors of the databaseMMDs’ constituting modal-
ities and output the corresponding multimodal descriptors. Multimodal retrieval
phase: the RBF takes as input the descriptors of and predicts its mul-
timodal descriptor vector. The latter is matched with the multimodal descriptor
vectors of the database.

two stages: 1) creation of the multimodal feature space (Fig. 2)
and 2) multimodal search and retrieval (Fig. 3).
Given a database of multimedia items, they are organized

as MMDs consisting of multiple modalities. During the first
stage, the low-level descriptors of all constituting modalities are
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mapped to a new low-dimensional feature space. In this feature
space, semantically similar MMDs, irrespective of their consti-
tuting modalities, are described by multimodal descriptor vec-
tors close to each other in the Euclidean space.
The second stage involves the multimodal search and re-

trieval procedure. During the training phase, a radial basis
function (RBF) network is constructed using a predefined
dataset of MMDs. The RBF network is a function that maps the
initial descriptors of an MMD to the new low-dimensional mul-
timodal space. During the multimodal retrieval phase, a query
MMD, which does not belong to the database, is transformed
to a multimodal descriptor vector, using the RBF function.
Without the use of RBF, the manifold learning procedure
described in the previous stage should be repeated each time
a new query is inserted. This poses a computational burden,
which is undesirable for online retrieval tasks, especially when
database’s size increases. This inefficiency can be avoided,
thanks to the RBF function. The resulting multimodal descriptor
vector is directly matched with the multimodal descriptors of
the database MMDs and the most similar MMDs are retrieved.
The proposed method introduces the following innovative

features:
Construction of the Adjacency Matrix: In order to identify

close similarities between MMDs, an adjacency matrix is con-
structed. The nonzero elements of the adjacency matrix, which
correspond to pairs of neighboring MMDs, are not weighted
with respect to multimedia distance measures (as in [17]) but
are all assigned the same value (equal to 1). This modification
eliminates the need to compute a complex distance metric
among MMDs, which would require merging of heterogeneous
descriptor vectors of different modalities into one single equa-
tion. Instead, the single modalities are ranked separately using
their specific distance metric and the first neighbors of each
modality are assigned the same nonzero value to construct
the adjacency matrix. Moreover, in the proposed approach,
all modalities are equally contributing to the creation of the
adjacency matrix, by providing the same number of neighbors
per modality. This was proven in the end to be more efficient
than the approach in [17], where the weights of the combined
distance measure are dependent on the average precision of
each modality’s retrieval performance, because modalities with
low-discriminative descriptors were underestimated.
Use of Large-Scale Indexing for the Adjacency Matrix Cre-

ation: The creation of the adjacency matrix requires calculating
the all-to-all distances among all multimedia objects of the
database. To avoid extensive computational time consumption,
these distances are usually stored in large distance matrices.
However, when the database size increases dramatically, the
size of the all-to-all distance matrices becomes prohibitive. In
this paper, a large-scale indexing method has been adopted and
extended to the multimodal case, so as to accelerate the process
of retrieving the nearest neighbors, without the need to store
large distance matrices.
Support of Multimodal Queries: In cross-media retrieval, the

query of one single modality is used to retrieve items of another
modality, while in multimodal retrieval, two or more modalities
are used simultaneously as query to retrieve items of multiple
modalities. Most of the existing multimedia retrieval methods

that deal with more than one media types are cross-media ap-
proaches, i.e., they do not support multimodal queries. In this
paper, multimodal querying is fully supported, allowing users to
enter as query an entire MMD. It should be clearly stressed here
that cross-modal search is by no means underestimated. In some
cases, querying with multiple modalities would pose an addi-
tional processing burden, while using as query a single modality
could be more convenient to the user. In general, the querying
behavior varies from user to user, so an ideal framework should
support both mono-modal and multimodal queries. The pro-
posed framework supports both aforementioned options; thus,
it provides a unified solution for diverse types of users.
Provide Efficient Multimodal Query Formulation Using an

RBF Network: When a new MMD is used as query, its descrip-
tors need to be mapped to the new multimodal feature space.
This is achieved by using an appropriately selected RBF net-
work, which maps the input descriptors of the query MMD
to the new multimodal feature space. In this case, the query
can be directly matched with the database MMDs. It is worth
mentioning that the RBF network achieves mapping of new
MMDs, even if one or more modalities are missing. Such an
approach has not been reported so far in the area of multimodal
search and retrieval. Most of the existing methods use as query
a single-modality media item and initially retrieve a ranked list
of the media items of the same modality. The latter are used as
queries, to further retrieve results of other modalities from the
database. However, in this case, the multimodal nature of the
query is not fully exploited.
However, the main novelty of the proposed work is that all

the above features are combined in order to provide a complete
framework for multimodal search and retrieval. This framework
can be used in all types of multimodal datasets irrespective of
their constituting modalities and the corresponding low-level
descriptors. Theoretically, the number of different media types
that can be supported simultaneously by the proposed frame-
work is unlimited. The method can scale even to large-scale
datasets and it can still retrieve accurate results even in cases
where one or more modalities are missing from several mul-
timedia documents of the dataset. To the best of our knowl-
edge, it is the first time that such an approach is presented in
the literature.

