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Abstract—Deep learning architectures and Convolutional Neu-
ral Networks (CNNs) have made a significant impact in learning
embeddings of high-dimensional datasets. In some cases, and
especially in the case of high-dimensional graph data, the
interlinkage of data points may be hard to model.

Previous approaches in applying the convolution function on
graphs, namely the Graph Convolutional Networks (GCNs),
presented neural networks architectures that encode information
of individual nodes along with their connectivity. Nonetheless,
these methods face the same issues as in traditional graph-based
machine learning techniques i.e. the requirement of full matrix
computations. This requirement bounds the applicability of the
GCNs on the available computational resources. In this paper,
the following assumption is evaluated: the training of a GCN
with multiple subsets of the full data matrix is possible and
converges to the full data matrix training scores, thus lifting the
aforementioned limitation.

Following this outcome, different subset selection methodolo-
gies are also examined to evaluate the impact of the learning
curriculum in the performance of the trained model in small as
well as very large scale graph datasets.

Index Terms—Graph Convolutional Networks, Big Data, Large
scale graphs, Node embeddings, Semi-supervised classification

I. INTRODUCTION

During the last years, the ubiquity of data that can be
structured as networks has boosted the research in social
graph analytics. Graphs have been used to denote information
in diverse areas such as communication networks, biology,
linguistics and social sciences. Modelling the interactions
between entities as graphs has enabled researchers understand
the various network systems in a systematic manner.

Graph analytic methods can be used for numerous cate-
gories of problems such as node classification ([1]), graph
classification, link prediction, node clustering, node recom-
mendation and visualization. The problem of node classifi-
cation concerns the use of the already labelled nodes of a
network and its topology for the purpose of predicting a label
for an unclassified node of this network.

As far as the network topology features are concerned, they
can be either directly or indirectly extracted from the adjacency
matrix of the network and therefore their computation is
bounded from the graph size, irrespective of the category of the
classification method. This paper introduces the idea that even
when the network undergoes analysis with multiple subsets of
the aforementioned input matrix, the graph embeddings that
are extracted can be as meaningful as if the whole matrix were
used.

In order to test this assumption the work of [2] is extended
by training the Graph Convolutional Network (GCN) defined
therein on subgraphs extracted from the original graph. The
results validate that similar classification accuracy can be
achieved in the same computational resources as the other
methods, at a cost in the number of training epochs. This
allows for the processing of large graphs (e.g., in the order of
millions of nodes) as input, providing a scalable approach in
the node classification task. Additionally, by applying several
methodologies for formulating subgraphs of better quality,
it is demonstrated that a considerable improvement occurs
when specific community detection algorithms are used in the
input network. In this case the training accuracy of the GCN
outperforms all previous state-of-the-art methods.

The remainder of the paper is as follows: In section II a
short description of related works is presented. Therefore, in
Section III the problem statement and the proposed method are
detailed. A thorough experimental evaluation of the proposed
method is illustrated in Section IV while Section V concludes
the paper.

II. RELATED WORK

The problem under investigation emerges from the fields
of graph embedding and node classification. As stated in [1],
the task of node embedding concerns the mapping of each
node in a new space preserving a proximity measure. The
proximity of nodes can be represented by the similarity of
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their corresponding vectors. Deep learning (DL) based graph
embeddings can be applied either on the whole of a graph or
on the nodes of the graph.

The problem includes feature extraction from nodes for the
subsequent classifying operation on them, such as in [3] and
[4]. The relevant solutions and algorithms aim to label nodes
based on the information they encode. The input can be either
grid-like data (image, a video frame, sequence of video frames,
text) or interconnected raw data (graphs). Another leading
category of techniques is employment of random walks to
propagate the labels like for instance in [5] and [6].

Convolutional Neural Networks (CNN) have proven popular
for graph embedding in the area of geometric deep learning.
[1] distinguishes the methods in two groups. The first contains
CNNs that work in Euclidean domains and reformat input
graphs to fit it. For example, [7] perform a node-ordering
creating a sequence and then uses the CNN to learn a neigh-
bourhood representation. In the second group, the deep neural
models operate in non-Euclidean domains (a leading example
is graphs). Each approach builds a convolutional filter which
is applied in the input graph and can be either spectral ([8],
[9], [10]) or spatial, i.e., a neighborhood matching ([11], [2],
[12]). [13] provides an explanatory list of the geometric aspect
of this research.

