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Abstract

Slow Feature Analysis (SFA) is an unsupervised learning algorithm which ex-

tracts slowly varying features from a temporal vectorial signal. In SFA, feature

slowness is measured by the average value of its squared time-derivative. In this

paper, we introduce Frequency-Based Slow Feature Analysis (FSFA) and prove

that it is a generalization of SFA in the frequency domain. In FSFA, the low

pass filtered versions of the extracted slow features have maximum energy, mak-

ing slowness a filter dependent measurement. Experimental results show that

the extracted features depend on the selected filter kernel and are different than

the signals extracted using SFA. However, it is proven that there is one filter

kernel that makes FSFA equivalent to SFA. Furthermore, experiments on UCF-

101 video action recognition dataset, showcase that the features extracted by

FSFA, with proper filter kernels, result in improved classification performance

when compared to the features extracted by standard SFA. Finally, an experi-

ment on UCF-101, with an indicative, simple and shallow neural network, being

composed of FSFA and SFA nodes, demonstrates that the previously mentioned

network, can transform the features extracted by a known Convolutional Neu-

ral Network to a new feature space, where classification performance through

Support Vector Machine can be improved.
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1. Introduction

By exploiting the slowness learning principle [1], [2], which is argued to be

one of the potential principles that may drive the visual recognition ability of

the human brain [3], the algorithm of Slow Feature Analysis (SFA) [4] is an

unsupervised methodology for extracting slowly varying features from a rapidly5

changing, raw input, vector signal. More formally, SFA measures a signal’s

slowness by its average temporal squared derivative and extracts features that

minimize this metric. Since the average temporal squared derivative of any

signal is directly dependent on its scale, the formulated optimization problem

avoids unfair comparisons between signals by imposing additional constraints10

that make the extracted features to have zero mean and unit variance. Optimiz-

ing under these criteria, SFA provides a closed form solution to the constraint

optimization problem in the case where the extracted signals are considered to

be a linear combination of the input signals’ components in an expansion space.

In this work, namely Frequency-Based Slow Feature Analysis (FSFA), we are15

motivated to investigate the slowness criterion in the frequency domain by intu-

itively arguing that slow signals ought to have their energy concentrated at the

lower ends of the frequency spectrum. We formulate an objective function that

measures signal slowness by performing a weighted sum of the signal’s energy

spectrum, giving major importance to low frequencies and lower importance to20

higher ones. From this perspective, the newly introduced slowness metric is

a parametric function of the preset weights. The proposed slowness criterion

is directly affected by the signal’s scale and offset. Thus, for an evenhanded

approach to slow feature extraction, adopting the constraints of zero mean and

unit variance was considered reasonable and practical. Eventually, by maximiz-25

ing the aforementioned objective, in the search space of the linear combinations

of the expanded input (as it is for standard SFA), we would expect slow feature

extraction, under a new definition of slowness.

In the definition of FSFA’s slowness, to enable slow feature extraction, the
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preset weights ought to follow a monotonically decreasing formula with respect30

to frequency. From this point of view, FSFA’s slowness metric can be seen as

a low pass filter operation on the input signal and the previously mentioned

preset weights constitute a filter kernel. The objective function optimized by

FSFA, requires that the extracted features result into a signal of maximum

energy when they are passed through this low-pass filter, essentially meaning35

that the features’ energy is concentrated at low frequencies. In the general case,

the usage of different filters can result into extracting features with different

characteristics. At this point, while the new slowness metric seemed generalized

and parameterizable, whether it has any relation to the slowness criterion of

standard SFA was still an open question. In this paper, we prove that there is40

a specific filter kernel that turns FSFA equivalent to SFA, justifying that FSFA

is a parameterized generalization of SFA in the frequency domain.

In summary, the novelties of this paper are the following:

• We generalize the notion of feature slowness by making it filter dependent.

• We formulate the generalized slowness optimization problem and provide45

its closed form solution.

• By solving the generalized optimization problem, we enable parameterized

slow feature extraction through a preset filter.

• We prove the existence of a filter that makes FSFA equivalent to SFA and

conclude that FSFA is a parameterized generalization of SFA.50

• We discuss on the design of the filter kernel giving hints on its baseband

bandwidth and study the implications that some common filters impose

on the extracted output signals.

• We present experimental results on artificial and real-world data, justify-

ing that the optimal FSFA features depend on the chosen filter kernel.55

• We showcase that by choosing proper filters, classification performance

can be improved compared to standard SFA in a video action recognition
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context.

• We demonstrate that a shallow, simple, neural network that consists of

four FSFA nodes utilizing different filters and a single SFA node, can be60

used as a post-processing step, in order to transform the features extracted

by a known Convolutional Neural Network (CNN) to a new feature space,

where classification performance, through a standard Support Vector Ma-

chine (SVM), can be improved.

The rest of the paper is structured as follows: in Section 2, related work to65

SFA is reviewed. In Sections 3, 4 and 5 we elaborate on the proposed method,

its relation to SFA and filter design. In Section 6, experimental results are

presented in both artificial and real datasets. Finally, Section 7 concludes the

paper.

2. Related Work70

SFA was firstly introduced as a novel method for learning invariant or slowly

varying features from a vectorial input signal by Wiskott et al [4]. In their

original paper, the authors introduced the slowness principle and proposed a

mathematical formulation of signal’s slowness, based on the average squared

first order time derivative of the signal. The solution is searched in a finite75

function expansion space. An extensive study on the performance of SFA in

different expansion spaces can be found in [5].

Since then, SFA has been applied in a number of applications. In [6] and

[7], SFA was used to extract driving forces of non-stationary time series. In

[1], SFA was employed for invariant object recognition while in [8], SFA was80

applied hierarchically for age and gender estimation from synthetic face images.

Later, Zhang et al [9] proposed a variation of SFA, for supervised learning,

called Discriminative SFA (D-SFA) applied to Human Action Recognition. A

similar workflow like in [9] was also followed in [10] where SFA was used to

detect violence in videos. In [11], SFA was used for hyperspectral anomaly85
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change detection while in [12], SFA was employed for gesture recognition from

acceleration signals. In the work of Sun et al [13], SFA was combined with

Deep Learning for Action Recognition. Furthermore, in [14], SFA was applied

in Action Recognition from Motion Capture (MoCap) skeleton data. Finally,

in [15] SFA is applied for change detection in multispectral imagery. A short90

survey on the capabilities of SFA in the application level can be found in [16].

Apart from the application level, in a theoretical basis the relation of SFA to

other techniques has also attracted researchers’ attention. In [17], it was shown

that in the case of one time delay, the linear SFA is equivalent to second order

Independent Component Analysis (ICA) and in [18] SFA was linked to Laplacian95

Eigenmaps. Moreover, Turner et al [19], showed an equivalence between SFA

and Maximum Likelihood learning in a linear Gaussian state-space model, with

an independent Markovian prior. SFA was also used in [20] for Nonlinear Blind

Source Separation. Finally, in [21], it was shown that SFA can acquire the

classification capability of Fisher’s Linear Discriminant (FLD) for supervised100

learning when adjacent samples are likely to be from the same class.

Apart from its original form, variations of SFA have also appeared in the lit-

erature. In [22], Kompella et al presented the first online version of SFA based

on incremental Principal Component Analysis (PCA) and Minor Component

Analysis. Later, Liwicki et al [23] proposed an incremental SFA for change105

detection for online temporal video segmentation. Moreover, in [24], the same

authors presented an online kernel variation of SFA with application in the same

area. Additionally, in [25], Berkes introduced SFA to pattern recognition where

the output of SFA provided a feature space suitable for classification. In the

work of [26], Escalante et al, introduced an extension of SFA for supervised di-110

mensionality reduction called graph-based SFA (GSFA). The newly introduced

optimization problem generalized the notion of slowness from sequences of sam-

ples to training graphs. Furthermore, in [27], Escalante et al improved GSFA to

preserve information in a hierarchical manner. Other variations of SFA include

[28] and [29] with applications in audio/video and multitemporal remote sens-115

ing imagery, respectively. Finally, in [30], a novel deterministic SFA algorithm
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able to identify linear projections that extract the common slowest varying fea-

tures of two or more sequences, was presented. Additionally, an expectation

maximization algorithm was proposed performing inference in a probabilistic

formulation of SFA. Those algorithms were used for facial behavior analysis120

demonstrating their effectiveness.