III. CREATION OF MULTIMODAL FEATURE SPACE

In this section, the creation of the multimodal feature space
is analyzed, where all MMDs, irrespective of their constituting
modalities, are represented as -dimensional vectors in a new
feature space. In this feature space, semantically similar MMDs
will lie close to each other with respect to a common distance
metric. The methodology, which is usually followed, is known
as manifold learning, where it is assumed that the multimodal
data lie on a nonlinear low-dimensional manifold. The majority
of manifold learning approaches is based on the computation of
the -nearest neighbors among all items of the dataset in order to
create an adjacency matrix. In our case, the items of the dataset
are MMDs. The -nearest neighbor computation for an MMD
is not a trivial process, since it requires merging descriptors of
heterogeneous modalities into one unified distance metric. To
avoid merging of heterogeneous distance metrics, an alternative
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approach is introduced in this paper. The method is based on
Laplacian eigenmaps (LE) but, in our case, the creation of the
adjacency matrix is modified as follows: when items are
neighbors, the item of the adjacency matrix is assigned the
value 1 instead of the actual distance between and . Since
the items of the adjacency matrix are MMDs, the neighborhood
criterion is determined as follows:
Lemma 1: “Two MMDs, and are neighbors if and only if

at least one pair of their constituting items of the same modality
are neighbors. If the two MMDs do not have items of common
modality they are not considered as neighbors. Neighborhood
among single-modality items is determined by ranking these
items with respect to their mono-modal distance. Then, the
-first items are selected for each single-modality item.”

A. Creation of a Multimodal Adjacency Matrix

In this step, the creation of a multimodal adjacency matrix is
described in detail. Given a multimedia database of MMDs
and different modalities, the goal is to compute the -nearest
neighbors for every . For simplicity, we as-
sume that each consists of exactly one item permodality,
although it is possible to have more than one items of the same
modality in or even missing modalities.
In order to compute the -nearest neighbors of , the

nearest neighbors of each separate modality need to be deter-
mined. Let a media item within of the th modality

be represented by the descriptor vector . For
the th modality, a distance measure is defined as
to calculate the mono-modal similarities. The -nearest neigh-
bors of are retrieved by ranking all the media items of the
th modality within the database, with respect to their

mono-modal distances . The ranked list of -nearest neigh-
bors of is defined as

(1)

where is the index of the MMD which corresponds to
the media item of the th modality, ranked as the first nearest
neighbor of . are the indices of the
MMDs corresponding to the th ranked items, re-
spectively. Similarly, ranked lists of -nearest neighbors for
each modality are extracted.
The final -nearest neighbors of are com-

puted by taking equal number of first neighbors from each list
, i.e., neighbors, with

. In case an appears in the neighbors of more
than one lists , this is counted only once.
The remaining positions in the -nearest neighbors list are then
filled with the next closest MMDs.
In the general case that an MMD consists of less than
modalities, more nearest neighbors are kept from each

modality, in order to keep the number of the neighboring
MMDs the same. As an example, let be the number of
-nearest neighbors of . If consists of
modalities, we need nearest neighbors from each
modality. If consists of modality, we need

nearest neighbors, all from the same modality.

Fig. 4. In the new multimodal feature space created by LE, semantically sim-
ilar MMDs are placed close to each other, while MMDs of different semantic
categories are far from each other.

Finally, an matrix, , is created, where each row
represents the -nearest neighbors of .

B. Laplacian Eigenmaps

The matrix is used as input by the LE algorithm,
where, in our case, the adjacency matrix is modified by putting
only ones (instead of distances) to its nonzero elements. The
steps of the algorithm are given below:
Step 1) Construct the graph , by connecting nodes (i.e.,

MMDs) and with an edge, if is among -nearest
neighbors of .

Step 2) Produce the adjacency matrix, , of :

if MMD j belongs to k nearest neighbors of
MMD

otherwise. (2)

Step 3) Create an diagonal matrix
.