In [2] the authors provide a solution scalable in the number
of edges. The current paper extends this classification system
in the case of million scale (order) of nodes managing to
have it as input in the GPU and achieving the same or higher
accuracy, as well.

As for the challenge of preprocessing arbitrarily large
datasets, handling big datasets as inputs usually entails a com-
putational cost incremental to the training time or is impossible
in common desktop machines. Our proposed strategy permits
the use of large data in such machines keeping at the same time
the whole of the information of the input and giving results
nearly in the same training time as the existing methods.

Considering the arbitrary connectivity of dataset entities
versus the features on nodes, since the proposed approach
fragments the input to leverage the connectivity of entities
(nodes), the input dataset does not need to present any struc-
tural pattern.

III. PROPOSED METHOD

The methodology extended in this work tackles the fol-
lowing graph-based learning problem: for each node i of
a graph G, the prediction of a label yi from a predefined
set of labels. In order to make this prediction one uses the
available features xi defined for each node in the form of
observed numerical attributes and the weighted edges of the
graph, usually represented by an adjacency matrix A. The main
assumption is that, when predicting the output yi for node i,
the attributes and connectivity of nearby nodes provide useful
side-information or additional context for the training of the
above CNN.

The requirement of processing datasets (particularly the
corresponding adjacency matrix) as large as million of entities

in the hardware resources of a common PC cannot be satisfied
using the existing deep learning models.

While, in theory, feeding the model with all possible sub-
graphs would at some point include the entirety of the network
information, this is not feasible, since the number of these
increases exponentially with the number of nodes in the graph.
To bypass this, the current approach uses a smaller number
of subgraphs in the form of submatrices of the adjacency
matrix. It is shown experimentally that, given a fixed number
of nodes as size, it suffices to use the minimum number of
subgraphs of this size in order to approximate the accuracy
rate of different approaches, as long as every node is included
in some subgraph and the computation remains efficient.

The methodology is based on the work of [2], where the
authors introduce a layer-wise propagation rule that allows
for neural networks to operate directly on graphs. This is
motivated from first-order approximation of spectral graph
convolutions, and in their work they demonstrate how a multi-
layer Graph Convolutional Network model can be used for
embedding network structure information.

The GCN model uses the following layer-wise propagation
rule:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

where Ã = A+ IN is the adjacency matrix of the undirected
graph G with added self-connections, D̃ is the degree (diag-
onal) matrix D̃ =

∑
j Ãij and is positive semidefinite, W (l)

is a layer-specific trainable weight matrix and σ(·) denotes an
activation function, such as ReLU. Finally, H(l) ∈ RN×D is
the matrix of activations in the lth layer.

One of the major restrictions of this method, especially for
the use of GPUs, where memory resources are limited, is
the size of the adjacency matrix in equation (1). When the
number of nodes N is very large, as is usually the case in
social network graphs, this makes the operation prohibitive.

Nevertheless, following the equation (1), each node embed-
ding includes information about the number and quality of all
the neighbors of the node (also called “first order neighbors”).
Recursively, for the lth layer, the embedding information
contains the information embedded in the (l − 1)th layer.

For the graph G = (V,E) and a predefined dimensionality
d, d << |V |, the aforementioned problem of node embedding
is to convert each node into a d-dimensional vector, so that
nodes that are “close” in the graph are denoted by similar
vectors. The graph property is quantified by various measure
functions that capture the proximity of nodes ([1]).

Since the embedding receptive field is the kth order neigh-
bors ([1]), one only needs to include the kth order neigh-
borhood subgraph and can remove the irrelevant information
during the calculation of the embedding.

Arranging the data in subgraphs leads to the use of subma-
trices Si of the adjacency matrix A:
Si is the adjacency matrix of the undirected subgraph Gi

of G, with K nodes and S̃i each version with added self-
connections in the form of IK , i.e. the identity matrix of
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TABLE I
STATISTICS FOR THE CORA[14], NELL[2] AND SOCIAL SPAMMER[15] DATASETS.

Dataset Type Nodes Edges Classes Features Label ratea
Cora Citation network 2,708 5,429 7 1,433 0.052

NELL Knowledge graph 65,755 266,144 210 5,414 0.001
Social Spammer Social network 5,607,447 858,247,099 2 4 0.05
aRate of known labels in the semi-supervised classification experiments

Algorithm 1 Training using subgraphs
Input: Graph G(V,E)

Set of subgraphs G1,G2,G3, ...,GN of G, corresponding
adjacency matrices S1,S2,S3, ...,SN and corresponding
feature matrices X1, X2.X3, ..., XN .

