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Abstract—Extracting discriminative image features for similar-
ity search in nowadays large-scale databases becomes an impera-
tive issue of paramount importance. To address the so called task
of Approximate Nearest Neighbor (ANN) search in large visual
dataset, deep hashing methods (i.e. approaches that make use
of the recent deep learning paradigm in computer vision) have
recently been introduced. In this paper, a novel approach to deep
hashing is proposed, which incorporates local-level information,
in the form of image semantic segmentation masks, during
the hash code learning step. The proposed framework makes
use of pixel-level classification labels, i.e. following a point-wise
supervised learning methodology. Experimental evaluation in the
significantly challenging domain of on-line terrorist propaganda
video analysis, i.e. a highly diverse and heterogeneous application
case, demonstrates the efficiency of the proposed approach.

I. INTRODUCTION

The tremendous increase that has been observed in the
recent years in the amount of the visual content that is
generated and stored on a daily basis has rendered the need for
search in the corresponding databases a big challenge. Hash-
ing methods constitute the dominating approach for efficient
image retrieval in terms of accuracy and computation time.
Hashing methods have very low memory requirements and
fast response compared to other approaches [1]. The merits
of hashing methods come from the efficient mapping of high
dimensional feature vectors to corresponding significantly low-
dimensional binary codes, which are subsequently used for
time-efficient image retrieval [2]. These mappings are also
known as hash functions and the generated binary vectors are
typically found as hash codes.

Numerous hashing methods have been proposed so far and
can generally be divided in two main categories, namely
data-independent and data-dependent methods [2], [3]. Data-
independent approaches are not using a training dataset sam-
pled from the target data and thus apply generic approaches
to learn or randomly select a mapping of the high dimen-
sional input feature vector to a lower dimensional one. Next,
a quantization step follows to result in a compact binary
vector that encodes the original vector [4], [5]. Representative
method of this category is the Locality Sensitive Hashing
(LSH) method [6] and its variants [2], which are selecting
projection matrices to lower-dimensional spaces and thresh-
old the vectors to binary codes. On the other side, data-
dependent methods aim at learning hash functions from the

target dataset to generate more efficient mappings of the input
data to the new hamming space [7]. The methods of the data-
dependent category can be further divided into supervised and
unsupervised ones [2]. The unsupervised approaches aim at
learning feature representations based only on the statistics
of the target data e.g. the variance of each dimension or
its cardinality [8]. Additionally to the statistics of the high-
dimensional vectors data, the supervised approaches take also
into account the labels of the training data, so that the
semantics of the data are also incorporated in the learned
hash functions. The advantage of using labeled data to guide
the learning process leads supervised methods to generate
hash codes that represent better the original data with fewer
bits (i.e. smaller hash code length), compared to the ones
attained by unsupervised techniques. Small hash code length
is desirable for building efficient image retrieval frameworks,
with respect to the required computational resources [9], [5].
Representative data-depended methods are Spectral Hashing
(SH) [10], Binary Reconstructive Embedding (BRE) [11] and
Iterative Quantization (ITQ) [12].

The above-mentioned hashing methods make use of tradi-
tional hand-crafted visual descriptors, such as GIST [13] or
HOG [14]. However, these hand-engineered descriptors (and
consequently the corresponding hash codes) do not efficiently
model the original images and their semantics and thus fail to
provide a retrieval mechanism of high accuracy. Fortunately,
the break-through of Deep Learning (DL) techniques in the
computer vision community affected also the binary hashing
methodologies, by replacing the hand-crafted descriptors with
learnable features extracted directly from deep neural net-
works, typically Convolutional Neural Networks (CNNs). The
corresponding methods that learn end to end representations
from the image to feature vectors and finally hash codes are
termed deep hashing [3], [5], [15]. Although multiple deep
hashing approaches have recently been proposed [16], [1],
[4], [2], [3], [5], [9], [15], all presented methods make use
of image-level features, i.e. they do not directly incorporate
locality and semantic information of the individual objects
that are present in an image. Performing the latter would
inevitably lead to the generation of more expressive and robust
hash codes that would combine image-level information with
discriminative object-level information cues.