Step 4) Create an Laplacian matrix .
Step 5) Solve the generalized eigenproblem to

find the eigenvalues and the eigenvectors of .
Step 6) Sort eigenvalues in an ascending order and keep the

eigenvectors that correspond to the -first eigen-
values (excluding the first one).

The selected eigenvectors correspond to -dimensions of
the new multimodal feature space, where all database MMDs
are mapped to low-dimensional points (Fig. 4). In this feature
space, semantically similar MMDs are placed close to each
other, while MMDs of different semantic categories are far
from each other.
The method described above shares common features with

the manifold learning approaches presented in [17], [18], and
[27]. The main differences and contributions of the proposed
work are given below. In [17], an all-to-all distance matrix
among all MMDs is required as input to multidimensional
scaling (MDS). To merge heterogeneous distances between
MMDs, the authors in [17] propose a weighting based on the
average top- precision in terms of content-based retrieval
of each modality. This introduces a bias comparing with our
approach, since classification information of the MMD dataset,
which is required to compute precision, may not be available.
Moreover, the contribution of modalities with low retrieval
precision is underestimated. By using only zeros and ones, in
our case, merging of heterogeneous distances is avoided and all
modalities contribute equally to the creation of the adjacency
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matrix. The method proposed in [18] does not take into account
multimodal distances to create the adjacency matrix but it
uses mono-modal and cross-modal distances to create multiple
adjacency sub-matrices (of all possible pairs). In this case,
the computational complexity of the algorithm is dramatically
increased, when new modalities are introduced, while, in our
case, the complexity of the LE-based method is not affected.
A similar adjacency matrix is produced in [27] to be used as
input to a manifold ranking approach. The nonzero elements of
the matrix are exponential functions of the pairwise distances
between the objects. It must be noted, however, that the method
in [27] is used only for mono-modal retrieval (either image
or text) and not for cross-modal or multimodal retrieval. An
extension to multimodal retrieval is not a trivial task; it requires
merging distances of heterogeneous modalities, which would
suffer from the same weaknesses as in [17]. Finally, it is worth
mentioning that the LE method is applied for the first time in
this paper to address multimodal retrieval.

IV. LARGE-SCALE INDEXING

The nonzero elements of the adjacency matrix de-
scribed above indicate that the th object is neighbor of the th
object, with respect to a specific distance metric. It is obvious
that for the creation of the adjacency matrix, an
distance matrix is required, which stores the pair-wise distances
among all database’s MMDs. However, when it comes to re-
ally large multimedia datasets, both calculation and storage of
all-to-all distance matrices becomes prohibitive. Consequently,
the distance matrix does not provide an efficient solution in
real-life problems, where multimedia databases store thousands
(or even millions) of media items.
On the other hand, multimedia indexing is a widely used

method to speed up the nearest-neighbor search in large
databases. Through indexing, only a subset of the most relevant
data for a given query is returned, without the need to compute
one-to-all distances of the query with all database objects.
Based on its clear advantages in media retrieval, large-scale
indexing has been adopted in the present work to avoid com-
putation of large distance matrices. The indexing algorithm
that was extended and used in our multimodal retrieval method
has been introduced in [29] and is based on inverted files. The
main idea of the method is that when two objects are very
similar (close to each other in a metric space), their view of the
surrounding world is similar as well. Thus, instead of using the
distance between two objects, their similarity can be approxi-
mated by comparing their ordering of similarity according to
some reference points. This particular technique is also imple-
mented by the use of inverted files. A brief overview of the
algorithm is given in the sequel for the sake of completeness.
Let be a set of media objects and
a distance function between objects of . Let be a

set of reference objects chosen from . An object can
be represented as the ordering of the reference objects RO
according to their distance from , as follows: ,
where is the ordered list containing all objects of RO,
ordered according to their distance from . The position in

of a reference object is denoted as .
The distance between two objects in the transformed domain

Fig. 5. Searching algorithm using inverted files.

is given by , where SFD is the
Spearman footrule distance, which is used as a measure to com-
pare ordered lists:

(3)

The distance between the two objects in the transformed do-
main can be used to perform approximate similarity search, in-
stead of using the classical distance metric .
Let us suppose that we have a query , which is used to re-

trieve relevant objects from . An exhaustive
approach would be to compute the pairwise distances of
the query descriptor vector with the descriptors of all objects
of the dataset . The approximate ordering of with respect to
can be obtained by computing the distance .