In the important work of [3], an equivalence of the SFA optimization problem

in the frequency domain is presented for the first time. It is shown that the

SFA’s minimization problem in the time domain, is equivalent to an energy

maximization problem of low pass filtered versions of the input in the frequency125

domain. This work closely resembles the approach taken in the present paper.

However, while in [3] the equivalence of SFA’s optimization problem given in the

frequency domain actually holds for continuous signals, in the present paper, we

derive the appropriate equivalence in the discrete domain. On the side, in the

present paper we provide a generalized closed form solution to the optimization130

problem in the frequency domain for any arbitrary filter, something that was

out of the scope of [3].

Finally, in the literature, one may find other works on modeling the general

temporal coherence principle. In [31], Hadsel et al. introduced Dimensionality

Reduction by Learning an Invariant Mapping (DrLIM) for learning a globally135

coherent function that maps the data evenly to an output manifold. In [32],

a deep learning architecture is illustrated that takes advantage of the tempo-

ral coherence principle to introduce a supervisory signal over unlabeled video

recordings, improving the performance of a supervised task of interest. Futher,

Wang et al. [33], used video input to a siamese-triplet Convolutional Neural140

Network (CNN) to enforce visual representations of patches to be the similar

in deep feature space. Last, Jayaraman et al. [34] introduced “steady-feature”

analysis that imposes a prior that higher order derivatives in the learned feature

space must be small. While these works are relevant to the current paper, they

do not overlap with the work presented here, as they are mainly different models145

for the temporal coherence principle. Contrariwise, this work generalizes SFA’s

slowness principle in the frequency domain.
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3. Proposed Method

We begin by intuitively relating the slowness of a signal to its Fourier Spec-

trum. We argue, that among signals of the same total energy, the slowest ones150

should result into maximum remaining energy after they are passed through a

low-pass filter.

Let x[t] =
[
x1[t], x2[t], ..., xI [t]

]
, t ∈ {0, 1, ..., N−1}, xi[t] ∈ R ∀ i ∈ {1, 2, ..., I},

I ∈ N∗ and N ∈ N∗, denote a multi-dimensional discrete signal. Similar to SFA,

the FSFA’s objective, is to find a function g(x) = [g1(x), ..., gJ(x)], gj [x] ∈ R ∀

j ∈ {1, 2, ..., J} generating the J-dimensional signal y[t] =
[
y1[t], ..., yJ [t]

]
with

yj [t] = gj(x[t]), such as, the mono-dimensional signals yj [t] vary slowly across

t. For FSFA, we propose, that the following objective is maximized:

∆j =

N−1∑
k=0

|Yj [k]|2W[k] (1)

under the constraints:

〈yj〉 = 0 ⇐⇒ Yj [0] = 0 (zero mean) (2)

〈y2j 〉 = 1 ⇐⇒ 〈
∣∣Yj

∣∣2〉 = 1 (unit variance) (3)

〈yj′yj〉 = 0 ⇐⇒ 〈Yj′ ∗Yj〉 = 0 (decorrelation) (4)

In (1), Yj [k] refers to the Discrete Fourier Transform (DFT) of yj [t] at frequency

k and W[k] ∈ R denotes a filtering kernel (also referred as the “filter”) that

weighs the Fourier spectrum with different weights 0 ≤W[k] ≤ 1. By choosing155

different filter kernels W[k] one gets different signals y[t]. In order to perform

fair comparisons between candidate features, constrains (2)-(4) are imposed to

the problem.

As in [4], solving (1) when gj(x) belongs to an infinite function space, is

a difficult problem of variational calculus. However, in case we constrain the160

functions gj to be a linear combination of nonlinear functions belonging to a

finite set, as it will be shown in this section and similar to what happens in

standard SFA, the solution simplifies to an eigenvalue problem [35].
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Let h = [h1, ..., hK ],K ∈ N∗, hi ∈ R, i ∈ {1, ...,K} a vector-valued function

composed of a finite set of scalar valued functions hi. Applying the vector165

function h to the input signal x[t] yields a nonlinearly expanded signal z[t] =

h(x[t]) where typically K � I. After this expansion, the problem can be treated

as a linear one in the expanded space. Thus, yj [t] = gj(x[t]) = h(x[t])wj =

z[t]wj ,wj ∈ RK×1, with z[t] to be known, given the input x[t], and wj to be

the unknown. Let z[t] =
[
z1[t], ..., zK [t]

]
. It is important to note that in order170

for a solution to fulfill the constraints (2) - (4), it is required that wj
Twj = 1

and the signal z[t] is centered and sphered, as in [4]. Moreover, to fulfill (4), the

weight vectors wj that correspond to different yj [t] need to form an orthonormal

set.

Let z denote a matrix whose rows are equal to z[t] for different t ∈ {0, ..., N−

1}, z ∈ RN×K and yj ∈ RN×1 denote the column vector of yj [t] for all t. Then

yj = zwj . Let also D ∈ CN×N the unitary DFT matrix. Then:

Yj = Dzwj ∈ CN×1 (5)

The objective function (1) can now be rewritten as:

∆j =
∑
k

(Yj ◦Y∗j ◦W)k (6)

where (·)∗ denotes the complex conjugate, ◦ the Hadamard product and sum-

mation takes place along all the elements of the resulting vectors. For three

column vectors A ∈ CN×1, B ∈ CN×1 and C ∈ CN×1, the following property

holds for the summation of their Hadamard product:∑
i

(A ◦B ◦C)i = tr(ABTCd) (7)

with (·)d = diag(·), i.e. (·)d is equal to a square diagonal matrix whose diagonal

elements are equal to (·), tr is the matrix trace operator and (·)T the matrix

transpose. Now, the objective function (6), following (7), can be written as:

∆j = tr(YjY
H
j Wd) (8)

∆j = tr(Dzwj(D
∗zwj)

TWd) (9)
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with (·)H denoting the Hermitian matrix.175

To maximize ∆j we take the derivative of its Lagrangian function with re-

spect to wj . The Lagrangian function, imposes wj
Twj = 1, which results into

functions that fulfill (3) (when the signal is sphered):

L = tr(Dzwjwj
T zTDHWd)− λ(wj

Twj − 1) (10)

In order to compute the derivative of (10) with respect to wj , we use the fol-

lowing property from matrix theory [36]:

∂

∂X
tr(AXXTC) =

(
CA + (CA)T

)
X (11)

By setting A = Dz, X = wj , C = zTDHWd, letting K = CA and taking into

account the unitary DFT matrix property DH = D∗, we get:

K = zTD∗WdDz (12)

and the derivative of (10) with respect to wj can be written as:

∂L

∂wj
= (K + KT )wj − 2λwj (13)

∂L

∂wj
= (K + K∗)wj − 2λwj (14)

Solving for ∂L
∂wj

= 0 yields:

∂L

∂wj
= 0 =⇒ 1

2
(K + K∗)wj = λwj (15)

and the solution to (15) are the eigenvectors of the eigenvalue problem:

Gwj = λwj (16)

where,

G =
1

2
(K + K∗) (17)

The matrix G is both real, as the sum of a matrix and its conjugate, and

symmetric as the sum of a matrix and its transpose. Thus, the eigenvalues of G

are real and its eigenvectors wj are orthogonal to each other and therefore, for

9



Symbol Description

N Total number of samples in the time domain of the input signal

x[t] ∈ R1×I I-dimensional input signal

y[t] ∈ R1×J J-dimensional slow signal extracted by FSFA

Y[k] ∈ C The Discrete Fourier Transform of y[t] at frequency k

W[k] ∈ R The FSFA’s filter kernel at frequency k

h(x[t]) ∈ R1×K A K-dimensional vector function that transforms the input signal to an expansion space

z[t] = h(x[t]) ∈ R1×K The transformed input signal to the expansion space

wj ∈ RK×1
The learned FSFA model that transforms the expanded signal to a

new feature space where yj [t] = z[t]wj varies slowly across time

D ∈ CN×N The Discrete Fourier Transform unitary matrix

Wd ∈ RK×K A diagonal matrix where each diagonal element equals W[k] for all k ∈ 0, 1, ...,K − 1