In this paper, a novel approach to deep hashing for image
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retrieval is proposed, which takes into account object locality
information as well as cues from semantic segmentation of
the image objects, during the hash functions learning pro-
cedure. In particular, the fundamental consideration of the
proposed approach is, apart from global-level features, to
incorporate object-level information, so that the estimated
hash codes encode better the images’ content. In the current
work, deep semantic image segmentation techniques are used
for providing local-level cues and object classification. More
specifically, the proposed approach is essentially composed
of two consecutive steps. In the first step, a particular sub-
network is integrated to the overall deep architecture for esti-
mating semantic segmentation maps of the input images. Then,
in the second step, the network learns discriminative hash
codes that incorporate both global and local level information.
Experimental results from the application of the proposed
approach in the domain of on-line terrorist video content
demonstrate the merits of incorporating semantic segmentation
information in deep hashing schemes.

The remaining of the paper is organized as follows: related
work is discussed in Section 2. The proposed deep semantic
hashing approach is detailed in Section 3. Experimental results
are presented in Section 4 and Section 5 concludes the paper.

II. RELATED WORK

This section discusses the state-of-art in hashing techniques,
including both supervised and unsupervised learning schemes,
while also investigating both hand-crafted and deep methods.

Hashing methods can generally be divided into two main
categories, namely supervised and unsupervised ones. Unsu-
pervised hashing methods make use of raw features extracted
directly from the image, i.e. without exploiting semantic
information [5]. For instance, Iterative Quantization (ITQ)
aims at preserving the locality structure of the projected
data that have been processed using Principal Component
Analysis (PCA), by performing rotation so as to minimize
the discretization error [12]. Additionally, Isotropic Hashing
(IsoHash) learns projection functions, which can produce
dimensions with isotropic variance [17]. Spectral Hashing
(SH) initially applies PCA on the original data, then calculates
the analytical Laplacian eigenfunctions along the principal
directions and eventually hash codes are generated based on
the projections of these eigenfunctions [10].

Supervised methods make use of semantic information dur-
ing the hash function learning step. Supervised information can
be considered in three different forms, namely as point-wise,
pair-wise and ranking labels [16]. When point-wise supervised
information is used, the model simultaneously handles both the
problems of hash functions and image classification learning.
The method of [18], which learns the hash functions and
the classification layer at the same time, is representative
of the aforementioned category. More specifically, a latent
layer, placed before the classification layer, learns both image
features and the corresponding hash code in an end-to-end
fashion. Methods that make use of pair-wise supervised infor-
mation generally require pairs of similar or dissimilar images

for learning hash codes. The similarity or not of image pairs
is assessed on the basis of the estimated classification label of
each image. For example, Deep Pairwise-Supervised Hashing
(DPSH) [16] learns hash codes in a pairwise manner within
an end-to-end framework [16]. A similar approach that utilizes
pair-wise information for learning hash functions in two steps
is Convolutional Neural Network Hashing (CNNH) [7]. The
latter method learns hash codes using supervised information
in the first step and then, in a second step, estimates simulta-
neously both hash functions and image feature representations
using supervised information originating from the computed
hash codes (stage one) and the estimated image classification
labels. Moreover, methods that make use of supervised infor-
mation in the form of ranking labels typically generate triplets
of images based on their estimated classification labels [9],[5],
where one image constitutes the query and the remaining two
are similar/dissimilar to the query one.

As in all cases of supervised learning, the use of supervised
information is advantageous in learning hash functions, with
the cost of depending on labeled data that are not always
available. Additionally, the recent trend of simultaneously
learning both hash functions and classification labels (deep
hashing methods) has also resulted into significantly improved
retrieval results. However, to the best of our knowledge, incor-
porating object-level information in deep hashing schemes has
not been investigated so far, while it is very likely to further
reinforce the expressiveness and the discriminative power of
the estimated hash codes.

III. PROPOSED METHOD

In this section, the deep hashing approach using point-
wise labels is initially outlined and subsequently the proposed
framework is detailed.