This distance can be easily computed by representing (indexing)
the transformed objects with inverted files, as follows:
Entries of the inverted file are the objects of RO. The posting

list associated with an entry is a list of pairs
, that is a list where each object of the

dataset is associated with the position of the reference object
in . In other words, each reference object is associated

with a list of pairs each referring an object of the dataset and the
position of the reference object in the transformed objects rep-
resentation. The inverted file will have the following structure:

(4)

where is the size of the dataset and is the size of the
set of reference objects RO. An algorithm for computing the
distances of the query with all objects of is given in
Fig. 5. At the end of the algorithm, all objects are associated
with an accumulator that contains their distance from the
query .
By using the above indexing structure, search within the

dataset is much faster than using the classical distance metric
to calculate dissimilarity between descriptor vectors. The

search and retrieval time depends on the size of the dataset
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of reference objects RO. According to [29], the following
inequality must hold so that the retrieval performance is not
affected:

(5)

Working in a similar way, we adopted the aforementioned
multimedia indexing scheme in order to create the adjacency
matrix of the manifold learning approach presented in this
paper. The indexing algorithm is applied for each modality
separately; thus, the dataset is the set of media items of the
same th modality and is the distance metric
that computes the dissimilarity between the mono-modal
descriptors of the th modality. Then, a ranked list of
-nearest neighbors is returned, similar to the one of (1).
The above indexing scheme is also applicable to the methods

presented in [18] and [27], since they take into account only the
distances from neighboring objects to create an adjacency ma-
trix. On the other hand, the method in [17] requires computa-
tion of all-to-all distances to apply MDS; therefore, large-scale
indexing is not applicable in this case. In the Experimental Re-
sults section, the performance of the proposed LE-based man-
ifold learning method, with and without using large-scale in-
dexing, is presented.

V. MULTIMODAL SEARCH AND RETRIEVAL

In state-of-the-art cross-media retrieval systems, the user en-
ters a query of a single modality to retrieve objects of different
modalities, i.e., use an audio file to retrieve relevant images,
use an image query to retrieve relevant sounds, and so on. The
framework proposed in this paper is able to support multimodal
queries. As an example, an MMD can be used as query to re-
trieve semantically similar MMDs. The constituting modali-
ties of the retrieved MMDs may be different from the query’s
modalities, which is a clear step forward in the field of multi-
modal retrieval.
By using as query an MMD that belongs to the database,

the retrieval procedure is straightforward: the low-dimensional
multimodal descriptor vector of the query MMD, which was
computed using the proposed LE-based manifold learning
method, is matched against the multimodal descriptor vectors
of the rest MMDs of the database and the most relevant results
are retrieved. The situation, though, is different when dealing
with queries which do not belong to the database. An MMD
that does not belong to the database is not included in the
manifold learning process, and thus, its low-dimensional mul-
timodal descriptor vector is not available. Therefore, it cannot
be directly matched with the database MMDs.

A. Dealing With Multimodal Queries Which Do Not Belong to
the Database

In the complex case where the query does not belong to the
database, the only information that can be extracted is the initial
mono-modal descriptors of its constituting media items. Instead
of repeating the procedure described in Section IV, by adding
the query to the initial dataset, a faster and more approximate
solution is preferred in order to obtain its multimodal descriptor

vector. Towards this direction, several machine learning tech-
niques (such as neural networks, SVMs, etc.) can be adopted to
train a sample dataset taking as input the initial descriptor vec-
tors and producing the final low-dimensional vectors. Such an
approach was presented in [14], where an RBF network was ap-
plied to map the initial low-level descriptors of 3-D objects to
a new feature space of lower dimension. However, in [14], au-
thors deal with one single modality. The situation is more com-
plex when two or more modalities need to be trained simultane-
ously, as is the case in the present work.
In this paper, the RBF [31] was eventually chosen. The im-

plementation of this method was obtained from the Weka [32]
library. The reason for choosing RBF instead of similar machine
learning techniques (such as SVM) was the fact that RBF was
the only method that supported missing input data. Since our
multimodal datasets consist of MMDs with one or more modal-
ities missing, no other method could be applied for training.
An ideal RBF network, in our case, would take as input

the mono-modal descriptors of the query MMD’s constituting
modalities and return an -dimensional multimodal descriptor
vector to be matched with the multimodal descriptors of the
database MMDs. If is the dimension of the th modality’s
descriptor vector and is the number of the
MMDs’ constituting modalities, the total number of inputs
to the RBF is given by

(6)