∆j FSFA’s objective function for the j-th slowest signal

Table 1: Nomenclature of the most important symbols used throughout the paper

a sphered signal, the solution fulfills (4). At this point, it is important to stress

the fact that the proposed method, as in [4], extracts signals from the multi-180

dimensional input that are instantaneous and not filtered versions of the input,

despite the objective function involving filtering. The proposed procedure can

be seen as follows: we seek signals which are linear combinations of the input

in the expansion space, that all are of the same total energy (as imposed by

the unit variance constraint) but the remaining energy after passing through185

the filter W[k] is maximum. Moreover, from another viewpoint, the filter W[k]

can be seen as a function that imposes a weighting scheme to the extracted sig-

nals’ frequency spectrum. Higher values of W[k] indicate frequencies of greater

importance, while lower values of W[k] indicate frequencies with less objective

function gain. For a low-pass filter W[k] we expect to get slow signals (signals190

that concentrate their energy at low frequencies), while for other types of filters

we expect the extracted signals to be medium-slow, fast, or generally having a

frequency spectrum close to the characteristics of the filter. The time complex-

ity of FSFA, in case we utilize sparse matrix representation for Wd, is the same

as SFA’s which is O(K2N). Moreover, both methods in the test phase, have195

the same complexity: O(NK2).
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4. Relation of the proposed method to SFA

In this section, we study standard SFA in the frequency domain and derive

an equivalence of FSFA to SFA. Let y[t], t ∈ {0, 1, ..., N − 1}, be a real valued

signal with its N-Point Fourier transform Y[k], k ∈ {0, 1, ..., N − 1}. We are

interested in relating the N-Point Fourier transform of its discrete time derivative

x[t] = y[t + 1] − y[t], t ∈ {0, 1, ..., N − 2} and x[N − 1] = 0 with the N-Point

Fourier transform of y[t]. Let WN = e−2πj/N , with j =
√
−1. Then, the Fourier

transform X[k] of x[t] is:

X[k] =
1√
N

N−1∑
t=0

x[t]W tk
N (18)

X[k] =
1√
N

N−2∑
t=0

y[t+ 1]W tk
N −

1√
N

N−2∑
t=0

y[t]W tk
N (19)

X[k] = (W−kN − 1)Y[k] +
y[N − 1]W

(N−1)k
N − y[0]W−kN√

N
(20)

X[k] = (W−kN − 1)Y[k] +
(y[N − 1]− y[0])W−kN√

N
(21)

where WNk
N = 1 and Y[k] = 1√

N

∑N−1
t=0 y[t]W tk

N , the N-Point DFT of y[t]. SFA

minimizes the following objective function:

∆SFA =

N−2∑
t=0

x[t]2 =

N−1∑
t=0

x[t]2 = α

N−1∑
k=0

|X[k]|2 (22)

where in (22) we made use of Parseval’s theorem and the fact that x[N − 1] = 0

by definition, otherwise the sum that we used would be different than SFA’s

one. Moreover, α ∈ R, α ≥ 0 is a normalization constant depending on the type

of DFT used and with out loss of generality it is left out from the rest of the

discussion since it does not affect minimization of the objective. Substituting

(21) in (22) we obtain:

∆SFA =

N−1∑
k=0

|(W−kN − 1)Y[k]+

(y[N − 1]− y[0])W−kN√
N

|2 (23)
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In the case where y[0] = y[N − 1],

∆SFA =

N−1∑
k=0

|(W−kN − 1)Y[k]|2 (24)

which is the same as maximizing:

∆′SFA = −
N−1∑
k=0

|(W−kN − 1)|2|Y[k]|2 (25)

In the case of a centered signal with unit sample variance the term
∑N−1
k=0 |Y[k]|2

is constant. Let also γ = |WN/2
N − 1| = 2. The objective function (25) can be

written as:

∆′SFA = − 1

γ2

(
N−1∑
k=0

|W−kN − 1|2|Y[k]|2 − γ2
N−1∑
k=0

|Y[k]|2
)

(26)

∆′SFA =

N−1∑
k=0

(
γ2 − |W−kN − 1|2

γ2

)
|Y[k]|2 (27)

Thus, FSFA is equivalent to SFA when for the signal under evaluation it is

y[0] = y[N − 1] (28)

and the filter W[k] is

W[k] =
γ2 − |W−kN − 1|2

γ2
= 0.5 + 0.5 cos

(
2π

k

N

)
(29)

This filter W[k] is shown in Figure 1(a). The constant γ that was introduced

previously was employed in order to normalize W[k] in the range [0− 1]. From

now on, this filter will be referred as the “SFA Filter”.200

On the condition of FSFA to SFA equivalence

As shown before in (27), there exist one filter that makes FSFA equivalent

to SFA under a specific condition that requires the signal under evaluation

y[t], t ∈ {0, 1, ..., N−1} to have the same starting and ending value (28). As y[t]

deviates from satisfying this condition, FSFA, with the filter of (29) and SFA,205

conclude solving two different optimization problems with no direct equivalence

between them.
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(a) SFA Filter: The filter that makes FSFA

equivalent to SFA.

(b) Various FSFA filters that are being

used to study filter design.

Figure 1: FSFA Filters.

In this paragraph, we state that for any multidimensional input signal y[t], t ∈

{0, 1, ..., N − 1} satisfying the condition y[0] = y[N − 1], FSFA can be made

equivalent to SFA by applying the filter defined in (29). In fact, what we210

need to prove is that the condition of y[0] = y[N − 1] still applies after any

instantaneous transformation and thus it still holds after creating the input’s

expansion space, applying centering and sphering and optimizing against linear

combinations of the sphered signal in the expansion space. The proof of the

aforementioned statement is actually straightforward, since for any instanta-215

neous function g(y[t]) (i.e. any function that does not depend on past of future

values of t) y[0] = y[N − 1] =⇒ g(y[0]) = g(y[N − 1]). Q.E.D.

5. Designing the filter kernel

In this section, we approach filter design from the FSFA’s perspective. In

subsections 5.1, 5.2, 5.3, we give generic facts around the filters of FSFA, while220

in subsections 5.4 and 5.5, we approach understanding slowness by investigating

how FSFA’s various filters would order candidate features of the input signal’s

expansion space in terms of slowness.
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5.1. Filter’s frequency area of interest

The objective function of FSFA for the signal y[t] ∈ R, t ∈ {0, 1, ..., N − 1}225

can be written as follows:

∆FSFA =

Ns−1∑
k=0

|Y[k]|2W[k] (30)

with Ns = dN/2e (i.e. restricting the summation to the first half of the sym-

metric frequency spectrum) and with Y[k] ∈ C denoting the DFT of y[t] at

frequency k. Let y[t] =
∑K
i=1 wizi[t], wi ∈ R, i.e. y[t] is a linear combination of

signals zi[t] ∈ R in an expansion space of dimensionality K. Then, the following230

inequality holds:

∣∣Y[k]
∣∣ ≤ K∑

i=1

wi
∣∣Zi[k]

∣∣ (31)

with Zi[k] the DFT of the signal zi[t]. From (31) it follows that if for all

Zi[k], i ∈ {1, 2, ...,K}, |Zi[k]| = 0 for k ≥ km, then |Y [k]| = 0 for all k ≥ km

(always for the first half of the frequency spectrum), i.e. y[t] is band-limited with

its baseband bandwidth being at most equal to the wider baseband bandwidth

of its components in the expansion space. Thus, the FSFA filter should weight

the frequency spectrum appropriately for k ≤ km. In practice, km is computed

as km = max(k1, k2, ..., kK) with

ki = arg min
k

(

k∑
n=0

|Zi[n]|2 ≥ τ
Ns−1∑
n=0

|Zi[n]|2) (32)

with a common choice for τ ∈ (0, 1] being τ = 1− ε, with ε ∈ R+ being a small

constant. We name the frequency zone of [0, km] as the filter’s “frequency area

of interest”.

5.2. Filters with the same solution to the FSFA optimization problem235

Let W1[k] and W2[k] denote two filter kernels with W2[k] = αW1[k]+β, α ∈

R+
0 , β ∈ R. Since the search space of FSFA consists of signals of the same total
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energy, as imposed by (3), it is easy to prove that the maximization of the FSFA

objective for W1[k] and W2[k] has the exact same solutions. In other words,

any two filters that are a linear transformation of each other (with α > 0)240

measure signal slowness in the exact same way.