A. Point-wise Deep Hashing

Let X = {x1, xi, ..., xN} ε Rd×N be the set of training
images. Deep hashing methods aim at learning a set of L
hash functions that estimate the desired binary hash codes.
Given an image x and it’s classification label the network
learns the corresponding class which the image x belongs. An
individual hash code bi, which is a L-length binary vector,
is computed for each input image xi. L is the number of
hash functions that export the L-length binary vector b for
each x image. The ultimate goal is to learn hash functions
that will extract low-dimensional and discriminant bi vectors.
For achieving this, the target during the training phase is
to produce hash codes that are as close as possible in the
hamming space for images of the same class and as far as
possible for images belonging to different semantic classes.
Vectors bi are computed by applying a binarization step to
the real-valued output of the corresponding hash functions.
The binarization step is typically implemented using the sign
function, which maps all input real values to the two discrete
ones {−1, 1}, according to the following equation:

sgn (ψ) =

{
−1 , if ψ < 0
1 , if ψ > 0

(1)
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Fig. 1. Graphical representation of the proposed framework.
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B. Proposed Framework

In this sub-section, the proposed framework for incor-
porating object-level (semantic segmentation) information in
deep hashing schemes for image retrieval is detailed. The
fundamental idea of using local-level information for increas-
ing the discriminative power of the generated hash codes
can be applied so as to extend any already proposed deep
hashing method. Nevertheless, since a particular scheme needs
to be used for experimental evaluation, the method of [18]
is selected in this work, due to its relative implementation
simplicity that is, however, coupled with increased retrieval
performance. The proposed deep hashing framework com-
prises four distinct parts and it is graphically illustrated in
Fig. 1.

The first part of the proposed framework comprises of a
Neural Network pre-trained on the ImageNet dataset [19].
In the current wok, this base network is the VGG with
configuration ’C’ [20], which consists of a total of 16 layers.
The primary goal of this work, as already discussed, is not
to focus on particular base network architectures, but it is
on directly incorporating semantic information regarding the
objects present in the image. To this end, different well-known
base network architectures, such as ResNet [21] or VGG with
different configurations, can also be utilized.

The second part of the framework is responsible for in-
tegrating semantic segmentation information. In the current
implementation, the well-known Pyramid Scene Parsing (PSP)
network [22] is incorporated for that purpose. In particular,
the PSP architecture receives as input the feature map of the
semifinal VGG convolution layer. Then, average pooling layers
of different size are applied to the feature map. Subsequently,
convolution layers with kernel size 1 × 1 are used, followed
by respective up-sampling layers. Eventually, the generated
features are stacked with the original ones, as can be seen
in Fig. 1. Information for supervised training of this part of
the network is given in the form of an image segmentation
mask. More specifically, the PSP module receives as input a
feature map of size 28×28×512. Then, four average pooling
layers with bin size 28×28, 14×14, 9×9 and 7×7 are again
applied. Each pooling layer is followed by a convolution layer
with kernel size 1× 1 and outputs N/4 features, where N is
the number of features in the input feature map. Sequential
application of batch normalization, ReLU (Rectified Linear
Unit) activation and up-sampling layers over each pooling
stream enables the reconstruction of the input feature map.
The original feature map and the four reconstructed ones
are stacked. Subsequent activation of convolutional, non-linear
and up-sampling layers lead to the restoration of the original
(ground truth) image segmentation mask dimensions. In the
current implementation, the spatial dimension of the PSP
module input is equal to 28× 28.

In the hash code learning phase (third part in Fig. 1), the
network learns the hash codes and the classification labels
simultaneously. For achieving this, the softmax layer of the
PSP module is removed and four new fully-connected layers

TABLE I
SUPPORTED LOCAL AND GLOBAL SEMANTIC CONCEPTS

Global Local
Battlefield Barrel
City Scape Book
Crowd Building
Desert Electrical Device
Graphics Fire
Indoors Furniture
Interview Gun/Rifle
Monuments Logo
Mountain Person
Terrorist Campus Prisoner

Sign
Sky
Smoke
Truck
Vegetation

are added; the first two comprise 4096 nodes, the next one
48 (for extracting the hash codes) and the last one is a
softmax layer (which has as many nodes as the number of
supported semantic classes). ReLU layers have been added
after each fully-connected one, except from the hash layer (48
nodes) which is followed by a sigmoid activation function. The
sigmoid layer outputs are in the range [0, 1], which facilitates
the extraction of the binary hash codes.

