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ABSTRACT different types of neurons featuring convolutional opiers,

Real-world CCTV footage often poses increased chalon-linear filtering and spatial pooling. End-to-end tragn

lenges in object tracking due to Pan-Tilt-Zoom operationsIs utserd :o arutor‘rr1]?t[[ci;arllly learn hierarchical and objecte
low camera quality and diverse working environments. Mos{ea;be_ €p esi_ a 0_ E.d | . hni h
relevant challenges are moving background, motion blur and Ject tracking with deep learning techniques, however,

severe scale changes. Convolutional neural networks,h/vhi31ashatltrackte:cj cofps]derabl_y less dattenf_on '”I th; paswm'%
offer state-of-the-art performance in object detectiom,in- to the lack of sufficient training data. Li et al. [3] incorpate

creasingly utilized to pursue a more efficient tracking scee a c?p\/lolgtlonal neural qetwork I(C'XN) to wsual;lracl:lgglwn
In this work, the use of heterogeneous training data and dafgu'liple Image cues as inputs. In [4] an ensemble of deep net-

augmentation is explored to improve their detection rate i orks has been combined with an online boosting method. In

challenging CCTV scenes. Moreover, it is proposed to us%5], a single-target online learning tracker is proposedlto

the objects’ spatial transformation parameters to automadev'ate qu.rrlngl._ Anoéher line of rkeseadrcﬂ epr0|tsf aLaﬂy |
ically model and predict the evolution of intrinsic camera ztato trag? offiine i, eepFnetwor I, an6 then tran('js ;ars how
parameters and accordingly tune the detector for better pe‘? ge to object tracking. Fan et al. [6] proposed learning a

formance. The proposed approaches are tested on publicTr?eCiﬁC feature extractor with CNNs from an offline train-
available datasets and real-world CCTV videos. ing set. In [7] a deep learning tracking method is proposed
that uses stacked denoising autoencoder to learn the generi

Index Terms— CCTV, motion blur, PTZ, R-CNN, spatial features from a large number of auxiliary images. Recently,

transformer, RNN Wang et al. [8] employed a two-layer CNN to learn hierarchi-
cal features from auxiliary data, which models complicated
1. INTRODUCTION motion transformations and appearance variations. Ing9],

deep learning architecture learns the most discriminétisie

Object tracking has attracted substantial attention inréhe tures via a CNN exploiting both the ground truth appearance
search community due to its value in practical applicationgnformation and the image observations obtained online.
and especially smart video surveillance solutions. Degpi In this work, a multiple-object detection framework for
progress made in recent years, object tracking method®éare rtracking by detection applications that confronts the chal
robust enough for real-world content from CCTV cameraslenges of real-world CCTV videos is proposed. It is based on
In addition to poor and changing illumination, occlusionsla a state-of-the-art detection and localization object &ramrk
cluttered scenes that pose tracking challenges, CCTVdeota [10] that is trained offline to facilitate a tracking-by-éetion
also suffers from motion blur and large affine transformadio paradigm. A number of techniques for the augmentation of
due to Pan-Tilt-Zoom (PTZ) operations [1]. the training data are examined to streamline the performanc

Most of the existing detection methods are focused omf the detector. Moreover, a methodology to dynamically
building a robust object appearance model, working on handzontrol the detector configuration using estimations of the
crafted feature representation and classifier constmuctiointrinsic parameters of the camera is proposed. A Recurrent
However, most of these classifiers are limited by their shalNeural Network (RNN) is employed to model the spatial
low structures while object appearance variations are éanp transformation [11] of the objects due to the camera per-
and time-varying [2]. Recent advances in deep learning havgpective and PTZ operations of the camera. The RNN is
led to a new generation of object detection and localizatiomsed to predict the affine transformation of the objects and
methodologies that outperform traditional methods. Theylynamically modify the parameters of the detector. Exper-
rely on automatically learning discriminative featurea @ imental validation of the proposed concept is performed on
multi-layer convolutional neural network, thus, alleut real CCTV videos. The proposed framework is applicable to
the need for handcrafted features. Each layer is composed afy type of objects but experiments will focus on pedestrian



The rest of the paper is organized as follows. An ex-
ploration of training data augmentation for object detatti i
is given in Section 2. Section 3 introduces the procedure
to model and predict the object transformation for dynamic
parametrization of the detector. The experimental resuitts
given in Section 4 and conclusions are drawn in 5.

