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ABSTRACT
This paper presents a novel descriptor for recognizing ob-
jects in highly occluded and cluttered 2.5D scenes produced
by range scans. This new compact regional shape descriptor,
called “projection images”, is designed to be robust against
noise, partial occlusion and clutter. Projection images are
formed by “projections” of points onto the plane centered at
the basis point which is perpendicular to the viewing axis.
Multiple experiments were performed on a dataset of 50 range
scans, each one comprised of multiple objects, which proved
that the proposed method is robust and efficient to a satisfac-
tory degree of occlusion and clutter, while it compared favor-
ably against descriptors previously introduced in the litera-
ture.

Index Terms— Projection Image, range scan, feature ex-
traction, local shape descriptor

1. INTRODUCTION

In recent years, significant progress has been made toward the
recognition of free-form 3D objects from their 2.5 D counter-
parts. The aim of object recognition systems is to correctly
identify objects in a scene. Noise, partial occlusion and clut-
ter are the main obstacle such a system should overcome. Ap-
proaches utilizing plain 2D cameras are fast and low cost, yet
they are very sensitive to illuminations, shadows and occlu-
sions and do not provide accurate estimation of object’s pose.

Thus, there is an increasing number of approaches that
utilize range scanners in order to limit down such effects.
Algorithms that extract local descriptors, such as surface
curvatures [1], are proven to be unstable and sensitive to
noise [4]. Moreover, the method in [5], which is based on
point signatures, is unstable on noisy data, and sensitive to
surface sampling [4]. Johnson and Hebert proposed the spin
images [2], which where very influential in this field. How-
ever, spin images are vulnerable to sampling and resolution
(level-of-detail) of the models and when spin images are
compressed, the average recognition rate decreases signifi-
cantly. In [3] an enhancement of the spin images algorithm
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is presented by using vertex interpolation. Although this
change resolved the sensitiveness of spin images to variations
in resolution, it’s discriminative power was not improved
significantly. Other works, [7, 8], enhanced spin images by
performing some post-processing or other matching methods.
Spherical harmonics [10] and locality-sensitive hashing [11]
are exploited in [9] to perform recognition by 3D shape infor-
mation obtained from laser range scanners. Mian et al. [4],
proposed a tensor-based surface representation defined on
pairs of oriented points. Their descriptors are 3D tensors that
measure the variation of surface position. Correspondence
between 3D tensors is established using a voting process to
find pairs of tensors with high overlap ratio. The method
in [15] use distance maps to perform the object recognition
task. Matching between scene’s and object’s distance maps
is established achieved using the SIFT algorithm [14] on
greyscale images that are generated from the distance maps.
The algorithm presented in [12] calculates the local surface
properties of patches, which are defined at the extracted fea-
ture points. By comparing local surface patches of a model
and a test image, and casting votes for the models contain-
ing similar surface descriptors, the potential corresponding
local surface patches and candidate models are hypothesized.
The evaluation experiments were simple, since at most two
objects existed in the scene. In [13], the generalized Hough
transform is extended to detect instances of an object model
in laser range data, independently to the scale and orientation
of the object. However, this method is restricted to simple
objects that can be represented with few parameters, such as
planes, spheres and cylinders.

The plethora of the existing algorithms [7, 8, 3] either
modify the spin image [2] or integrate it with other compo-
nents so as to improve its performance. Additionally, most
methods [4, 2, 3, 15] require the point cloud, which is gen-
erated from a range scanner, to be converted to mesh before
object recognition takes place. Thus, there is a need for the
development of new methods that address the object recogni-
tion problem in a more direct way.

The rest of this paper is organized as follows: in Section
2 Projection Images are introduced. Section 3 presents the
object recognition procedure. Experimental results are given
in Section 4. Finally, conclusions are drawn in Section 5.



Fig. 1. (a) Generated point cloud from a specific viewpoint
and (b) Illustration of projection images computation: D is
the cameras viewpoint, B the point that serves as the basis
point, P the neighboring points, where the dotted red seg-
ments represent the d+ and the blue the d− .

2. PROJECTION IMAGES

A point cloud of a scanned object V o (Fig.1(a)), is created
when a range scanner is placed at point D. Having D and a
basis point B ∈ V o, a circular support region ΠB of radius
R, is defined on the plane that is perpendicular to line seg-
ment DB. For each neighboring point P , the “projection”
point is found, i.e. the point I where lineDP intersects ΠB .
Then, the distance between I and P is computed, which is
considered positive d+ or negative d− depending on which
side of the projection image plane the point lies (Fig.1(b)).