5.3. Low-pass filter normalization

For a given input signal from which we need to extract slow signals, let

[0, km], km ∈ N, km < Ns be the filter’s frequency area of interest, as discussed

in Section 5.1. When studying how different filters affect the slow signal output,245

it is all about realizing how the filters relate the different frequencies of the

frequency spectrum of the extracted signal. In order to ease the study of those

filters it is important that all the filters weight the frequency spectrum with

values of the same interval. For this paper we chose this interval to be [0, 1] and

as already discussed in Section 3 we require 0 ≤ W[k] ≤ 1. Apart from those250

constraints and to aid with the study of different filters, in this subsection we

additionally impose the requirement that the interval of [0, 1] is entirely covered

by the filter kernel. When the filter kernel entirely covers the interval [0, 1] in

the filter’s frequency area of interest, we say that this filter is normalized.

More formally, let W[k] denotes a low-pass filter kernel for which k1 ≤

k2 =⇒ W[k1] ≥ W[k2]. We can normalize this filter in its frequency area of

interest by choosing

α =
1

W[0]−W[km]
(33)

and

β = 1− αW[0] (34)

Then, the normalized filter Wn[k] is given by the following formula:

Wn[k] = αW[k] + β (35)

It is easy to show that Wn[0] = 1 and Wn[km] = 0. As already discussed in255

Section 5.2, Wn[k] and W[k] will have the same solution to the FSFA optimiza-

tion problem. Filter normalization is very important. In the experimental result

section (section 6) we normalize the SFA filter of (29) in the filter’s frequency

area of interest in order to better explain the resulted outcomes.
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5.4. Slowness: A filter dependent measurement260

In FSFA, the slowness of a signal depends on the selected filter. It is the

selected filter that determines how slow a signal is and what is considered slow

for one filter may be considered fast for another filter. Thus, in general, no

direct comparison of signal slowness between different filters is possible, since

the objective function is different for each filter and there is no meaning in com-265

paring the values of the objective function for different filters. However, we can

understand the behavior of each filter by observing how each one differentiates

when applied to the same input.

We begin our study by picking 2 different signals y1[t] ∈ R and y2[t] ∈ R,

both containing two frequency components, namely f1 and f4 for y1[t] and f2,270

f3 for y2[t] with f1 ≤ f2 ≤ f3 ≤ f4. Thus, y1[t] = sin(2πf1t) + c · sin(2πf4t),

y2[t] = sin(2πf2t) + c · sin(2πf3t) with 0 ≤ c ≤ 1. In other words, y1[t] contains

one very low and one very high frequency components, while y2[t] contains two

medium frequency components. In this study we are interested to investigate

how different filters order y1[t] and y2[t] in terms of slowness.275

Firstly, we apply a hanning window [37] to those signals in order to force the

FSFA to SFA equivalence constraint (28) without introducing new frequency

content. We also normalize the signals to have zero mean and unit variance

and thus the same energy. Since the signals y1[t] and y2[t] have both the same

energy, they can be directly compared for their slowness, with respect to a

selected filter, using the FSFA’s objective function (30). For an arbitrary filter

W[k], 0 ≤W[k] ≤ 1, let ∆1 indicate the FSFA’s objective function score for the

signal y1[t] and ∆2 indicate the FSFA’s objective function score for the signal

y2[t], with the FSFA objective function score being given by the formula of (30).

By letting k1, k2, k3 and k4 denote the corresponding frequencies of f1, f2, f3 and

f4 in the discrete domain, y1[t] is classified slower than y2[t] for a given filter

W[k] when ∆1 > ∆2. Since our engineered signals y1[t] and y2[t] are both

composed by two sinusoids, comparing their slowness can be approximated by
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the following formula:

∆1 > ∆2 =⇒

|Y1[k1]|2W[k1] + |Y1[k4]|2W[k4] >

|Y2[k2]|2W[k2] + |Y2[k3]|2W[k3] =⇒

|Y1[k1]|2(W[k1] + c2W[k4]) >

|Y2[k2]|2(W[k2] + c2W[k3]) =⇒

W[k1] + c2W[k4] > W[k2] + c2W[k3] (36)

where in (36) we used the following approximations: |Y1[k4]| = c|Y1[k1]|,

|Y2[k3]| = c|Y2[k2]| and |Y1[k1]| = |Y2[k2]|, with Y1[k] denoting the DFT

of y1[t] and Y2[k] denoting the DFT of y2[t]. By examining (36), we observe

that whether y1[t] is slower than y2[t] depends on the weights that the filter

kernel imposes to the frequencies k1, k2, k3 and k4 as well as the magnitude of280

the constant c.

For each filter and for each one of the experiments that we conduct, we pick

specific values for f1, f2 and f3 and search the maximum value of f4, denoted

by fc, that makes the specific filter to consider y1[t] to be slower than y2[t].

For any value of f4 greater than fc, y1[t] is considered faster than y2[t] from285

the perspective of the specific filter that is being studied. In the marginal case

where f4 = fc, it will be ∆1 = ∆2 and thus the two signals are considered to

be equally slow, while for f4 > fc it will be ∆1 < ∆2.

By studying further (36) and for a monotonically decreasing filter W[k] (i.e.

a low pass filter) we can draw some interesting conclusions:

∆1 > ∆2 =⇒

W[k1]−W[k2] > c2(W[k3]−W[k4]) =⇒
1

c2
(W[k1]−W[k2]) > W[k3]−W[k4] =⇒

W[k4] > W[k3]− 1

c2
(W[k1]−W[k2]) (37)

a) When W[k2] ' W[k1] then W[kc] → W[k3] and when W[k] is monotonic,
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kc → k3 (where kc was used to denote the discrete frequency corresponding to290

fc).

b) In the case where k3 is such that W[k3] < 1
c2 (W[k1] −W[k2]), kc can be

arbitrary large and still y1[t] will be considered slower than y2[t].

c) If k1 belongs to the filter’s pass-band (i.e. W[k1] ' 1), then, no matter how

large k4 is, y1[t] is considered slower than all the signals y2[t] being composed295

from k2 and k3 for which W[k2] < 0.5 and W[k3] < 0.5. This observation holds

for all filters W[k] and for any 0 ≤ c ≤ 1.

5.5. Slowness: Experimentation with practical filters

In the current subsection, we conduct the previously mentioned experiment

setup by using practical filters. The filters that we chose to experiment with300

are depicted in Figure 1(b). From this Figure, it can be noticed that the filters

can be ordered with respect to their pass-band width from narrower to wider as

follows: a) parabolic, b) triangle, c) SFA, d) logsig, e) tansig and f) butterworth.

We execute three experiments in total and each of the experiment’s results is

illustrated in Table 2. The sampling frequency for all experiments is set to 50305

Hz, the constant c is set to c = 0.3 and frequency normalization is performed

by dividing each frequency value by half the sampling frequency.

For the first experiment, we choose f1 = 0.25Hz (normalized: 0.01), f2 =

2.5Hz, (normalized: 0.1) and f3 = 5Hz (normalized: 0.2). As shown in Table

2, the application of rule (a) is observed. The wider the filter’s pass-band the310

more W[k2] is close to W[k1] and thus, the more kc tends to k3, with the two

extremes occurring in the butterworth/tansig and the parabolic filters. In the

second experiment it is set f1 = 2.5Hz (normalized: 0.1), f2 = 5Hz (normalized:

0.2) and f3 = 7.5Hz (normalized 0.3). Occurrences of rule (b) are noted for

SFA, triangle and parabolic filters while rule (a) is fulfilled for logsig, tansig315

and butterworth filters similar to the previous experiment. Finally, in the third

experiment, where f1 = 2.5Hz (normalized: 0.1), f2 = 15Hz (normalized: 0.6)

and f3 = 17.5Hz (normalized: 0.7), we see the application of rule (c). All filters

consider y1[t] to be slower than y2[t] no matter how large fc is, because, as it
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Frequency Hz Normalized

Experiment #1

fc (SFA) 6.3672 0.25469

fc (triangle) 10.2734 0.41094

fc (parabolic) 13.0078 0.52031

fc (logsig) 5.8984 0.23594

fc (tansig) 5.0391 0.20156

fc (butterworth) 5.0391 0.20156

Experiment #2

fc (SFA) 23.7354 0.94941

fc (triangle) 24.8975 0.9959

fc (parabolic) 24.9658 0.99863

fc (logsig) 11.7725 0.4709

fc (tansig) 8.4912 0.33965

fc (butterworth) 7.6709 0.30684

Experiment #3

fc (all filters) 24.9707 0.99883

Table 2: Slowness comparison between different filters. The maximum frequency fc for which

y1[t] is considered slower than y2[t]. Results for experiments #1, #2 and #3.

can be seen in Figure 1(b), W[k] < 0.5 for all filters and for all normalized320

frequencies above 0.6. The resulting signals for all the experiment are being

depicted in Figures 2, 3 and 4. In those Figures we plot the signal y2[t] along

with y1[t] for the value of k4 = kc, with kc varying depending on the filter.