Initialization: Added self-connections to matrices:
S̃1, S̃2, S̃3, ..., S̃N

1: for i=1 to N do
2: H0 = Xi

3: D̃mm =
∑

n
˜(Si)mn

4: for l=0 to LAYERS - 1 do
5: H(l+1) = σ(D̃−

1
2 S̃iD̃

− 1
2H(l)W (l))

6: end for
7: end for
8: return trained CNN

this subgraph, D̃mm =
∑

n
˜(Si)mn following appropiately the

equation (1).
In order to better arrange the nodes into subgraphs, the

experiments focused on a curriculum strategy (following ideas
from [16]) that aids the learning process capture the structural
information of the input: the input graphs were partitioned into
communities. To this end, community detection algorithms
were employed, in order to partition the vertex set into groups
with high concentrations of edges in the interior of each group
and low concentrations (loose connectivity) between every pair
of groups. These communities were used to obtain samples as
input to our network.

In real-world graphs (as our datasets) the distribution of the
edges is not only globally, but also locally inhomogeneous
with high concentrations of edges within special groups of ver-
tices and low concentrations between these groups. As stated
in [17], “communities”, also called clusters or modules, are
those groups of nodes into which a graph (network) is divided,
with dense connections internally and sparser connections to
the rest of the groups. To some extent, they can be considered
as separate entities with their own autonomy. So, as far as the
current work is concerned, they are used within the context of
training because it makes sense to evaluate them independently
of the graph as a whole and are expected to share common
properties in terms of classification (e.g., to have the same
label).

A first choice of a community detection algorithm is the
“Label propagation” version, where vertices are initially given
unique labels (e.g., their vertex labels). At each iteration, a
sweep over all vertices, in random sequential order, is per-

formed: each vertex takes the label shared by the majority of
its neighbors. If there is no unique majority, one of the majority
labels is picked at random. In this way, labels propagate across
the graph: most labels will disappear, others will dominate.
The process reaches convergence when each vertex has the
majority label of its neighbors. Communities are defined as
groups of vertices having identical labels at convergence.

The employment of the modularity criterion [17] gives
better partitioning and a greedy approach has been introduced
by Blondel et al. for the general case of weighted graphs
known as the “Louvain” method. Initially, all vertices of the
graph are put in different communities. The first step consists
of a sequential sweep over all vertices. Given a vertex i,
one computes the gain in weighted modularity coming from
putting i in the community of its neighbor j and picks the
community of the neighbor that yields the largest increase, as
long as it is positive. At the end of the sweep, one obtains
the first level partition. In the second step communities are re-
placed by supervertices and two supervertices are connected if
there is at least an edge between vertices of the corresponding
communities. In this case, the weight of the edge between the
supervertices is the sum of the weights of the edges between
the represented communities at the lower level. The two steps
of the algorithm are then repeated, yielding new hierarchical
levels and supergraphs. At some iteration, modularity cannot
increase any more, and the algorithm stops. This more credible
output is at the expense of higher time cost in comparison to
the previous method: O(|V |log|V |).

IV. EXPERIMENTS AND RESULTS

In order to prove our assumptions, the first experiments
were carried out for semi-supervised document classification
in a citations network dataset, and spammer classification in
a social network graph dataset, all used in a fully and semi-
supervised manner.

A. Datasets

The Cora dataset [14] consists of 2708 scientific publica-
tions classified into one of seven classes. The citation network
consists of 5429 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the ab-
sence/presence of the corresponding word from the dictionary.
The dictionary consists of 1433 unique words.

NELL is a dataset extracted from the knowledge graph
introduced in [18]. The pre-processed version [19] of the
data is used from [20]. A knowledge graph is a set of
entities connected with directed, labeled edges (relations). As
described in [19], representing by e1, r, e2 the head entity, the
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relation and the tail entity correspondingly, the knowledge-
base formulation of the relation is the tuple (e1, r, e2). A
graph is constructed using the entities as nodes. Each entity
is represented as a node and for each relation r two more
nodes, denoted as r1 and r2, are added in the graph. Finally
the edges of the graph are created by linking each pair
of nodes (e1, r1), (e2, r2) for each tuple (e1, r, e2). Entity
nodes are described by sparse feature vectors. The number of
features in NELL were extended by assigning a unique one-
hot representation for every relation node, effectively resulting
in a 61,278-dimensional sparse feature vector per node. The
semi-supervised task here considers the extreme case of only a
single labeled example per class in the training set. The binary,
symmetric adjacency matrix from this graph was constructed
by setting entries Aij = 1, if one or more edges were present
between nodes i and j.