Although current implementations of RBF functions support
multiple inputs, even when the number of inputs is large,
they do not support multiple outputs. This is due to the fact
that RBFs are mainly classifiers; thus, they can only return a
class label in the output. To deal with this limitation, the method
for predicting the multimodal vector of a query MMD has been
modified as follows:
Let be a set of multimodal de-

scriptor vectors, where each vector consists of descriptors
( . By applying a -means
clustering algorithm, the multimodal descriptor vectors of
can be grouped into -dimensional clusters . Let
also be the set of cluster centers pro-
duced by the -means clustering algorithm, where is also an
-dimensional vector, and is the set of
cluster labels associated with each cluster center. A multimodal
descriptor vector is assigned the label associated
with the cluster center closer to . This can be written math-
ematically as

(7)

During the training procedure, each MMD of the training set
is used as training sample to the RBF network as follows: the
input to the RBF is the set of mono-modal descriptors of the
MMD, while the output is the cluster label assigned to the
MMD’s multimodal descriptor vector .
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Fig. 6. Multimodal retrieval using a query MMD which does not belong to the
database.

During the multimodal retrieval phase, the query en-
ters the RBF network using its mono-modal descriptors as
input. Then, the RBF function predicts a cluster label from
the set . The cluster center that is associated with is
used as multimodal descriptor vector to retrieve similar MMDs
from the database.
An interesting property of RBF networks is that they support

missing inputs. Thus, the performance of an RBF is not signifi-
cantly affected when multiple inputs are empty. Therefore, even
if one or more modalities are missing from several MMDs of the
database and the corresponding RBF inputs are empty, the
network can still train the RBF function successfully. Similarly,
during retrieval, several modalities from the query MMD can
be missing, which again does not affect the prediction accuracy
of the RBF.
In Fig. 6, the procedure of multimodal retrieval using a query

MMD which does not belong to the database is illustrated. The
MMDs of the database are represented as vectors in the multi-
modal feature space. Then, clusters are created, which group se-
mantically similar MMDs together. When an MMD out of the
database is used as query, the RBF predicts the center of the
cluster that is closer to thisMMD. The cluster center is then used
as the multimodal descriptor of the query in order to retrieve
similar MMDs from the database. Note that two MMDs that
consist of different modalities can belong to the same cluster,
which demonstrates the ability of the proposed method to model
semantic relationships in the multimodal space.
Comparing with similar methods presented in [17] and [18],

themethod proposed in this paper is novel in the sense that it sup-
ports multimodal queries. In [17], when the query does not be-
long to the database, only one single modality at a time can be
used as query. Similarly, the method in [18] supports querying
with one single modality at a time. The RBF framework, on the
other hand, enables querying with multiple modalities simulta-
neously. It must be noted that the present framework based on
RBF is used for the first time in multimodal retrieval, which is a
clear advantage of the proposedmethod.Moreover, to the best of
our knowledge, there is no method reported so far that supports
the option to enter multiple query modalities simultaneously.

VI. EXPERIMENTAL RESULTS

For the experimental evaluation of the proposed method,
three multimodal datasets were compiled by us, since, to the
best of our knowledge, no benchmark dataset for multimodal
retrieval is available. The first dataset consists of 264 MMDs,
which were created using 159 3-D objects and 312 2-D images.
The 3-D objects constitute a subset of the ITI 3-D object data-
base [40], which has been used for experimental testing of 3-D
object retrieval methods, while the 2-D images are snapshots
of the corresponding 3-D objects. The classification scheme of
ITI database has been adopted in the first multimodal dataset
to classify the 264 MMDs into 12 categories. For the creation
of the second dataset, 266 3-D objects, 370 2-D images, and
283 sounds resulted in a total number of 495 MMDs. The
3-D objects are a subset of the SHREC 2011 Generic Shape
Benchmark [41] (10 out of the 50 categories), which has been
used in SHREC 2011 contest for experimental testing of 3-D
object retrieval methods, while the 2-D images are snapshots of
the corresponding 3-D objects. The 3-D objects and 2-D images
were classified into 10 categories using the SHREC 2011 clas-
sification scheme. The 283 sounds were collected from publicly
available websites of the Internet and were manually attached
to specific MMDs. Finally, the third dataset comprises 2334
MMDs classified into 50 semantic categories. We used 1550
real images and 1557 3-D objects to create the third dataset. The
3-D objects are derived from both the SHREC 2011 Generic
Shape Benchmark and the Princeton Shape Benchmark [42]
datasets, while the 2-D real images were collected from publicly
available websites of the Internet and were manually attached
to specific 3-D objects. The classification schemes of SHREC
2011 and Princeton Shape Benchmark were used to classify the
2334 MMDs into 50 semantic categories.
The 3-D object descriptors for all three datasets were

