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Abstract. In this paper, we describe a novel methodology for dance learning 

and evaluation using multi-sensor and 3D gaming technology. The learners are 

captured during dancing, while an avatar visualizes their motion using fused in-

put from multiple sensors. Motion analysis and fuzzy-logic are employed for 

the evaluation of the learners’ performance against the performance of an ex-

pert. Specifically, a two level Fuzzy Inference System is proposed which uses 

as input low level skeletal data and high level motion recognition probabilities 

for the evaluation of dancer’s performance. Tests with real dancers, both learn-

ers and experts, dancing Tsamiko, a very popular traditional Greek dance, are 

presented showing the potential of the proposed method. 
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1 Introduction 

As traditional dances are forms of intangible cultural heritage, there is always a risk 

that certain elements of this culture could die out or disappear if they are not safe-

guarded and transmitted. ICT technologies can play an important role in their preser-

vation, e.g. in the form of virtual learning systems, assisting in the transmission of 

dancing knowledge. Such systems employ various sensors to capture the movements 

of the learner, analyse the movement and provide a feedback, thus facilitating the 

learning procedure [1]. Automatic performance evaluation in the form of scoring and 

visual feedback through a 3D virtual environment can significantly improve the com-

petency of the learner.  

Detection, classification and evaluation of dance gestures and performances are  

active topics of research [2], while commercial products also exist, such as the Har-

monix’ Dance Central video game series [3], where a player tries to imitate the mo-

tion demonstrated by an animated character. Many research projects have been con-

ducted on the topic of dance assistance and evaluation employing various sensor 

technologies. Saltate![4] is a wireless prototype system to support beginners of ball-

room dancing. It acquires data from force sensors mounted under the dancers’ feet, 

detects steps, and compares their timing to the timing of beats in the music playing, 

thus detecting mistakes. Sensable project [5] also employs wireless sensor modules, 

worn at the wrists of dancers, which capture motions in dance ensembles. The VR-



 

 

Theater project [6] allows choreographers to enter the desired choreography moves 

with a user-friendly user interface, or even to record the movements of a specific per-

former using motion capture techniques. Also, different kinds of augmented feedback 

(tactile, video, sound) for learning basic dance choreographies are investigated in [7].  

Markerless motion capture based on real-time depth sensing systems have recent-

ly emerged with the release of Microsoft Kinect [8] and other similar depth cameras 

like Asus Xtion [9]. These sensors offer a cost-effective alternative to more expensive 

inertial and optical motion capture systems. In [10], evaluation of dance performance 

is conducted against the performance of a professional using skeleton tracking data 

captured by Kinect sensor, visualized within 3D virtual environments. 

In this paper, we propose a dance evaluation system, which offers two novel fea-

tures. First, a multi-Kinect acquisition system is used, where synchronized skeletal 

data from each sensor are fused in order to improve the quality of the final skeletal 

tracking, based on our previous work [11]. Secondly, we propose a scoring system 

based on fuzzy inference. The reasons for choosing fuzzy inference are the following: 

i) the ability to produce realistic and less predictable reactions, ii) the ability to cap-

ture a real human knowledge-base and use it extensively with minimal coding and iii) 

the use of an AI technique that is more suitable to model complex virtual behaviour. 

The evaluation of a dancer is performed based on low level and high level fea-

tures. Low level features are the fused skeletal tracking data and high level features 

are the motion recognition probabilities are used by the 3D virtual environment for 

the evaluation of the dancer’s performance against an expert’s performance and the 

generation of visual feedback. The 3D environment is based on Unity 3D engine [12], 



 

 

which is a popular multiple platform gaming and visualization solution among the 

graphics and gaming community. 