Thus, we plot y1[t] once for each filter.

6. FSFA In Practice: Experimental Results325

In this section, the experimental evaluation of the proposed method is de-

tailed. We used 4 sets of experiments to pinpoint the different merits of the
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Figure 2: Comparing slowness between different filters. Experiment #1.

Figure 3: Comparing slowness between different filters. Experiment #2.

Figure 4: Comparing slowness between different filters. Experiment #3.
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method. The first experiment is conducted on synthetic data and establishes

the fact that FSFA extracts different slow features when using different low pass

filters. A short theoretical discussion is also given that explains the experiment’s330

results. In the second experiment, we apply FSFA in real world data obtained

from a known CNN to showcase that various filters lead to different extracted

features as in the synthetic case. In the third experiment, we provide a compar-

ison on the classification performance of the features extracted by FSFA using

various filters and features extracted by standard SFA. Finally, in the fourth335

experiment, we demonstrate that a simple, shallow, neural network comprised

of four FSFA nodes and one SFA node can transform the features of the afore-

mentioned CNN in a new feature space where classification performance in video

action recognition can be improved.

6.1. Experiment A: Demonstrate FSFA output variation depending on the se-340

lected low-pass filter on synthetic data

Similar to SFA, FSFA’s output depends on the input signal as well as the

expansion space used. Additionally, FSFA’s output depends on the chosen filter

kernel. Our extensive experimentation with FSFA has shown that for simple

input multi-dimensional signals, different low pass filters more or less extract345

the same slow signals. To demonstrate the generalized nature of FSFA we are

forced to use a slightly more complex input signal than a signal being composed

from very simple sinusoid components. However, we will use some simple mono-

dimensional signals as a basis to construct a slightly more complex input multi-

dimensional signal.350

For the purposes of this experiment, let

ri[t] =

4∑
j=1

Aij [sin(2πfjt+ φij)]
pij (38)

with i = {1, 2, 3}. The parameters Aij , φij , pij are all given in Table 4, while

the frequencies fj are set as: f1 = 0.1Hz, f2 = 0.7Hz, f3 = 1.2Hz and f4 =

1.7Hz. The multi-dimensional input signal x[t] that is used in this experiment

is composed out of 3 components x1[t] ∈ R, x2[t] ∈ R and x3[t] ∈ R and is given
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by the formula: x[t] =
[
x1[t], x2[t], x3[t]

]
with x1[t] = r2[t] · r3[t], x2[t] = r2[t] +355

r3[t], x3[t] = r3[t] ·r1[t]. Moreover, we apply a hanning window [37] to the signal

components x1[t], x2[t] and x3[t], in order to fulfill the FSFA to SFA equivalence

criterion of (28), without additionally introducing any new frequency content to

the signal. Finally, we center the signals and make them of unit variance. The

final input signal components are depicted in Figure 5(a). Thereafter, we ask360

FSFA to extract slow signals from the multi-dimensional input signal x[t] using

different low-pass filters. The filters used in this experiment are: a) triangle,

b) trapezoid c) SFA and d) tansig, all depicted in Figure 5(b). In Figure 6(a),

a zoomed in version of the filters in their frequency “area of interest” is given,

while their normalized versions are depicted in Figure 6(b). The expansion space365

used in this experiment is “SExp” [5] which for a 3-component input signal has

dimensionality 6, and thus the number of slow signals extracted by FSFA is 6.

The extracted slow signals for each filter along with their power spectrum are

illustrated in Figures 7 and 9, 10. The filter’s frequency area of interest for this

input signal and in this expansion space is approximately the interval [0, 0.16],370

computed using (32) with τ = 0.999. This interval is given as a normalized

frequency range where 0 corresponds to the 0 frequency and 1 corresponds

to half the sampling frequency of 150Hz. From all the provided Figures and

especially from Figures 7, and 9(a), 9(b), it is made clear that FSFA’s slow

signal extraction significantly depends on the chosen filter kernel. In the rest375

of the section we provide comments that are being reasoned from examining

Figure 7 (i.e the slowest extracted signal for all filters).

By closely looking at Figure 6(b), it is observed that the tansig filter has

the wider pass-band of all the filters participating in the experiment (the band

where W[k] ' 1) and it is the one that mostly resembles the ideal low pass filter.380

The signal extracted by tansig has the narrowest baseband bandwidth of all the

signals extracted using the rest of the filters, as shown in Table 3, where for the

computation of the signals’ baseband bandwidth we used (32) with τ = 0.9999.

The tansig filter does not pick any of the signals extracted with the other filters

because the other extracted signals leak energy to higher frequencies (> 0.06)385
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which mainly lies in the tansig’s filter transition or stop band where W[k]� 1,

and thus there is lesser objective function gain at those frequencies. (See also a

zoomed version of the power spectrum in Figure 8.)

On the other hand, the triangle filter, being the filter with the narrowest

pass-band, is very picky in extracting a slow signal with a strong frequency390

component at a very low frequency. This result aligns very well with the obser-

vation rules that we presented in Section 5 about filter design, where for a low

frequency k1, y1[t] was always considered slower than all the signals y2[t] con-

taining frequencies k2 and k3 with k1 ≤ k2 ≤ k3, no matter how much “energy

leakage” occurred in the higher frequencies which was controlled by k4.395

If the tansig filter (widest pass-band) and the triangle filter (narrowest pass-

band) constitute the two extremes, then the SFA and trapezoid filters stands in

between. This can be clearly seen in Figure 7. If the signals extracted by the

triangle and tansig filters are the two reference signals, then the signals extracted

by SFA and trapezoid filters, look like a signal that is a smooth transition from400

the one reference signal to the other. Moreover, as depicted in Figure 6(b), for

the normalized frequency range of [0, 0.03] it is Wtrapezoid[k] ≤WSFA[k], with

Wtrapezoid[k] denoting the trapezoid filter and WSFA[k] denoting the SFA filter.

In other words, the trapezoid filter is pickier for lower frequency components

than SFA.405

Table 3 also gives us an interesting observation. The pickier a filter is about

low frequency components, the higher the baseband bandwidth of the extracted

signal. While this is certainly not necessary always the case, it is likely to

happen. To explain this interesting fact, we remind the reader that all signals

extracted by FSFA (and SFA) are of the same total energy. If we carefully410

examine our intentions when using a very picky filter (a filter with a very narrow

pass-band) we would actually discover that this way we are coercively looking

to extract signals that contain very low frequency components. In the very

common case where not all the energy can actually be concentrated in the

lowest frequencies, what we get in fact, is a signal with a strong low frequency415

component and with some other energy being leaked in higher frequencies which
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Filter Triangle Trapezoid SFA Tansig

Baseband

Bandwidth
0.16 0.1428 0.11607 0.0982

Table 3: Experiment A: Slow component #1 signal baseband bandwidth computed by (32)

with τ = 0.9999 and normalized to the frequency range of [0-1] (with 0 corresponding to the

zero frequency and 1 corresponding to half the sampling frequency).

A11 = 0.4 A12 = 0.7 A13 = 0 A14 = 0.5

A21 = 0 A22 = 0 A23 = 0.6 A24 = 0.3

A31 = 0.3 A32 = 0 A33 = 0 A34 = 0.7

φ11 = 0 φ12 = π/2 φ13 = 0 φ14 = 0

φ21 = 0 φ22 = 0 φ23 = π/6 φ24 = 0

φ31 = 0 φ32 = 0 φ33 = 0 φ34 = π/8

p11 = 1 p12 = 1 p13 = 1 p14 = 3

p21 = 1 p22 = 1 p23 = 1 p24 = 1

p31 = 1 p32 = 1 p33 = 1 p34 = 2

Table 4: Experiment A: Parameters Aij , φij , and pij , i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}.

in many cases results into signals with high baseband bandwidth. The more we

relax our constraint to be picky at low frequencies, and thus selecting filters

with wider pass-bands, we actually give room to the energy to be concentrated

at low and mid frequencies potentially avoiding leakage to the higher ends of420

the spectrum.