extracted using the combined Depth-Silhouette-Radialized
Extent (DSR) descriptor [35]. The 2-D image descriptors for
the first two datasets were extracted using 2-D Polar-Fourier
coefficients, 2-D Zernike moments and 2-D Krawtchouk mo-
ments [3], while for the images of the third dataset the CEDD
descriptor [36] was used, which constructs a vector of 144
3-bit values based on color and edge histogram. The reason
for choosing different low-level image descriptors was that,
in the first two datasets, images are actually snapshots of the
corresponding 3-D objects (no background or color information
is available), while the third dataset consists of real images
gathered from the web. Thus, for the first two datasets, shape
descriptors are appropriate, while for the third dataset, back-
ground and color information should be taken into account,
which led to the choice of the CEDD descriptor. Finally, the
audio descriptors of the second dataset are extracted using the
algorithm presented in [34].
The datasets used in our experiments can be downloaded

from the following web links:
http://3d-test.iti.gr:8080/3d-test/Download/Multi-
modal_Database_1.zip
http://3d-test.iti.gr:8080/3d-test/Download/Multi-
modal_Database_2.zip
http://3d-test.iti.gr:8080/3d-test/Download/Multi-
modal_Database_3.zip
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Fig. 7. Parameter selection of values and in Database 1.

Fig. 8. Parameter selection of values and in Database 2.

Fig. 9. Parameter selection of values (a) in Database 3 and (b) in a subset of
Database 3 where almost half of the MMDs have been removed.

In the first series of experiments, each MMD from the data-
base was used as query to retrieve similar MMDs. In the second,
new MMDs not belonging to the database were used as queries.
The retrieval performance was evaluated in terms of “preci-
sion-recall”, where precision is the proportion of the retrieved
models that are relevant to the query and recall is the propor-
tion of relevant models in the entire database that are retrieved.
The classification information of the three datasets was used as a
ground truth, in order to distinguish the relevantMMDs from the
irrelevant ones. When the retrieved result belongs to the same
category with the query, it is marked as relevant; otherwise it is
marked as irrelevant.

A. Parameter Selection for the Laplacian Eigenmaps
Algorithm

The performance of the proposed manifold learning method
based on Laplacian eigenmaps is affected by the number of
nearest neighbors of required for the creation of the ad-
jacency matrix and the number of dimensions of the new mul-
timodal feature space. In Fig. 7–9, the precision-recall diagrams
for different values of and , in all three datasets, are presented.
In order to generate these diagrams, each MMD of a dataset is

used as query to retrieveMMDs from the same dataset (all-to-all
multimodal retrieval). After calculating the individual preci-
sion-recall for each query, the average precision-recall is ex-
tracted for the entire dataset. Concerning the value of nearest
neighbors, the best performance is achieved for in all
three datasets.
The aim of applying nonlinear dimensionality reduction,

which is achieved by using the LE method, is to keep the
distances of neighboring points close enough, while at the same
time to stretch the distances of non-neighboring points [37].
This improves the discriminative power of the distance metric
(Euclidean distance). Regarding the dimensionality of the new
mapped multimodal descriptor vectors, a value of proved
to be the optimal choice for the first two datasets. By reducing
the dimensionality to values , the retrieval accuracy is
decreased, which implies that less than four dimensions are not
adequate to provide a complete data representation for the two
datasets. By increasing the dimensionality to values , the
accuracy starts to decrease again. This is due to the fact that
by adding more dimensions, the effect of distance stretching
becomes weaker and the discriminative power of Euclidean
metrics in this space is reduced.
Similar behavior is observed in the third dataset; however,

in this case, the optimal performance is achieved for .
Although the optimal dimensionality here is different from the
one observed for the previous two datasets , this was
expected taking into account the different nature of low-level
mono-modal descriptors (e.g., the real image descriptors of the
third dataset are totally different from the image descriptors of
Database 1 andDatabase 2). In order to prove that this parameter
is not affected by the size of the dataset, we repeated the exper-
iments on a reduced dataset, which was created from Database
3 by keeping only half of its MMDs. The results for both Data-
base 3 (2334 MMDs) and reduced Database 3 (1177 MMDs)
are presented in Fig. 9, where it is obvious that the optimal di-
mensionality in both cases is .