2 Methodology 



 

 

The architecture of the proposed system is illustrated in Fig. 1. Specifically, for 

capturing we use several Kinect sensors placed around the dancer. Captured skeletal 

data consists of 3D position and rotation data (relative to a reference coordinate sys-

tem centred at the origin of each sensor) of 20 predefined skeletal joints of the danc-

er’s body, along with the confidence level of tracking of each joint. A skeletal fusion 

procedure is proposed to combine the data obtained from multiple sensors onto a sin-

gle fused skeleton (described in section 2.1), which is then used for motion analysis of 

the dancer. Subsequently, the evaluation of the dancer’s performance takes place. The 

low level features are extracted to calculate the distance metrics (section 2.2). In addi-

tion, the motion analysis module performs motion recognition to extract high level 

features (section 2.3). Those features are subsequently provided to the Fuzzy Infer-

ence System, where the final evaluation of the dancer takes place (section 3). Moreo-

ver, the visualization module provides a 3D environment for the learner to examine 

his performance along with the numerical and textual performance grading. The visu-



 

 

alization module is implemented in Unity and takes input from the fused skeletal 

animation data. The resulting animation screenshots are shown in Fig. 2. 

Fig. 1. System architecture overview 

Fig. 2. Visualisation of an expert dancing the tsamiko dance. A 3D avatar wearing a traditional 

costume is animated in Unity 3D using the fused skeletal animation data acquired during the 

recording session. 

2.1 Skeletal Fusion 

Skeletal fusion is the process of combining skeletal data captured by multiple sen-

sors into a single, more robust skeletal representation. It allows to reduce occlusion 

and self-occlusion problems and to increase the total area of coverage. Prior to fusion, 
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sensor calibration procedure must take place in order to estimate the rigid transfor-

mation between the coordinate systems of each sensor and the reference sensor. We 

use Iterative Closest Point algorithm [13] implementation found in the Point Cloud 

Library (PCL, http://pointclouds.org/) [14] to estimate the rigid transformation (Rota-

tion-Translation) which is subsequently used to register the skeleton captured by each 

sensor in the reference coordinate system. 

The skeletal fusion is performed on registered skeletons, i.e. the representations of 

each skeleton transformed to the coordinate system of the reference sensor. This is 

accomplished by multiplying the skeleton joint positions by the corresponding RT 

matrix, estimated in the calibration process. Then, a skeletal fusion procedure is used 

to combine these registered skeletons into a single skeleton representation (Fig. 3) 

according to a specific fusion strategy. 

The proposed fusion strategy is applied on joint positional data, which can be 

easily extended on joint rotations as well. Initially, the sum of all joint confidence 

levels per skeleton is computed and the skeleton with the highest total is selected. 

Since this is the skeleton with the most successfully tracked joints, it is expected to be 

the most accurate representation of the dancer’s real pose.  

We consider the joints of this skeleton as a base and construct the fused skeleton 

joints in the following manner. We examine the confidence values of each joint of the 

base skeleton. There are three possible values: high, medium and low. If the confi-

dence of the base joint is high, it is left as is for the fused skeleton. If the confidence is 

medium or low, the joint position is corrected by taking into account the position of 

http://pointclouds.org/


 

 

this joint in the remaining skeletons. If corresponding joints with high confidence are 

found in any of the remaining skeletons, their average position is used to replace the 

position value of the joint. Otherwise, the same procedure is applied for joints con-

taining medium confidence values. Finally, if only low confidence joints are present, 

their average is used as a position value of the fused joint. 

Fig. 3. Fused skeleton from three Kinect sensors. Color maps, depth maps and skeleton pre-

views of each sensor along with the resulting fused skeleton are displayed. 

As a last step, a stabilization filtering is applied in order to overcome problems 

due to the rapid changes in joint position from frame to frame, which may occur be-

cause of the use of joint position averaging in our fusion strategy. We use a time win-

dow of three frames, to keep the last three high-confidence positions for each joint. 

The centroid of these three previous positions is calculated and updated for each 

frame. If the Euclidean distance between a joint position and this centroid is higher 

than a certain threshold, then we replace the joint position with the value of the cen-

troid, so as to avoid rapid changes in joint positions. The thresholds are different for 

each joint, since it is expected that some joints (hands and feet) move more rapidly 

than others. In our experiments of Tsamiko dance these thresholds were set to 40cm 

for the feet joints and 20cm for the remaining joints. 