6.2. Experiment B: Demonstrate FSFA output variation depending on the se-

lected low-pass filter on real-world data

In this subsection, we apply FSFA, with various filters, on real-world data ob-

tained by a well-known CNN (C3D [38]) and justify that the extracted features425

depend on the choice of the filter kernel. For completeness, we also provide the

features extracted by SFA for the same input. Regarding the data, we use the

standard split #1 of the UCF-101 [39] video action recognition dataset. In sub-
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(a) Experiment A: Input signals x1[t],

x2[t] and x3[t].

(b) Experiment A: Different FSFA low

pass filters.

Figure 5: Experiment A: Input signals and FSFA low pass filters.

(a) Experiment A: Illustration of the fil-

ters of Figure 5(b) by zooming in the fre-

quency area of interest.

(b) Experiment A: Normalized FSFA low-

pass filters used to drive the experiment,

in the frequency area of interest.

Figure 6: Experiment A: FSFA low-pass filters used to drive the experiment.
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(a) Signals in time domain. (b) Signals’ power spectrum.

Figure 7: Experiment A: Slow component #1.

Figure 8: Experiment A: Slow component #1 power spectrum zoom in at higher frequencies.
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(a) Signals in time domain. (b) Signals’ power spectrum.

(c) Signals in time domain. (d) Signals’ power spectrum.

(e) Signals in time domain. (f) Signals’ power spectrum.

Figure 9: Experiment A: Slow components #2 - #4.
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(a) Signals in time domain. (b) Signals’ power spectrum.

(c) Signals in time domain. (d) Signals’ power spectrum.

Figure 10: Experiment A: Slow components #5 - #6.

(a) Experiments B and D: The 4 FSFA

filters used (W1, W2, W3, W4).

(b) Experiment C: The 3 FSFA filters

used (LogSig, Triangle and Hyperbolic).

Figure 11: The FSFA filters used in Experiments B, C and D.
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(a) FSFA’s slowest feature for filter W1 (b) FSFA’s slowest feature for filter W2

(c) FSFA’s slowest feature for filter W3 (d) FSFA’s slowest feature for filter W4

(e) SFA’s slowest feature

Figure 12: Experiment B: The slowest feature extracted by FSFA using 4 filters (W1, W2,

W3, W4) and the slowest feature extracted by standard SFA.
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(a) FSFA’s 2nd slowest feature for filter

W1

(b) FSFA’s 2nd slowest feature for filter

W2

(c) FSFA’s 2nd slowest feature for filter

W3

(d) FSFA’s 2nd slowest feature for filter

W4

(e) SFA’s 2nd slowest feature

Figure 13: Experiment B: The second slowest feature extracted by FSFA using 4 filters (W1,

W2, W3, W4) and the second slowest feature extracted by standard SFA.
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section 6.2.1 we describe the data pre-processing procedure that we used, while

in subsection 6.2.2 we provide figures depicting the slowest extracted features.430

6.2.1. Data pre-processing

In order to apply the unsupervised methodology of SFA/FSFA in a classifica-

tion task, such as the task of Video Action Recognition, we follow the procedure

described in [21] along with some pre-processing steps. In particular, for each

video of the dataset, we extract C3D features with standard video clip size of435

16 and frame overlapping of 12 frames (i.e. a frame stride of 4 steps). This

procedure, extracts T feature vectors of size 1 × 4096 for each video, where T

corresponds to the number of clips inside the video. We average those features

across T , as it is described in standard C3D, and perform L2 normalization, to

produce one final feature vector per video, of size 1 × 4096. Subsequently, we440

perform PCA dimensionality reduction, in order to reduce the videos’ feature

vector size from 1×4096 to 1×608, which is the dimensionality (D = 608) that

explains the 85% of the features’ variance. Since we are performing this experi-

ment on split #1, which has N = 9537 videos in its training set, we construct a

new multi-dimensional signal x ∈ RN×D containing all the final video features.445

As described in [21], we construct x, by placing features corresponding to

videos of the same class in adjacent positions. In this way, x can be seen as

a multi-dimensional signal where the class identity (i.e. the action being per-

formed in the video) becomes the slowest varying latent feature, across its first

dimension (i.e. x’s rows). Thus, the input to FSFA/SFA is the aforementioned450

matrix x, with the class identity being implicitly encoded in the order of the

video features. In that case, and according to the theory of [4], the latent vari-

able corresponding to the class identity as a function of the video’s feature can

be extracted by the SFA/FSFA algorithm. In the above procedure, the dimen-

sionality reduction step through PCA, is mandatory for SFA/FSFA systems,455

because the number of samples in the training set (N = 9537) are quite close to

the dimensionality of the original C3D feature vector (4096), and in that case,

the SFA/FSFA algorithms easily overfit to their optimal solutions.
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Baseline

C3D with

our SVM

SFA

FSFA

LogSig

Filter

FSFA

Triangle

Filter

FSFA

Hyperbolic

Filter

Train 99.86% 99.91% 99.92% 99.89% 99.92%

Test 80.2% 81.6% 81.39% 81.68% 82.08%

Table 5: SFA vs FSFA classification accuracy on the UCF-101 dataset, split #1.

6.2.2. Feature visualization

After applying the steps described in subsection 6.2.1, we give the matrix460

x as input to FSFA and SFA in order to extract slowly varying features. For

the FSFA algorithm, we use the 4 filters depicted in Figure 11(a), namely W1,

W2, W3 and W4. In Figure 12, we provide the slowest feature extracted by

FSFA using each one of the 4 filters, as well as the slowest feature extracted by

standard SFA, while in Figure 13 the second slowest feature for the same cases465

is depicted. The expansion type used in all of our experiments is “Identity”[5].

By inspecting the figures, it is evident that FSFA extracts different features

depending on the chosen filter. The variation of FSFA’s output with respect to

the chosen filter, in the real-world dataset, is even more noticeable than in the

simple synthetic case. Conclusively, the slow feature extraction conducted by470

FSFA, certainly depends on the chosen filter kernel, no matter the source type

of the input data (i.e synthetic or real-world).

6.3. Experiment C: Comparing classification performance between FSFA and

SFA in Video Action Recognition

In this section, we set up an experiment in order to evaluate the classifica-475

tion performance of the features extracted by FSFA and compare against the

features extracted by standard SFA. Once again, for the dataset of this exper-

iment, we use standard UCF-101 split #1 and for SFA and FSFA, we conduct

all the pre-processing steps described in subsection 6.2.1. During training, we
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present the multidimensional signal x to SFA/FSFA and learn the functions480

that transform the input signal x to a new space where the extracted features

vary slowly. During testing, the learned functions are applied to the C3D video

feature instantaneously in order to bring it to the space that was learned during

training. The expansion space used for SFA & FSFA, is “Identity”[5], while after

applying the slow feature extraction algorithms we reduce the dimensionality485

of the original feature space (D = 608), to about its half, by always keeping

the 300 slowest features. Finally, we perform L2-Normalization on the 1× 300

sized slow features, as in standard C3D, and perform classification through a

standard linear SVM.

In this experiment, the feature transformation pipeline is exactly the same490

for both SFA and FSFA. For the baseline comparison, we use directly the C3D

features extracted by the pre-trained network provided by the authors of [38]

(with the single net option), average them across time for each video, perform

L2 normalization in each one of them, and pass them to the linear SVM as it

was done in [38]. The linear SVM that we use for classification, is not tuned in495

any way for any of the methods and its configuration is kept the same across

evaluations. For FSFA, we used the 3 filters depicted in Figure 11(b). The

classification performance (training and test accuracies) of SFA, FSFA and the

C3D baseline is illustrated in Table 5. Both slow feature extraction methods

improve classification performance over the standard baseline. Comparing be-500

tween them, we find that SFA outperforms FSFA in the case of the “LogSig”

filter, while for the other two filters, i.e. “Triangle” and “Parabolic”, the oppo-

site is true. This justifies that not all FSFA filters perform better than original

SFA. In our experimentation, we found that pickier low pass filters (filters with

a strong scheme, favoring lower frequencies) perform better, as in the current505

case.