Both of these datasets are fairly small, in the sense that the
entire model and training data can fit in a modern GPU for
the training procedure. Nonetheless, the benefit of being able
to train the model using subgraphs of the network becomes
evident in larger datasets such as social networks.

The Social Spammer dataset [15] is a social network graph
dataset originally published for the task of identifying the
spammer users based on their relational and non-relational
features. It contains 5.6 million users of the Tagged.com social
network website and 858 million links between them. Each
user has 4 features and is manually labeled as ”spammer” or
”not spammer”. Each link represents an action between two
users and includes a timestamp and one of 7 anonymized types
of link.

From the 4 user features, the userId is used as the node in-
dex and there is a user feature vector created by concatenating
the one-hot vectors of sex and ageGroup with the timePassed-
Validation features. From the relations, the temporal (day and
time) information and the relation type are discarded and there
is a weighted undirected graph created. For the training set 4.5
million users are randomly selected and 0.5 million users are
used for validation purposes. The testing set is comprised by
the remaining 607 thousand users.

With this dataset, there were experiments implemented
both in a fully and a semi-supervised manner. For the semi-
supervised experiments 95% of the training set nodes was
randomly selected and their label was deleted. The dataset
statistics are summarized in Table I.

B. Experimental setup

The graph convolution layer from the Keras implementation
[20] is used and the same experimental setup as in [2] is
followed. Therefore a 5 layer model is employed: an input
layer and alternating Dropout and GCN layers.

For the Cora dataset, the first GCN layer uses 16 hidden
units and the second GCN layer has 7 hidden units. The
activation function of the first layer is ReLU and a constraint of
L2 regularization of 5 · 10−4 is applied on the kernel weights.
Both the Dropout layers mask 0.5 of the input features. The
second GCN layer is the last layer of the model, so the

activation function applied is the softmax. For the training
process an Adam solver with a learning rate of 0.001 is used.
The loss function is categorical cross-entropy.

The node features are pre-processed by applying standard
normalization and the localpool renormalization trick from [2]
is used for the neighborhood features. The model is trained for
500 epochs.

For the NELL dataset 64 hidden units are used in the first
GCN layer (instead of 16), the dropout is reduced from 0.5 to
0.1 and the L2 constraint is changed from 5e−4 to 1e−5.

On the other hand, the Social Spammer dataset is much
larger, so a larger model with more parameters is needed. Thus
a model with 3 GCN layers and a fully connected classification
layer is employed. As previously, before each layer a dropout
of 0.1 is applied but no weight regularization was perfomed.
Here the Adam solver is applied, too, but with the default
Keras learning rate of 0.01.

Since the number of spammers is much smaller than the
number of non-spammers, the ratio of spammer to non-
spammer users is calculated and the loss function was modified
to give higher weight to the under-represented class in order
to have a more balanced learning. For the semi-supervised
experiments, the loss is computed only from the nodes that
have a “known” target label.

As noted in [20], the initialization and dropout schemes of
Keras and Tensorflow (used in the original paper) are different,
so the reported accuracy of the original GCN model is different
than the one reported by this paper.

C. Subgraph creation

In order to split the original graphs to smaller subgraphs of
the same size (K nodes) that would fit in our GPU, a random
split methodology is initially used. To avoid dividing by zero
while calculating the loss, at least one node with a known label
in each subgraph is added. The rest of the nodes are randomly
picked so that all nodes belong to exactly one subgraph. The
creation of random, same-sized subgraphs is repeated in each
training epoch.

This procedure of fragmentation is very likely to create
subgraphs with nodes that have very sparse connectivity. This
phenomenon leads to subgraphs that practically do not contain
any of the inherent connectivity features of the original net-
work. Even though it is assumed that after numerous training
epochs an adequate number of densely connected subgraphs
will be shown to the model allowing for the extraction of
the inherent network features, a smarter way of creating the
subgraphs may lead to faster training times.