2.2 Distance Metrics 

To evaluate the performance of a dancer, specific metrics should be defined for 

measuring the motion similarity between a learner and an expert. Taking into account 

that in Tsamiko dance leg movements constitute the key element of the choreography, 



 

 

in this paper we propose two metrics for measuring the motion accuracy of the danc-

er. Specifically, we define the knee-distance 𝐷𝐾  and the ankle distance 𝐷𝐴 for each 

frame as (Fig. 4 A): 

 𝐷𝐾 = |𝐾𝐿 − 𝐾𝑅| (1) 

 𝐷𝐴 = |𝐴𝐿 − 𝐴𝑅| (2) 

However, both distances heavily depend on the height of the dancer that is their val-

ues change from dancer to dancer. To ensure the invariance of the proposed metrics 

(in terms of dancer’s height), a specific normalization process is proposed. More spe-

cifically, we calculate the normalized distances by dividing the proposed metrics by 

the distance of the path connecting the joints. For the normalized knee-distance 𝐷̂𝐾 , 

the path is computed by dividing the distance between the knee joints by the sum of 

the distances between the Left Knee, Left Hip, Root, Right Hip and Right Knee joints: 

 

 𝐷̂𝐾 =
𝐷𝐾

|𝐾𝐿−𝐻𝐿|+|𝐻𝐿−𝑅|+|𝑅−𝐻𝑅|+|𝐻𝑅−𝐾𝑅|
 (3) 

 

The normalized ankle distance 𝐷̂𝐴 is calculated in a similar manner: 

 

 𝐷̂𝐴 =
𝐷𝐴

|𝐴𝐿−𝐾𝐿|+|𝐾𝐿−𝐻𝐿|+|𝐻𝐿−𝑅|+|𝑅−𝐻𝑅|+|𝐻𝑅−𝐾𝑅|+|𝐾𝑅−𝐴𝑅|
 (4) 

 

The estimation of the above metrics is repeated in each time instant, i.e. frame, re-

sulting in the creation of time series like the ones presented in Fig. 4 B. To compare 



 

 

the similarity of these time series we introduce the use of two motion accuracy scores 

𝑆𝐾and 𝑆𝐴, which are computed by calculating the maximum correlation coefficient 

between the testing subject’s normalized distances (𝐷̂𝐾t) and the reference subject’s 

normalized distances (𝐷̂𝐾 r). The maximum correlation coefficient is computed by 

iteratively shifting the testing signal by one sample at a time, with respect to the refer-

ence signal and by computing the maximum correlation coefficient over all these 

shifts. The shifting step ranges from 1 sample to 250 samples, which is approximately 

the duration of a single dancing cycle of Tsamiko dance. The correlation coefficient is 

defined as: 

 𝑅 =
𝜎𝑥,𝑦

√𝜎𝑥∗𝜎𝑦
 (5) 

Where: 

 𝜎𝑥,𝑦 = 𝐸[(𝑥 − 𝐸[𝑥])(𝑦 − 𝐸[𝑦])] (6) 

 𝜎𝑥 = 𝐸[𝑥2] − 𝜇𝑥
2 (7) 

    

    

    

R

  

  

(a) (b)



 

 

 𝜎𝑦 = 𝐸[𝑦2] − 𝜇𝑦
2 (8) 

where 𝐸[ ] is the expected value and 𝜇 is the mean value. 

Fig. 4. a) The knee distance and the ankle distance metric b) Time series of 𝐷̂𝐾 and 𝐷̂𝐴 of two 

dancers. 

2.3 Motion Analysis 

The motion analysis subsystem (Fig. 5) performs the detection of the basic motion 

patterns, in our case, the three dance movements of the Tsamiko dance. The correct 

choreography of this dance consists of sequential repetition of these three moves. 

Thus, we derive a choreography score 𝑆𝐶ℎ which is the precision of the correct detec-

tion of those motion patterns by the motion analysis subsystem. 

A pre-processing step for motion analysis is a view-invariance transform of the 

skeleton, by translating each joint position relative to the root joint and subsequently 

rotating the skeleton around the y axis so that it is facing towards the positive z direc-

tion. Next, the skeleton is split into five parts: torso, left hand, right hand, left foot and 

right foot, each consisting from a root and children joints. For each skeleton part we 

generate a feature vector consisting of positions of joints relative to the root joint of 

the part. In fact, those feature vectors constitute a representation of a dancer’s posture. 