2. TRAINING DATA AUGMENTATION

CCTV videos often contain severely blurred objects due to g 1 Examples of motion blur effect on images [17][18].
low video quality and fast PTZ operations. Especially motio

blur is a major challenge for object detection in CCTV con-

tent. In a single frame, motion blur is translated to degdgadeAs the kernel k is symmetric, the motion directiéns ran-
appearance information and reduced ability to accurately | domly sampled fron® = [0, 7] and the magnitude is selected
calize the position of an object. While de-blurring methiodo  fromL = [0, linq.], Wherel,,,,, is a parameter. The original
gies show good results [12], they have a high computationémagesf that form the training set are convolved with the
cost and they further degrade their appearance. Deepigarnimotion-blur kernels.

systems have been recently shown to achieve impressive per-

formance in benchmark datasets for object detection. How- ly =1 ®k (2)

ever, in challenging CCTV videos their performance deterio Fig. 1 shows examples of using kernels to generate blurred

rates. In this section, the effect of training data sel@ctio  jmages with different parameters. The effect of data augmen

the delte(.:tor’s per.formance is e'xplored. _ ~ tation approaches is experimentally tested in Section 4.
Building on prior deep learning work, the object detection

and localization framework Faster R-CNN [10] is employed.
It combines the localization and detection tasks, whilesha

ing convolutional Iayers_to SPeed”p the process. A Z'_: NlCCTV cameras often have PTZ capabilities that are used by
:/vork me09| [13], pre-trained mhlmageN:at' d?taset [14], I8 Seneir operators to track suspicious activities in a sce@sE
ected ﬁr object detection. The ;ncr)]def IS me-tluned 10 OPtamera operations constitute a serious challenge for pbjec
timize the discriminative power of the features leamed anQyetection and tracking due to the implicit scale assumption
therefore the detection accuracy. The strategy of fineaini ,,4e  Opject detection techniques have a predefined range of
has been widely used in deep learning greatly improving the .5 e that are supported, to minimize detection errotthisn
Eer;‘ormgnce of a ICI\:IN. It hafs been shown [15] that transgecion it is proposed to dynamically adjust this scale eang
er learning, namely the use of unsupervised pre-traimr@ i )ase4 on predictions of the tracked objects’ size in the next
generic dataset, has significant value, offering a robitsan ¢\
ization of the. network parameter's. ) The first step towards this approach is to have an accurate
~Two training data augmentation approaches are examingtkiimation of the detected object’s scale and pose. Rggentl
toimprove fine-tuning of the examined system: (a) the enrichy ey module was proposed that applies a spatial transforma-
ment with object instances from heterogeneous sources agdn, 1 a feature map during a single forward pass. The dpatia
(b) t_he addition of blurred instances of the current objett ¢ ransformer network (SPN) [11] can be used as a new type of
lection. In the former approach, annotated datasets fegtur |ayer in a feed-forward convolutional network. It learns an
the examined object classes are utilized. An extendedi®in affine transformation of the input and uses bilinear intepo
set is created that contains samples from multiple datasets jgp to produce its output allowing it to zoom, rotate andvgke
Despite the existence of several annotated datasets, theife input. The transformation parameters (Eq.3) can be also

content is produced with quality measures that are supirior exploited as a robust indication of the object’s scale arspo
the conditions that a normal CCTV system will face. There-

fore, the features learned by a deep learning object detecto A— 011 612 013 3)
are often plagued by many missing detections, especially in T |0y O o
action scenes. Following the latter approach, the traisatg An RNN is subsequently used to model and predict the

is augmented with blurred instances to enhance the robus;qytion of the transformation matrices in the next frame.

ness to motion blur. A set of Gaussian kernels incorporatingpe ransformation matrix of the detected objects is input t
motion blur [16] has been created (Eq.1). the recurrent network such that:

3. DYNAMIC DETECTOR CONFIGURATION

K ={kg 0 €0©,lcL} 1) Ay = SPN(foono(I)) (4)



he = fInn (Ag, he_q) (5) VOC | VOC+BAH | VOC+SUN
. . . . [VOC] 59,44% 57,67% 59,49
where A is the transformation matrix from the current ohject [VOC+BAH] | 60,66%| 62,03% 61.23
SPN is the spatial transformer module and ; is the hid- [VOC+SUN] 59’79% 57,68% 63,45

den state of the RNN model in the previous step. An affine
transformation matrix4;,; is produced at each time-step
from the hidden state of the RNN. The affine transforma-Table 1. Average precision of models trained with VOC2007
tions predicted are conditioned on the previous transfermaand with an ensemble of VOC2007 and the ETH dataset on
tions through the time dependency of the RNN. the respective testing sets.