B. Comparison of the Proposed Approach With Other
Manifold Learning Methods

The proposed method was compared with the following
manifold learning approaches: LRGA [17], MMR [4], and
LLE [15]. In order to implement these methods, an
dissimilarity matrix among all MMDs of each experimental
dataset was initially created. Each cell of the matrix is a
weighted sum of the mono-modal distances, for each pair of
MMDs, where the weights represent the average precision
values for each modality, according to the method in [17]. The
implementation of the LRGA algorithm was available at the
authors’ website, while both MMR and LLE methods were
implemented by us.
A comparison of our method with the competitive ones is pre-

sented in Fig. 10. The precision-recall diagrams correspond to
all-to-all multimodal retrieval in all three datasets. In the first
two datasets, the proposed method is slightly better than LRGA
and MMR, while it clearly outperforms the LLE method. In the
third dataset, the proposed approach outperforms all other com-
petitive methods.
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Fig. 10. Comparison of the proposed method (all-to-all multimodal retrieval)
against LRGA, MMR, and LLE, in all three databases.

Fig. 11. Comparison of the proposed method (all-to-all multimodal retrieval),
in all three databases, using two multimedia indexing schemes.

C. Performance of the Proposed Approach Using Large-Scale
Indexing

In Fig. 11, the performance of the proposed method using two
different indexing algorithms is presented for all three datasets.
The first one is the inverted-file-based indexing method [29],
while the second one is a method based on kd-trees [30]. The
method based on inverted files was eventually selected since it
achieves higher retrieval accuracy than kd-trees. However, the
most interesting observation is that the performance of the pro-
posed method, when no indexing is used, is not significantly af-
fected when the inverted-file-based indexing method is adopted.
This is of high importance taking into account that in large mul-
timedia databases, indexing can drastically reduce the compu-
tational cost and storage requirements.
Another advantage of the proposed framework against the

LRGAmethod, which achieved the best performance among the

other two competitive methods, is that LRGA requires creation
of a large dissimilarity matrix in order to apply multidimen-
sional scaling. Since our method requires computation of only
the nearest neighbors of every MMD, it can be easily combined
with the proposed large-scale indexing scheme. This can signif-
icantly reduce computation times and storage requirements in
very large databases.

D. Performance of the Proposed Approach for Queries That
Do Not Belong to the Database

One of the main innovative features of the proposed method
is that it supports multimodal queries, that is, an MMD, which
does not belong to the database can be used as query with all
its constituting modalities simultaneously. This is very impor-
tant, since searching with multiple queries simultaneously can
retrieve more relevant results than using one query at a time.
The proposed method uses an RBF network to predict the mul-
timodal descriptor vector of a query that does not be-
long to the database. In order to perform this experiment, for
each dataset, a set of query MMDs, which do not belong to
the dataset, was used. More specifically, 12, 10, and 100 query
MMDs were used for the first, second, and third dataset, re-
spectively. In the first database, the query MMDs consist of
two modalities (2-D images and 3-D objects), in the second,
they consist of three modalities (2-D, images, 3-D objects and
sounds), while in the third, they consist of two modalities (2-D
real images and 3-D objects). In some of the queries, one or
moremodalities are missing, in order to check the ability of RBF
to support missing inputs. The numbers of clusters (Section V)
were found experimentally to be for the first two
datasets and for the third dataset.
The proposed approach was compared with the method

presented in [17] for queries that do not belong to the database.
More specifically, the method in [17] uses a query of a single
modality to produce an initial ranked list. Then, it uses the
LRGA algorithm to retrieve results from the database, using
as input the first retrieved results of the previous mono-modal
ranked list. In order to have a common comparison basis,
the MMDs of our three multimodal query sets were split to
single modality queries. These were used as queries to both the
LRGA-based method and the proposed method. The perfor-
mance is given in Fig. 12. Although in the previous experiment,
where the query object belongs to the dataset, the proposed
method was only slightly better than the one based on LRGA,
in the case where the query does not belong to the dataset the
proposed method clearly outperforms the LRGA-based method
(Fig. 12) in all three datasets. This is of great importance if we
consider that the latter corresponds to a real-life case, where
queries usually do not belong to the target dataset. Moreover, if
instead of single modality queries, the entire MMDs are used,
the retrieval accuracy is further improved, which highlights
the improvement that is achieved by using multimodal queries
instead of mono-modal queries.

E. Computational Issues

In terms of computational efficiency of the proposed method,
we will focus on the following: 1) offline processing time, which
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Fig. 12. Comparison of the proposed method against LRGA for queries that
do not belong to the database.