To first test this theory the “Label Propagation” [21] al-
gorithm for community detection in large-scale networks is
applied, using the “iGraph” [22] library. This algorithm works
by initially assigning a unique community label to every node.
The community label to be assigned in the node in the next
iteration is determined by the nodes’ neighbors. It is assumed
that each node in the network chooses to join the community to
which the maximum number of its neighbors belong, with ties
broken uniformly randomly. As the labels propagate, densely
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connected groups of nodes quickly reach a consensus on a
unique label. This label propagation continues until the are no
more changes in the node labels. At the end of the propagation
process, nodes having the same labels are grouped together as
one community.

By design, each vertex has more neighbors in its commu-
nity than in any other community. The time complexity of
each iteration of the algorithm is O(|E|) and the number of
iterations to convergence appears independent of the graph
size, or growing very slowly with it, so the technique is really
fast for sparse graphs.

When the Label Propagation method is applied in the Social
Spammer dataset, the outcome is a very small number of
communities containing the majority of the nodes and the
remainder of the nodes are assigned to singleton communities.
This community detection is deemed very poor for the pur-
poses of this paper and therefore the Louvain [23] algorithm
from the iGraph [22] library was then applied.

This method consists of repeated application of two steps.
The algorithm is initialized with each node in its own com-
munity. The first step is a “greedy” assignment of nodes to
communities, favoring local optimization of modularity. For
each node in the graph the modularity change is computed
for each of the node’s neighbors. If none of these modularity
changes is positive, the node remains in its current community.
If some of the modularity changes are positive, the node
is removed from its current community and moved into the
community where the modularity change is most positive. This
process is repeated for each node until one pass through all
nodes yields no community assignment changes.

The second step is the definition of a new coarse-grained
network, based on the communities found in the first step. In
this network, the newly discovered communities are the nodes.
The relationship weight between the nodes representing two
communities is the sum of the relationship weights between
the lower-level nodes of each community.

These two steps are repeated until no further modularity-
increasing reassignments of communities are possible.

For both methods of community detection that are used,
the subgraphs are created firstly by randomly picking a
community. Then the subgraph was filled with members of
this community up to the preset size. If the community
was exhausted, members of the next community were used.
Consecutive subgraphs were created in the same manner,
continuing with the already selected community.

In the experiments subgraph sizes of 50%, 12.5% and 4%
of the dataset size were tested.

D. Metrics

For evaluating the performance of the model in this setup of
feeding the graph data in the form of subgraphs, two metrics
were employed: Accuracy and AUROC.
Accuracy is the proportion of correct predictions among

the total predictions made and is calculated by:

Accuracy =
Truec1 + Truec2 + ...+ Truecn

N
(2)

where Truecn is the number of correctly predicted nodes of
the nth class, while N is the total number of evaluated nodes.

While accuracy is a favored way to measure the ability
of each method to correctly classify a node throughout the
bibliography, when dealing with data that have class imbal-
ance, it is not very informative: by always predicting the most
dominant class, the scores will be very high.
AUROC (Area Under Curve - Receiver Operating Char-

acteristic) is the calculated area under a receiver operat-
ing characteristic (ROC) curve and is calculated by ploting
parametrically TPR(m) versus FPR(m) with m being the
probability threshold used to classify correctly a prediction for
each class.

AUROC =

∫ −∞
∞

(
TPR(m)− FPR′(m)

)
dm (3)

The TPR (True Positive Rate) and FPR (False Positive
Rate) are defined as:

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

where TP is the number of correctly classified samples that
belong to the class, TN is the number of correctly classified
samples that do not belong to the class, FP is the number
of misclassified samples that belong to the class and FN is
the number of misclassified samples that do not belong to the
class.

The area under the curve summarizes the performance
of a classifier for all possible thresholds and is equal to
the probability that the model has higher confidence for a
randomly chosen correctly classified node than for a randomly
chosen misclassified node, when using normalized units [24].

E. Evaluation of using subgraphs

For the first task of evaluating the use of random subgraphs
during the training process of the GCN model, the perfor-
mance results are summarized in table II. Reported numbers
denote classification accuracy in percentages. The Planetoid
and GCN original method results are taken from [2]. The
baseline result is from a two layer MLP model following
the same configuration as the GCN model. The “GCN whole
input” result is the accuracy score that is achieved in the run
of the GCN model without actually creating any subgraphs
(the input is the whole of the graph adjacency matrix).

As observed in the results, when the graph is split into ran-
dom subgraphs, the GCN model attains classification accuracy
comparable to the GCN’s accuracy with the whole of the input
(deteriorating only 1-2 percentile units).

As expected, because of the randomness in the subgraph
sampling process, when the number of created subgraphs
increases, the model cannot generate as good embeddings in
the same amount of training epochs.