The final part of the framework is responsible for the task
of retrieving relevant images. Having trained the network
architecture that corresponds to the first three framework parts,
a binary hash code can be generated for each query image
and can be used here for retrieval purposes. In particular, as
an input image xi passes through the developed network, the
latent layer in the third part outputs a vector ri of real numbers
in the range [0, 1]. For generating the respective binary hash
code Hi, the following operator is used:

Hi = sgn (ri − 0.5) , Hi ε {−1, 1} (2)

Passing all the images of the employed training set through
the developed framework generates results in the generation
of a table of hash codes. During the retrieval step, the
estimated hash code of the query image is compared with
the aforementioned hash code table entries using hamming
distance and the top-K most similar images are returned.

IV. EXPERIMENTAL RESULTS

A. Employed Datasets

The proposed framework is generic and can be directly
introduced to any relevant deep hashing application case.
However, in order to demonstrate its efficiency, particular
datasets need to be employed for training and evaluation.

In order to train the semantic segmentation architecture
(second part of the framework), the PASCAL-VOC2012 [23]
dataset is used. This dataset contains approximately 2, 912
images with pixel-level ground truth annotation and supports
20 semantic classes. It was selected on the basis that the
defined semantic classes correspond to commonly met real-
world object categories, such as person, car, TV/monitor, etc.
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For learning the hash code functions (third part of the
framework), the CIFAR-10 [24] dataset is used. This dataset
consists of approximately 60, 000 images. The training set
(50, 000 images) was used for modeling the hash functions
and 1, 000 (100 for each supported class) images (out of the
10, 000 instances of the test set) were used for cross-validation
purposes.

The overall proposed framework is evaluated in the highly
challenging domain of on-line terrorist propaganda video anal-
ysis, i.e. a highly diverse and heterogeneous application do-
main. For that purpose, a large-scale real-world video dataset
has been collected from on-line sources, where keywords or
phrases commonly met in propagandistic videos have been
used for identifying the relevant video content. The collected
dataset consists of several hundreds of hours of video material.
For processing the formed dataset and enabling search/retrieval
operations, a set of approximately 27, 000 key-frames was
formed, which were uniformly selected. For the experimental
evaluation, two set of concepts, namely global- and local-
level ones, were defined. In particular, 10 global and 15
local concepts were considered, as can be seen in Table I.
The global concepts are used for describing the whole image
(e.g. ’Battlefield’, ’City Scape’, etc.), while the local ones
correspond to the different object types depicted in local
regions of the image (e.g., ’Barrel’, ’Book’, etc.). Indicative
key-frames of the formed dataset are given in Fig. 2.

B. Implementation Details

For training the part of the proposed framework that corre-
sponds to the semantic segmentation step (second part in Fig.
1), learning rate equal to 10−3 was initially selected and was
subsequently decreased to 10−4 after 20 epochs. The negative
log-likelihood criterion was used during training, along with
Stochastic Gradient Descent (SGD) for implementing back-
propagation with momentum equal to 0.9. The total number
of epochs was 30 and the defined batch size was set equal
to 32. For hash code learning (third part in Fig. 1), the same
training configuration as above was followed; the difference
being that a batch size equal to 96 being used. All input
images were cropped, using a square window placed at the
center of the image with spatial dimension equal to the smaller
image dimension, and then resized to 224x224 pixels. All
implementation activities were carried out using the Keras [25]
framework and a Nvidia GTX 1070 GPU with 8GB memory.

C. Evaluation Metrics

For evaluation, the metric defined in [18] was used. In
particular, a ranking Mean Average Precision (MAP) value
was calculated for each query image. For the calculations, the
retrieved images that belonged to the same semantic class with
the query image were considered relevant. MAP values were
calculated for the top-10 and top-50 retrieved images.