TABLE I
COMPARISON OF THE PROPOSED METHOD TO THE THREE COMPETING

ONES IN TERMS OF OFFLINE AND ONLINE PROCESSING TIMES

TABLE II
COMPUTATIONAL EFFICIENCY OF MULTIMODAL INDEXING IN TERMS OF

COMPUTATION TIME AND STORAGE REQUIREMENTS

involves the procedure of multimodal feature space creation; 2)
online processing time, which is the time for one-to-all matching
of a query MMD to the MMD dataset, and 3) the computational
complexity of the multimedia indexing scheme. In Table I, the
proposed framework is compared to the other three competing
methods (LRGA [17], MMR [4], and LLE [15]) in terms of
computation times. It is worth mentioning that, in all cases,
the times for extraction of the low-level descriptors for each
modality were not included, since they are the same for all cases.
In the offline processing stage, the most time consumingmethod
is the LRGA method [17]. The reason is that LRGA utilizes
MDS during pre-processing, which has a complexity of
[38]. Therefore, for very large datasets, the offline processing
time becomes prohibitive. In the online processing stage, the
MMR method [4] is the most time consuming since it involves
an iterative procedure. The proposed method achieves low com-
putation times in both cases. The times were obtained using a
PC with a dual-core 2.4-GHz processor and 8 GB of RAM.
In Table II, the contribution of large-scale indexing to com-

putation time and storage requirements is presented. According
to Table II, the time for computing all-to-all nearest neighbors
(exhaustive search) in the first dataset, is 2485 ms without in-
dexing, and 759 ms with the use of indexing. Thus, computing

all-to-all nearest neighbors becomes 3 times faster when in-
dexing is applied. The time cost improvement is more obvious
as we move from dataset 1 to dataset 2 (bigger), since the
all-to-all neighbor computation becomes 5.4 times faster (from
7437 ms to 1372 ms). Finally, when indexing is applied on the
third dataset, which is the biggest among our test datasets, the
all-to-all neighbor computation becomes 14 times faster (from
121 734 ms to 8689 ms). This clearly proves that the time cost
improvement is always increasing with the increase of database
sizes.
However, the efficiency of the proposed indexing method

with respect to computational cost and storage requirements
cannot be demonstrated using a limitedmultimedia dataset, such
as the ones used in the current work. In order to illustrate the
capabilities of indexing, a theoretical example follows. Let us
assume a database of 3-D objects. Low-level
descriptors of these objects are extracted using STT [33], i.e.,
an -dimensional descriptor vector is extracted for
every 3-D object. For a query , similarity search within this
database, without using indexing, involves cal-
culations, if a simple distance metric (such as L2 distance) is
used. If the proposed indexing method is adopted, a total of

calculations is required, where
is the number of reference objects and is the number of ob-
jects in each inverted file (4), which are actually accessed. Ac-
cording to [29], not all of the objects of the inverted
file need to be accessed for a given query . Only a number
of objects is enough to obtain the accurate results.
Therefore, the total number of calculations, using the proposed
indexing method is reduced to 945 000. This reduction in com-
putational cost is more distinct as the database size increases.
Concerning the storage requirements, it must be noted that the
use of indexing obviates the need to store a pre-calculated dis-
tance matrix. The size of the distance matrix is proportional to

, where is the number of database objects. On the
other hand, the storage requirements of the proposed indexing
method is proportional to , which is more
compact than the distance matrix.
The proposed framework is available for testing at the

following link: http://www2.isearch-project.eu:8080/isearch/
search/index.php. The first dataset has been used for this
demo. The user is able to insert as query an MMD that either
belongs or does not belong to the dataset and retrieve relevant
MMDs. The framework supports queries of multiple modalities
simultaneously.

VII. CONCLUSION

In this paper, a novel framework for multimodal search and
retrieval was presented. The framework achieves retrieval of
multiple media types using as queries multiple modalities si-
multaneously. The multiple media types are organized into rich
media representations, calledMMDs. The proposedmultimodal
retrieval framework is appropriate for search and retrieval of
MMDs using as query even an entire MMD. The method
creates a new low-dimensional feature space, using Laplacian
eigenmaps, where all MMDs can be mapped irrespective of
their constituting modalities. Then, multimodal retrieval of
MMDs is achieved by simply computing the pairwise distances
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among their low-dimensional multimodal descriptor vectors.
When the query MMD does not belong to the database, an
RBF network was trained to map the MMD’s mono-modal
descriptors to the new low-dimensional feature space. Finally,
the proposed framework can be applied even to very large
multimedia databases, by exploiting an appropriate large-scale
indexing scheme.
Experiments performed on two multimodal datasets demon-

strated the superiority and the efficiency of the proposed method
in multimodal search and retrieval. Another interesting conclu-
sion is that when multiple query modalities are used simulta-
neously, higher retrieval accuracy is achieved than using each
modality separately. Finally, the method can be easily extended
in order to address a wider variety of media types and applica-
tion paradigms.
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