For each skeleton part, a codebook of 𝑘 basic postures is defined using 𝑘-means clus-

tering in a large set of postures obtained from recorded training sequences. A mul-

ticlass SVM classifier is used to classify each incoming feature vector as a specific 

posture from this posture codebook. Thus, each motion sequence is transformed to a 

sequence of symbols of this codebook, one sequence per body part. Those sequences 
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are fed to the final stage of the motion analysis subsystem, which consist of a Hidden-

state Conditional Random Fields classifier (HCRF).  

Fig. 5. Motion analysis module 

HCRFs [15][16] are a class of statistical modelling method (discriminative undi-

rected probabilistic graphical model) often applied to pattern recognition problems 

and machine learning in general. HCRFs are a generalization of / is alternative to 

Hidden Markov Models and are popular in natural language processing, object recog-

nition and motion recognition tasks. We use multi-class HCRF model trained on a set 

of M basic motion patterns (the three dance moves of Tsamiko). For the training of 

the HCRFs we use labelled sequences described in the previous paragraph. For the 

detection phase HCRFs classifier provides a probability of the model of the HCRF 

fitting the observed sequence, thus it is labelled accordingly. 

3 Fuzzy Inference System 

For the evaluation of the dancer’s performance against an expert’s performance a 

two level Fuzzy Inference System (FIS) was designed. FIS is a way of mapping an 



 

 

input space to an output space using a collection of fuzzy membership functions and 

rules i.e. linguistic statements in the form of if….then that describe how the FIS 

should make a decision. The proposed FIS system is based on Mamdani method [17], 

which is widely accepted for capturing expert’s knowledge and allows the description 

of the domain knowledge in a more intuitive, human like manner.  

 

 

 

 

Fig. 6. The structure of the two-level fuzzy inference system 

Low level features obtained from raw skeletal tracking data and high level motion 

recognition probabilities are used as input to the two-level FIS for the evaluation of 

the dancer’s performance. The proposed FIS architecture is illustrated in Fig. 6. The 

estimated maximum correlation coefficients between the normalized joint distances 

(knee distance and ankle distance) 𝑆𝐾and 𝑆𝐴 of the expert and the learner dancer are 

fed as input to the first FIS to generate the motion accuracy index. While this index 

contains meaningful information about the motion of the dancer, little information is 

provided regarding the proper execution of the choreography e.g. it is difficult to dis-



 

 

criminate whether the dancer cannot follow the choreography or he/she cannot be 

synchronized with the music. To address this issue, besides the output of the first FIS 

i.e. the motion accuracy index, the percentage of the correct identified motion patterns 

of the learner dancer (the choreography score 𝑆𝐶ℎ  provided by the motion analysis 

module) is also fed as input to the second FIS. The final output is converted into hu-

man understandable messages (defuzzification), such as low, medium and high per-

formance score. 

 

 

Fig. 7. The output of the first FIS in the case of high motion accuracy scores leading to high 

motion accuracy index. 

The set of rules used for building the fuzzy inference of the first FIS are described 

below together with the example of an output Fig. 7: 

 If  𝑆𝐾  is High and 𝑆𝐴 is High then ‘motion accuracy index’  is High 

 If  𝑆𝐾  is Low and 𝑆𝐴  is Low then  ‘motion accuracy index’  is Low 

Similarly, the set of rules used for building the fuzzy inference of the second FIS 

are described below: 



 

 

 If  ‘motion accuracy index’  is High and ‘choreography score’ is High then  ‘danc-

ing performance’ is High 

 If  ‘motion accuracy index’  is Low and ‘choreography score’ is Low then ‘dancing 

performance’ is Low 

 If  ‘motion accuracy index’  is Low and ‘choreography score’ is High then ‘danc-

ing performance’ is Medium 

Fig. 8. The output of the second FIS in the case of low motion accuracy index and high chore-

ography accuracy.  