D. Evaluation Results

The proposed framework was evaluated using the global
and local semantic concepts defined in Table I. Tables II and

TABLE II
GLOBAL CONCEPTS RETRIEVAL RESULTS

Concept Top-10 Top-50
Proposed Baseline Proposed Baseline

Battlefield 50.40% 32.60% 36.60% 31.20%
City Scape 73.48% 54.80% 42.80% 38.38%
Crowd 44.20% 47.00% 37.40% 35.80%
Desert 67.26% 55.60% 55.64% 49.60%
Graphics 54.80% 30.20% 30.00% 28.00%
Indoors 27.60% 30.00% 23.00% 18.00%
Interview 78.60% 60.80% 61.60% 48.00%
Monuments 20.00% 22.60% 21.00% 15.00%
Mountain 58.20% 48.40% 39.00% 40.60%
Terrorist Campus 10.20% 6.20% 11.20% 8.80%
Overall 48.47% 38.82% 35.82% 31.33%

TABLE III
LOCAL CONCEPTS RETRIEVAL RESULTS

Concept Top-10 Top-50
Proposed Baseline Proposed Baseline

Barrel 36.66% 4.00% 28.30% 3.88%
Book 5.47% 15.61% 8.87% 13.81%
Building 72.29% 82.88% 47.32% 58.27%
Electrical Device 28.41% 26.66% 30.54% 23.66%
Fire 34.24% 45.10% 27.52% 26.00%
Furniture 39.43% 15.00% 33.72% 14.78%
Gun/Rifle 43.58% 11.19% 42.02% 11.67%
Logo 35.56% 28.19% 25.37% 20.37%
Person 89.71% 75.75% 78.43% 73.27%
Prisoner 44.50% 41.16% 39.27% 22.74%
Sign 56.33% 39.60% 42.62% 19.68%
Sky 92.62% 85.74% 84.09% 73.49%
Smoke 61.19% 55.20% 22.98% 37.29%
Truck 42.93% 42.66% 32.10% 37.81%
Vegetation 48.10% 55.73% 39.19% 42.50%
Overall 48.73% 41.63% 38.82% 31.92%

III illustrate the obtained retrieval results for each semantic
concept, while the performance of the baseline method of
[18] (which does not make use of semantic segmentation
information for estimating the image hash codes) is also given.
Additionally, an average MAP value over all defined concepts
(which are equally represented in the conducted retrieval
experiments) is also estimated.

Global Concepts: From the results presented in Table II,
it can be seen that the proposed framework outperforms the
baseline model by approximately 9.65% and 4.49% for the
top-10 and top-50 cases, respectively. From a detailed exami-
nation of the estimated results, it can be seen that for certain
concepts (such as ”Battlefield”, ”City Scape”, ”Crowd” and
”Interview’) where local concepts have an increased role (e.g.
clearly visible human figures) the proposed method achieves
to introduce significant performance gains, compared to the
baseline method. This suggests that incorporating local-level
information (semantic segmentation) in the hash code learning
process can significantly boost the retrieval performance of
global concepts. Additionally, it can be seen that this improve-
ment in performance is greater for the more challenging top-10
retrieval case.

Local Concepts: Table III illustrates the top-10 and top-50
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Fig. 2. Indicative key-frames of the formed dataset.

retrieval results obtained by the application of the proposed
framework. From the provided results, it can be seen that
the proposed framework outperforms the baseline approach
by approximately 7.10% and 6.90% for the top-10 and top-
50 image retrieval cases, respectively. More specifically, for
particular local concepts (such as ”Furniture”, ”Person” and
”Prisoner”), which exhibit well-defined appearance partners,
the proposed framework introduces a significant performance
increase over the baseline approach. The above observations
suggest that incorporating local-level information, regarding
the objects that are present in the image, during the hash
code learning phase is advantageous also for the cases of local
concepts. It needs to be mentioned that there is no significant
difference in the performance improvement over the baseline
for the cases of top-10 and top-50 evaluation for the local con-
cepts, as opposed to the case of global concepts. Additionally,
it can also be observed that the proposed framework performs
on average better for the cases of local concepts.

V. CONCLUSION

In this paper, a novel deep hashing architecture for con-
structing binary hash codes that incorporate local-level in-
formation in the form of semantic segmentation masks was
proposed. The introduced framework was evaluated in the
challenging domain of on-line terrorist propaganda video

analysis and exhibited significant image retrieval performance
gains over a corresponding baseline method that makes use of
only whole image information for estimating hash codes. The
experimental evaluation showed that the introduced framework
is advantageous both for global and local concepts. Future
work includes the investigation of alternative ways for incor-
porating local-level information in deep hashing schemes.
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