Arbitrary axes are defined on ΠB , centered at B. The
circular support region is divided into sectors by defining an-
gular and radial divisions. The points P whose projections
belong to each sector are found, and two values are com-
puted; one representing the average of the their positive dis-
tances d+ and one representing the average of their negative
ones d− (Fig. 1(b)), depending on which side of the plane
they lie. Therefore, the Projection Images are formed denoted
with PI±(ρi, θj), i = 1, ..., RD and j = 1, ..., AD, where
RD and AD are the number of radial and angular divisions
respectively.

In order to remove the degree of freedom along the an-
gular coordinate, the counterpart of the Projection Images in
the frequency domain will be used. The amplitudes of the
Fourier coefficients of PI±(ρi, θj) for each ρi are calculated,
producing the final form of the descriptor vector:

PrIm±(ρi, w) = ‖F [PI±(ρi, θj)]‖ (1)

where w (w = 0, 1, ..,W ) indexes the first W fourier coeffi-
cients, thus the dimensionality of PrIm± is 2 ·RD ·W .

The degrees of similarity between two projection images
PrIm±x (ρi, w) and PrIm±y (ρi, w) are:

dist± =

RD∑
i=0

W∑
w=0

|PrIm±x (ρi, w)− PrIm±y (ρi, w)|
PrIm±x (ρi, w) + PrIm±y (ρi, w)

(2)

�

Fig. 2. Illustration of a scene range scan: (a) before and (b) af-
ter point could clustering. Red dots depict unclustered points,
while blue dots in (b) depict the correspondences between the
“Parasaurolophus” and the scene’s points. The majority are
concentrated on the magenta object, which indeed depicts the
“Parasaurolophus”.

The final distance dx,y is the mean of dist+ and dist−.

3. RECOGNITION PROCEDURE

The projection images of known objects are extracted and
stored in the database. Given a scene’s scan, Projection Images
are extracted and compared with those in the database. As-
sume that there are M model’s descriptors PrImm (m =
0, 1, ..,M ), each one extracted for basis point Pm of one
object and N scene’s descriptors PrImn (n = 0, 1, .., N )
each one extracted for basis point Pn of the scene. For every
PrImn the minm=1,...,M (dn,m) is found. In order to yield
a point correspondence, neither dist+ nor dist− can be too
large.

After finding the point correspondences, a straightforward
process is followed in order to verify when an object is pos-
itively identified in the scene. Firstly, a clustering approach
is applied in the scene’s point cloud (Fig.2(a)), exploiting the
fact that the points depicting one object are close to each other
in terms of their Euclidean distance. On this scope, starting
from a random point, its neighbors that are within distance µ
are computed. Then, for each of these neighbors their corre-
sponding neighbors are computed and so on. Thus the point
set gets expanded until there is no other point within distance
µ from even one point of the set. This way point clusters
are created that realize an µ connectivity. Fig.2(b) shows the
different clusters extracted. Obviously this simple clustering
technique successfully grouped the points that correspond to
every object into different clusters. Small clusters were not
assumed as objects’s parts since they probably correspond to
severely occluded regions or isolated surface patches (unclas-
sified points are depicted in red in Fig.2(b)).

The cluster with the highest correspondence ratio, i.e. the
ratio of the number of correspondence points within the clus-
ter over the cluster’s population (in Fig.2(b) the magenta col-
ored cluster), is considered to be the correct match.



Fig. 3. (a) Viewpoint grid and (b) Circular disk alignment.

4. EXPERIMENTAL RESULTS

4.1. Dataset

In order to be able to compare the performance of the pro-
posed method with existing ones, the dataset available in [16]
was used, since there are already published results on it. This
dataset includes 50 real 2.5D scenes, produced from a range
scanner, each of them comprised of 3 or 4 objects, that oc-
clude both themselves and their neighbors, while there is also
a reasonable amount of clutter. Both objects and scenes are
given in PLY file format. The presented algorithm is directly
applied on point clouds though. Therefore, a range scanner
simulator that extracts the point clouds of 3D objects when
observed from a specific viewpoint was implemented for the
needs of this paper.

In order to generate the point clouds of a 3D model a grid
of viewpoints is created around the center of the model so as
to scan the object from every angle. The bounding grid is gen-
erated by iteratively bisecting the edges of an icosahedron and
projecting the new vertices onto a sphere, in order to avoid
oversampling near the poles. The vertices define the view-
points, while their orientations −→q are from the viewpoint to
model’s center (Fig.3(a)). The icosahedron used to extract ob-
ject’s viewpoints was tessellated 14 times. This parametriza-
tion allowed for the creation of a sufficiently dense grid of
viewpoints, which fostered the performance of the algorithm.
On the contrary, in order the setup to be actually realistic, for
every scene only one point cloud is generated, corresponding
to the viewpoint from where the scene is actually observed.
One third of the points comprising these point clouds were
randomly chosen and served as basis points.