The producedd,, ; is utilized to dynamically adjust the
optimal scale range of the detector, in this work Faster R-
CNN. To achieve that, we modify the scaling parametef again used as baseline. The dataset is then augmented with

the Faster R-CNN that controls the scale of the processed inplurred instances of the VOC2007 dataset, creating [VOC3]

blur. The trained models are tested on all testing sets, dame
NoBlur, BlurbSpx and Blurl0px respectively. The results

4. EXPERIMENTAL RESULTS are depicted in Table 2.

4.1. Datasets NoBlur | Blur5px | BlurlOpx
In this section, the experimental setup for the validatibime [VOC] | 59,44%| 31,71% | 23,50%
above concepts is being described. Given that pedestgans i [VOC5] | 63,48%| 62,63% | 61,79%
the main object class of interest, the experiments will fooui [VOC10] | 63,20%| 62,31% | 60,33%
the pedestrian detection without losing its generality. this [BAH] | 70,70%| 68,42% | 59,08%
purpose a number of datasets have been selected to feature [BAH5] | 70,66%| 70,65% | 69,23%
the experiments. VOC2007 [17] is used as a generic dataset [BAH10] | 72,52%| 71,75% | 71,34%

for image classification with 20 annotated classes, inolydi

the clasgerson. The ETH dataset [18] is also used to extend ble 2 . f . dels f q
the fine-tuning dataset. It contains annotated pedestaans Table 2. Average precision of detection models fine-tune

a public road. Finally, a set of videos from the Metropolitan*Vith VOC2007 utilizing different magnitude of data augmen-

Police of London (MET) from the riots of 2011 have beentation on testing sets with increasing levels of blurring.
also used for qualitative validation. Those videos havenbee ) i
offered for research purposes in the framework of the LASIE_ !t IS evident from the results that the performance of the

FP7 project and they are neither annotated nor publicly-avaidete,cwr is quick'ly deteriorating when even small amouﬁts_ 0
able. motion blur are introduced. On the other hand, augmenting

the training data with blurred examples is making the detec-
) tor more robust, even on non-blurred data. However, when
4.2. Experiments the dataset is dominated by blurred samples (VOC10) aver-

The first set of experiments refers to the exploration ofitrai 29€ Precision declines slightly. Examples of the deteat@n
ing data augmentation strategies. The Faster R-CNN objegpbllltles of each model on MET yldeos are dep|cteq in Fig.2.
detection framework is fine-tuned with different trainiregs Another set of experiments is performed to validate the
to test their effectiveness. Training with VOC200710000 Proposed dynamic configuration of the detector. A spatial
object instances), labeled as [VOC], is used as a baseline ffansformer layer is added in the input of the ZF network and
performance. The training set is infused with sequences fro It 1S @pplied in the region proposed by [10]. The allowedan
the ETH dataset, namely “Bahnhof’ sequens@$00 object fo.rmat|ons'(Eq.3) are further con;stramed aIIowmg'o.nIgp:—r
instances) labeled as [BAH] and “Sunny Day2900 ob-  Ping; rotation gnd |sqtrop|c scaling to reduce training eom
ject instances), labeled as [SUN]. The datasets are divided Plexity by varyings, ¢ in Eq.6
training and testing set of equal size. 50% of the trainirig se
is used for validation purposes. The evaluation of the &in Ay =
models is performed on separate testing sets that include VO
testing set and an ensemble of the VOC and ETH testing sets, The transformation matrixd; is provided to an RNN. For
respectively. The results are reported in Table 1. Exparime the RNN we use the configuration in [19]. The RNN is ini-
show that the detection accuracy seems to benefit from exttally trained with artificial data created to simulate zaom
training samples, even on the original VOC testing set. operations. The set includes 100 sequences of bounding box
Subsequently, the effect of augmenting the data with moevolution with a length of 100 frames. A linear layer is ap-
tion blur is examined. Training with the VOC2007 dataset isplied to convert; into A41.

scosf) ssinf 0
—ssinf scosf O

(6)



Fig. 2. Example detections on a MET CCTV video trained with ascegdivels of blurrness. VOC, VOC5 and VOC10 are
depicted in rows 1, 2, 3, respectively. Red arrows depict detgctions with VOCS5 and yellow new detections with VOC10.

Fig. 3. Example detections on a MET CCTV video. In the first row théadk scaling parameter is used £ 600), while in
the second the detector uses a dynamically modified scadirappeter. New detections are depicted with red arrows.

The transformation matri¥,,; is used to predict pos- action scenes in CCTV videos. Moreover, a novel method-
sible severe scale changes of the objects in the next framelogy to dynamically tune the detector parameters during in
The predicted scale is used to modify the scaling parametéense PTZ operations is proposed. The spatial transfasmati
of the detector. Initial experiments of the proposed methoaf the objects, derived from a spatial transformer netwisk,
have been performed on the MET dataset and are depicteged to train an RNN to predict the intrinsic camera proper-
in Fig.3. The results show an improvement of the detectioties in the next frame. The predicted parameters are used to
performance in challenging zooming conditions. tune the detector parameters, leading to more robust sesult

Initial experiments have shown that dynamic scaling signifi

cantly improves the performance of the detector compared to
5. CONCLUSIONS fixed scale operations.

In this paper, methodologies to improve the efficiency ofdee

learning based multi-target detectors in challenging CCTV 6. ACKNOWLEDGMENTS
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