Concerning the C3D baseline, we have to note, that we could not reproduce

the exact performance reported in [38], which for UCF-101 and for the single

net C3D is 82.3%. Based on the knowledge that we have, and since we have

used the exact implementation provided by the respective authors for the C3D510
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Baseline

C3D

(reported

in [38])

Baseline

C3D with

our SVM

Our

network -

only FSFA

nodes

Our

network -

FSFA &

SFA nodes

Train - 99.86% 99.80% 99.88%

Test 82.3% 80.2% 82.52% 83.19%

Table 6: Classification accuracy of a shallow network employing SFA and FSFA nodes on the

UCF-101 dataset, split #1.

network, we believe that this shortcoming ought to be due to some misalignment

between the parameters of our SVM implementations. However, the scope of the

present paper is mostly about introducing a generic theoretical concept rather

than tuning the SVM parameters to achieve state of the art results. In this

paper, FSFA and SFA are used as post-processing steps on the top of C3D (and515

potentially on the top of any other feature extractor) and our arguments for

improving the baseline are to be taken from this point of view.

6.4. Experiment D: Using a simple, shallow, FSFA & SFA network to improve

classification performance in Video Action Recognition

In this experiment, we combine four FSFA nodes with the filters presented520

in Figure 11(a) and a single SFA node, into a shallow neural network that

transforms the features extracted by C3D [38] to a new feature space, where

classification performance in the Video Action Recognition dataset UCF-101

[39], split #1, using a liner SVM, is further improved.

Initially, we follow all the pre-processing steps described in subsection 6.2.1.

Subsequently, the input matrix x is given independently to each FSFA node,

performing slow feature extraction using its assigned filter (i.e. W1, W2, W3

or W4). The expansion space for all FSFA nodes is set to “Identity”[5]. In

the training phase, the network aims to learn the functions that transform the

input signal to a new space where the features of the same class are close to

each other, since they are spatially adjacent and are optimized to vary slowly
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Figure 14: The architecture of the proposed neural network composed of FSFA & SFA nodes.

across the rows of x. We then use the following normalized metric of slowness,

in order to set a limit on the number of slow features that we keep from each

node:

∆n =

∑N−1
k=0 |Y[k]|2W[k]∑N−1

k=0 |Y[k]|2
(39)

Note that 0 ≤ ∆n ≤ 1 and that the denominator of (39) is constant for all525

the extracted features in the training set, since they all fulfill the unit variance

constraint. We set a threshold on ∆n, ∆n ≥ 0.5. (the same for all FSFA nodes)

and each node keeps the learned functions that lead to the slowest features

fulfilling this requirement.

All FSFA nodes operate on the same input x (i.e. the proposed network is530

not deep). We additionally employ a single SFA node that operates on x as

well, and we keep the learned functions for its 300 slowest features (as we did

in subsection 6.3). The expansion space for the SFA node is set to “Identity”,

similar to FSFA nodes. To complete the training process, we concatenate the

features extracted by each one of the network’s nodes, perform L2 normalization535

and train a linear SVM for classification. During testing, the C3D features
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undergo the same SFA/FSFA transformations that were learned by the network

during training, they are concatenated, L2 normalized and being fed to the SVM

for final classification. The final feature vector size, at the network’s output, is

641.540

The architecture of the network is depicted in Figure 14, while the classi-

fication results (training and test accuracies) are shown in Table 6. We also

provide classification results for when using only the FSFA nodes without the

SFA node. (The classification performance of the SFA node alone is the same

as it was reported in subsection 6.3). The implementation and parameteriza-545

tion of the linear SVM is kept the same as in section 6.3. In this experiment,

we see that FSFA can harmonize with SFA in order to transform the features

extracted by C3D to a new feature space where classification performance is

further increased, compared to the single node operation that was described in

subsection 6.3.550

7. Conclusion

In the algorithm of Slow Feature Analysis (SFA) [4] signal slowness is mea-

sured by its average squared time-derivative. In this paper, we study the notion

of slowness in the frequency domain, introducing Frequency-Based Slow Feature

Analysis (FSFA). In the proposed method, the slowness objective takes a para-555

metric filter representation, making slowness a filter dependent measurement.

We find out, that the aforementioned new notion of slowness can be equivalent

to the one used in standard SFA for a specific parameter value. This makes

FSFA’s slowness criterion a generalization of the one used in standard SFA.

The new parametric optimization problem that is introduced, is directly given560

in the frequency domain and its closed form solution is derived.

Synthetic and real-world experiments show that, the features extracted by

FSFA depend on the chosen filter. Moreover, a real world video action recog-

nition experiment shows that, for proper filter choices, the features extracted

by FSFA can lead to improved classification performance compared to the fea-565
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tures extracted by SFA, while there are other filter choices that perform worse,

justifying the generalized nature of the propose method. Quantitatively, in our

experiments, the classification performance of FSFA compared to SFA, in the

real world video action recognition experiment, was ranging from -0.21% to

+0.48%. Additionally, we showcase that a simple, shallow, neural network that570

is composed of four FSFA nodes, employing different filters, and one SFA node,

can transform the features extracted by a CNN, to a new feature space, where

classification performance, in the task of video action recognition, can be im-

proved up to +2.9%. Apart from the concrete examples on the performance of

FSFA that we provide in this paper, we believe that FSFA, also combined with575

standard SFA, can be used as a post-processing step in the fashion presented

in [21] and that was followed in this paper, to potentially improve the classifi-

cation performance of any modern feature extractor. Finally, potential future

work could expand on eliminating the condition (28) under which FSFA equals

SFA and study FSFA’s optimal free responses as it was done for SFA in [40].580

Acknowledgements

The research leading to these results has been supported by the EU funded

project FORENSOR (GA 653355).

References

[1] M. Franzius, N. Wilbert, L. Wiskott, Invariant object recognition with585

slow feature analysis, in: Artificial Neural Networks - ICANN 2008: 18th

International Conference, Prague, Czech Republic, September 3-6, 2008,

Proceedings, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008,

pp. 961–970. doi:10.1007/978-3-540-87536-9_98.

URL http://dx.doi.org/10.1007/978-3-540-87536-9_98590

[2] P. Berkes, Temporal slowness as an unsupervised learning principle - self-

organization of complex-cell receptive fields and application to pattern

recognition, Ph.D. thesis (2006).

37

http://dx.doi.org/10.1007/978-3-540-87536-9_98
http://dx.doi.org/10.1007/978-3-540-87536-9_98
http://dx.doi.org/10.1007/978-3-540-87536-9_98
http://dx.doi.org/10.1007/978-3-540-87536-9_98
http://dx.doi.org/10.1007/978-3-540-87536-9_98


[3] H. Sprekeler, C. Michaelis, L. Wiskott, Slowness: An Objective for Spike-

Timing-Dependent Plasticity?, PLoS Computational Biology 3 (6) (2007)595

e112.

[4] L. Wiskott, T. Sejnowski, Slow feature analysis: Unsupervised learning of

invariances, Neural Computation 14 (4) (2002) 715–770. doi:10.1162/

089976602317318938.

URL http://dx.doi.org/10.1162/089976602317318938600

[5] A. Escalante-B, L. Wiskott, Heuristic evaluation of expansions for non-

linear hierarchical slow feature analysis, in: Machine Learning and Appli-

cations and Workshops (ICMLA), 2011 10th International Conference on,

Vol. 1, 2011, pp. 133 – 138.

[6] L. Wiskott, Estimating driving forces of nonstationary time series with605

slow feature analysis, arXiv.org e-Print archive, http://arxiv.org/abs/cond-

mat/0312317/ (Dec 2003).

[7] W. Konen, P. Koch, The slowness principle; SFA can detect different slow

components in non stationary time series, International Journal of Innova-

tive Computing and Applications 3 (1) (2011) 3–10. doi:10.1504/IJICA.610

2011.037946.

URL http://dx.doi.org/10.1504/IJICA.2011.037946

[8] A. Escalante-B, L. Wiskott, Gender and age estimation from synthetic

face images, in: Computational Intelligence for Knowledge-Based Sys-

tems Design: 13th International Conference on Information Processing and615

Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 -

July 2, 2010. Proceedings, Springer Berlin Heidelberg, 2010, pp. 240–249.

doi:10.1007/978-3-642-14049-5_25.