Fig. 8 illustrates an example of low motion accuracy index and high choreography 

accuracy. In this case, while the dancer can follow the choreography i.e. the expected 

motion patterns are identified accurately, he/she cannot be synchronized with the 

music and, therefore, a low motion accuracy index is produced. Since, the above case 

is satisfied by the third fuzzy rule, the performance of the dancer is considered as 

medium. 



 

 

4 Experimental Results 

For the evaluation of our methodology we recorded a performance of an expert 

along with performances of experienced dancers and learners of the Greek traditional 

Tsamiko dance. Tsamiko is a popular traditional folk dance which follows a strict and 

slow tempo. The steps are relatively easy to execute but must be precise and strictly 

on beat. We captured the movements of the dancers using a setup consisting of three 

Kinect sensors, placed in front of a dancer. The reference sensor was placed directly 

in front, and the other two at the sides, creating an arc topology (Fig. 9). This setup 

allowed for the dancers to have a freedom of movement of about 2,5 meters along a 

straight line. 

 

 

 

 



 

 

Fig. 9. Sensor setup with three Kinect devices. The recording of an expert dancing Tsamiko as 

captured by each sensor. 

Table 1. The evaluation scores of the dancers together with the outputs of the two fuzzy sys-

tems. Learners marked with asterisk were interrupted during the dance because they made 

mistakes.  
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 Low: <0.4 

Medium:0.4-

0.6 

High: >0.6 

Experienced 

dancer 1 

0,28 0,26 0.7244 100% 0.8500 High 

Experienced 

dancer 2 

0,33 0,33 0.8270 100% 0.8608  High 

Learner 1 0,19 0,29 0.7243 65% 0.5000 Medium 

C

C

C



 

 

Learner 2 0,22 0,13 0.4221 68.42% 0.3411 Low 

Learner 3 * 0,13 0,11 0.2821 70.58% 0.3146  Low 

Learner 4 0,18 0,13 0.3788 77.78% 0.500  Medium 

Learner 5 0,14 0,08 0.1969 40% 0.1414  Low 

Learner 6 0,13 0,13 0.3358 55.56% 0.1575  Low 

Learner 7 0,17 0,15 0.4044 66.67% 0.2319  Low 

Learner 8 * 0,17 0,15 0.4031 66.67% 0.2258  Low 

 

There were two recording sessions performed using the same setup. During the 

first session the expert and two experienced dancers were captured, and during the 

second session eight students of different level of experience participated in the ex-

periments. Each person was recorded for the duration of a single dance (approx. 4 

minutes). The performance of all dancers was compared against that of an expert, who 

is considered as a reference. First, the motion accuracy scores 𝑆𝐾  and 𝑆𝐴  were com-

puted by comparison to the expert. Then, the recorded sequences were manually an-

notated and fed to the motion classifier, which detected the three motion patterns of 

Tsamiko dance. The choreography score 𝑆𝐶ℎ was then computed as the percentage of 

the motion patterns that are identified correctly, i.e. the precision of the recognition. 

Those were provided as input to the FIS to obtain the final performance evaluation 

score.  

The results obtained are illustrated in Table 1. As expected, both experts received 

high score in their performance evaluation, since they had high motion accuracy 

scores and also perfect choreography precision. The learners, on the other hand re-

ceived medium and low scores. Learner 1 had high motion accuracy but relatively 



 

 

low choreography precision, while for student 4 the opposite is true. They both were 

graded as medium by the system. The rest of the learners received low rating, with 

varying performance indexes (they were not equally bad), since they had both motion 

accuracy and choreography scores low.  

5 Conclusions and future work 

This paper presents a methodology for automatic dance evaluation, intended to be 

used in dance learning systems. The learners are captured during dancing, while an 3-

D avatar is used to visualize their motion. The main contributions are the use of a 

multi-Kinect motion capture and the definition of a new scoring system based on 

fuzzy inference. Based on the obtained experimental results, the system seems to 

properly distinguish between the varying levels of dance expertise, so it is suitable to 

be used as a tool to assess the learners dancing performance. In the future, a feedback 

can be provided to the user, based on this performance evaluation, together with a 

visualization of both user and expert performances, which could significantly assist 

dance learning. 
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