4.2. Pre & Post-processing

During the experimentation phase several pre- and post- pro-
cessing steps were used to fine tune the Projection Images
concept into this specific dataset.

In order to remove points that lie far from ΠB , since they
may correspond to a different object than the one where the

viewing axis is centered, the mean value of distances and their
standard deviation is calculated for both positive and negative
distances. In the case the projection distance of a point de-
viates more than 1.5 times the computed standard deviation
then this points is excluded from ΠB’s support region.

In order to disregard projection images that come from
points observed from slantwise views, thus their region topol-
ogy could not be accurately captured, a plane is fitted to the
points that comprise the support region. In case the plane’s
perpendicular orientation, −→u B , is more than 50◦ apart the
viewing axes, i.e. acos(−→u B · −→q ) ≤ 50◦, B’s Projection
Image is not taken further into account.

The support region disc was discretized after taking into
account the fundamental issue of discretization, depicted in
Fig.3(b). The trade-off between a small number of angu-
lar divisions versus large is that on the first case information
could get distributed among adjacent angular sectors, in case
of small geometrical transformation (consider each triplet in
Fig.3(b) inbetween black radii to be one sector and the values
to be mean values of projection distances of the sub-sectors),
versus of having a lot of sectors with none or really few ”pro-
jection” points in each of them which is highly affected from
noise and clutter, and adds to the processing efforts and stor-
ing needs. The balance this work proposes is to have few
angular divisions with two constraints. First of having more
non-zero valued sectors than zero valued (otherwise this basis
point is disregarded) ensuring that the projection image will
contain sufficient information of the surface. Second, after
further diving each sector into three more, the disc is rotated
in order the sub-sector with the largest value to be the first
(in clockwise direction) of the three that compose one of the
sectors as in the low part of Fig.3(b).

4.3. Specification of parameters used

The number of angular and radial division was set to AD =
10 and RD = 10, respectively. Also, the first W = AD
coefficients were used to produce the final descriptor vector.
Regarding the size of the support region, it is desired to be
large enough so that the projection images contain sufficient
information of the topology. At the same time, if R is set to
be very large scene’s projection images would be more af-
fected by occlusion and clutter. Experimentally, R was set to
R = mean(Hγ)/10, where γ is the index for each library
model and Hγ is the maximum inter-distance between the
points of it. The variable µ used for the scene’s point clus-
tering (Section 3) was set to µ = 2 ·mean(Hγ)/100.

4.4. Experimental Comparison

The proposed algorithm was compared against uncompressed
“spin images” [2], an extensively used state-of-the art al-
gorithm, and “distance maps” [15], a recent and efficient
method, using the testing data of [4]. The proposed algorithm



Fig. 4. (a),(b) Experimental results and (c) Recognition rate
against occlusion.

was not compared against [4] though, since apart of using
the “3D tensors”, it further utilizes a registration scheme to
allow for recognition, which segments out the parts of the
scene that align perfectly with the reference objects, boosting
the performance of the algorithm. Thus, comparing to this
method would be unfair. The recognition results of “spin
images” were copied from [4], and towards a fair comparison
the exact same experimental setup as in [4] was used in this
work too.

In total 168 recognition tasks were executed while pro-
cessing the 50 range scan scenes. The overall recognition rate
was 89.8%, since 151 out of 168 objects were successfully
identified. The recognition rate with respect to occlusion is
indicated in Fig.4(c), where the proposed method is compared
with “spin images” and “distance maps”. The occlusion in the
scene was defined as:

occlusion = 1− object′s visible part

total object′s surface
(3)

It is clear that the proposed method compares favorably
against both “spin images” and “distance maps”. Fig. 4(a-b)
depicts the results for two experiments. The correspondences
of each model in the scene are displayed with dots of different
colors, i.e yellow for the “Chef”, brown for the “Chicken”,
green for the “Parasaurolophus” and blue for “T-rex” model.
The present method requires about 50 minutes per scene
while distance maps required 65 minutes and spin images
needed multiple computation time.

5. CONCLUSION

This paper proposes a new regional shape descriptor able to
handle clutter and occlusion. Despite the fact that the pro-

posed descriptor depends on the viewpoint, it contains high
discriminative power, since it captures information about the
object’s shape in a sophisticated way.

Experiments conducted on real range scan scenes, proved
the robustness of this method to a satisfactory degree of clut-
ter and occlusion. These tests indicated that this method is
advantageous to the spin image and the distance map algo-
rithms.
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