URL http://dx.doi.org/10.1007/978-3-642-14049-5_25

[9] Z. Zhang, D. Tao, Slow feature analysis for human action recognition, IEEE620

Transactions on Pattern Analysis and Machine Intelligence 34 (3) (2012)

38

http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1504/IJICA.2011.037946
http://dx.doi.org/10.1007/978-3-642-14049-5_25
http://dx.doi.org/10.1007/978-3-642-14049-5_25
http://dx.doi.org/10.1007/978-3-642-14049-5_25
http://dx.doi.org/10.1007/978-3-642-14049-5_25
http://dx.doi.org/10.1007/978-3-642-14049-5_25
http://dx.doi.org/10.1109/TPAMI.2011.157


436–450. doi:10.1109/TPAMI.2011.157.

URL http://dx.doi.org/10.1109/TPAMI.2011.157

[10] K. Wang, Z. Zhang, L. Wang, Violence video detection by discriminative

slow feature analysis, in: Pattern Recognition: Chinese Conference, CCPR625

2012, Beijing, China, September 24-26, 2012. Proceedings, Springer Berlin

Heidelberg, 2012, pp. 137–144. doi:10.1007/978-3-642-33506-8_18.

URL http://dx.doi.org/10.1007/978-3-642-33506-8_18

[11] C. Wu, L. Zhang, B. Du, Hyperspectral anomaly change detection with

slow feature analysis, Neurocomputing 151, Part 1 (2015) 175 – 187.630

doi:http://dx.doi.org/10.1016/j.neucom.2014.09.058.

URL http://www.sciencedirect.com/science/article/pii/

S0925231214012740

[12] P. Koch, W. Konen, K. Hein, Gesture recognition on few training data using

slow feature analysis and parametric bootstrap, in: The 2010 International635

Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.

[13] L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, S. Yan, DL-SFA: deeply-

learned slow feature analysis for action recognition, in: IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH,

USA, June 23-28, 2014, pp. 2625–2632. doi:10.1109/CVPR.2014.336.640

URL http://dx.doi.org/10.1109/CVPR.2014.336

[14] Y. Shan, Z. Zhang, K. Huang, Learning skeleton stream patterns with slow

feature analysis for action recognition, in: Computer Vision - ECCV 2014

Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings,

Part III, Springer International Publishing, Cham, 2015, pp. 111–121. doi:645

10.1007/978-3-319-16199-0_8.

URL http://dx.doi.org/10.1007/978-3-319-16199-0_8

[15] C. Wu, B. Du, L. Zhang, Slow feature analysis for change detection in mul-

tispectral imagery, IEEE Transactions on Geoscience and Remote Sensing

52 (5) (2014) 2858–2874. doi:10.1109/TGRS.2013.2266673.650

39

http://dx.doi.org/10.1109/TPAMI.2011.157
http://dx.doi.org/10.1109/TPAMI.2011.157
http://dx.doi.org/10.1007/978-3-642-33506-8_18
http://dx.doi.org/10.1007/978-3-642-33506-8_18
http://dx.doi.org/10.1007/978-3-642-33506-8_18
http://dx.doi.org/10.1007/978-3-642-33506-8_18
http://dx.doi.org/10.1007/978-3-642-33506-8_18
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2014.09.058
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://www.sciencedirect.com/science/article/pii/S0925231214012740
http://dx.doi.org/10.1109/CVPR.2014.336
http://dx.doi.org/10.1109/CVPR.2014.336
http://dx.doi.org/10.1109/CVPR.2014.336
http://dx.doi.org/10.1109/CVPR.2014.336
http://dx.doi.org/10.1109/CVPR.2014.336
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1007/978-3-319-16199-0_8
http://dx.doi.org/10.1109/TGRS.2013.2266673


[16] A. Escalante-B, L. Wiskott, Slow feature analysis: Perspectives for techni-

cal applications of a versatile learning algorithm, KI - Künstliche Intelligenz

26 (4) (2012) 341–348. doi:10.1007/s13218-012-0190-7.

URL http://dx.doi.org/10.1007/s13218-012-0190-7

[17] T. Blaschke, P. Berkes, L. Wiskott, What is the relation between slow fea-655

ture analysis and independent component analysis?, Neural Computation

18 (10) (2006) 2495–2508. doi:10.1162/neco.2006.18.10.2495.

URL http://dx.doi.org/10.1162/neco.2006.18.10.2495

[18] H. Sprekeler, On the relation of slow feature analysis and laplacian eigen-

maps., Neural Computation 23 (12) (2011) 3287–3302.660

[19] R. Turner, M. Sahani, A maximum-likelihood interpretation for slow fea-

ture analysis, Neural Computation 19 (4) (2007) 1022–1038. doi:10.1162/

neco.2007.19.4.1022.

URL http://dx.doi.org/10.1162/neco.2007.19.4.1022

[20] T. Blaschke, L. Wiskott, Independent slow feature analysis and nonlinear665

blind source separation, in: Independent Component Analysis and Blind

Signal Separation: Fifth International Conference, ICA 2004, Granada,

Spain, September 22-24, 2004. Proceedings, Springer Berlin Heidelberg,

2004, pp. 742–749. doi:10.1007/978-3-540-30110-3_94.

URL http://dx.doi.org/10.1007/978-3-540-30110-3_94670

[21] S. Klampfl, W. Maass, Replacing supervised classification learning by

slow feature analysis in spiking neural networks, in: Advances in Neural

Information Processing Systems, Curran Associates, Inc., 2009, pp.

988–996.

URL http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.675

pdf

[22] V. Kompella, M. Luciw, J. Schmidhuber, Incremental slow feature analy-

sis: Adaptive low-complexity slow feature updating from high-dimensional

40

http://dx.doi.org/10.1007/s13218-012-0190-7
http://dx.doi.org/10.1007/s13218-012-0190-7
http://dx.doi.org/10.1007/s13218-012-0190-7
http://dx.doi.org/10.1007/s13218-012-0190-7
http://dx.doi.org/10.1007/s13218-012-0190-7
http://dx.doi.org/10.1162/neco.2006.18.10.2495
http://dx.doi.org/10.1162/neco.2006.18.10.2495
http://dx.doi.org/10.1162/neco.2006.18.10.2495
http://dx.doi.org/10.1162/neco.2006.18.10.2495
http://dx.doi.org/10.1162/neco.2006.18.10.2495
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1162/neco.2007.19.4.1022
http://dx.doi.org/10.1007/978-3-540-30110-3_94
http://dx.doi.org/10.1007/978-3-540-30110-3_94
http://dx.doi.org/10.1007/978-3-540-30110-3_94
http://dx.doi.org/10.1007/978-3-540-30110-3_94
http://dx.doi.org/10.1007/978-3-540-30110-3_94
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://papers.nips.cc/paper/3672-replacing-supervised-classification-learning-by-slow-feature-analysis-in-spiking-neural-networks.pdf
http://dx.doi.org/10.1162/NECO_a_00344
http://dx.doi.org/10.1162/NECO_a_00344
http://dx.doi.org/10.1162/NECO_a_00344
http://dx.doi.org/10.1162/NECO_a_00344
http://dx.doi.org/10.1162/NECO_a_00344


input streams, Neural Computation 24 (11) (2012) 2994–3024. doi:

10.1162/NECO_a_00344.680

URL http://dx.doi.org/10.1162/NECO_a_00344

[23] S. Liwicki, S. Zafeiriou, M. Pantic, Incremental slow feature analysis with

indefinite kernel for online temporal video segmentation, in: Computer

Vision – ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon,

Korea, November 5-9, 2012, Revised Selected Papers, Part II, Springer685

Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 162–176. doi:10.1007/

978-3-642-37444-9_13.

URL http://dx.doi.org/10.1007/978-3-642-37444-9_13

[24] S. Liwicki, S. Zafeiriou, M. Pantic, Online kernel slow feature analysis for

temporal video segmentation and tracking, IEEE Transactions on Image690

Processing 24 (10) (2015) 2955–2970. doi:10.1109/TIP.2015.2428052.

URL http://dx.doi.org/10.1109/TIP.2015.2428052

[25] P. Berkes, Pattern recognition with slow feature analysis, Cognitive Sci-

ences EPrint Archive (CogPrints) 4104.

[26] A. Escalante-B, L. Wiskott, How to solve classification and regression prob-695

lems on high-dimensional data with a supervised extension of slow feature

analysis, Journal of Machine Learning Research 14 (2013) 3683–3719.

URL http://jmlr.org/papers/v14/escalante13a.html

[27] A. Escalante-B, L. Wiskott, Improved graph-based SFA: information

preservation complements the slowness principle, Computing Research700

Repository (CoRR).

URL http://arxiv.org/abs/1601.03945
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