It would be expected theoretically that all possible permuta-
tions of the nodes would be needed, in the form of subgraphs,
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TABLE II
SUMMARY OF RESULTS FOR DIFFERENT SIZES OF RANDOM SUBGRAPHS IN

TERMS OF CLASSIFICATION ACCURACY

Method Cora NELL
Baseline 61.10 39.41
Planetoid 75.70 61.90
GCN original method 81.50∗∗ 66.00
GCN Whole input 81.20 43.60∗
GCN 2 Subgraphs 79.30 41.68
GCN 8 Subgraphs 78.35 39.41
GCN 25 Subgraphs 60.20 33.54
∗According to [20] due to the differences in the initialization method
and dropout implementations of Keras and Tensorflow, the difference
in the reported accuracy is expected.
∗∗[2]

Fig. 1. Evolution of accuracy during training of the GCN model on the “Cora”
dataset for the whole input (green), for 2 subgraphs (red) and 8 subgraphs
(blue).

for the topology information to be properly encoded in the
embeddings. However, the proximity of the above accuracy
results demonstrate that the CNN is able to learn the graph
information without accounting for all possible subgraphs (Fig.
1).

F. Evaluation of node classification in big data

The above observation prompted the application of the GCN
model over data that normally would not fit in the memory
using the original model for a node classification task.

For a dataset similar to “Social Spammer”, the original GCN
model requires |V |2 parameters (i.e., in the scale of 1013) and
thus is inapplicable in the available resources. On the contrary,
the proposed solution overcomes this restriction by drastically
reducing the input data dimensionality down to the scale of
105 parameters. Furthermore, despite the need of a number of
iterations to loop through the subgraphs, the overall training
procedure is within acceptable times (i.e., scale of few hours).

The previous evaluation included both a fully-supervised
and a semi-supervised setup. For this task the Social Spammer
dataset was used and the results are presented in table III. The
classification accuracy is presented as well as the AUROC
for the model with 3 embedding layers and a fully connected
classification layer.

The baseline method used in this paper is a multi-layer
perceptron (MLP) with 4 layers of 256 hidden units. Moreover,

the current work is also compared with the work of Fakhraei et
al ([25]) and specifically their experiments that include graph-
based features, for fair comparison.

Since the size of the embedding is one of the most important
aspects of the model, various sizes are tested and it was
concluded that neither 16 nor 64 hidden units are enough
to properly encode the relevant information. On the other
hand, using 1024 hidden units allows for more trainable
parameters than the dataset can train. Finally 256 hidden units
were chosen. It is observed that the fully supervised classifier
gives AUROC of 0.8134. This is slightly higher than 0.8072
provided by the MLP. These two results approximate Fakhraei
et al’s classifier ([25]) of graph-based features (AUROC score:
0.817).

Hence these scores lead to the deduction that the random
selection of subgraphs brings the GCN to a similar classifying
capability as the MLP, which ignores the graph connectivity
completely. It follows that a more comprehensive adminis-
tering of this structure may enhance the classifier efficacy.
Thereupon, the next step is to switch to community detection
algorithms which partition the graph into communities.

G. Evaluation of the sampling method

As discussed in section III, this work explores the benefits
of a more sophisticated arrangement of the nodes in subgraphs
(than simple random selection). The methodology used is to
perform community detection on the graph in order to detect
groups of nodes that are relevant in the network topology.
Then, using these communities as the focus point of the
selection process, an algorithm is devised to create subgraphs
that are contained entirely or in their biggest part in the
communities.

The output of the Label Propagation algorithm is not ideal:
there are fewer than 10 communities containing more than
80% of the nodes, while the remaining 20% of the nodes
were assigned to singleton communities (containing a single
member). Despite this uneven composition, the GCN model
is able to create better embeddings than the random-sampling
case, a fact that is depicted by the improved accuracy and
AUROC scores (0.8185 in comparison to the previous 0.8134
AUROC metric for the supervised case).

Using Louvain algorithm as a sampling method yields a
more balanced subgraph composition leading to a raise in AU-
ROC (0.8187). The accuracy reaches 92.11% outperforming
all previous methods.

In Fig. 2 there is the validation accuracy visualised at each
training epoch. Comparing the training process of the three
sampling methods, it is shown that the Louvain sampling not
only produces better classification but also learns faster that
both the Random and Label Propagation sampling methods
(higher convergence rate).

V. CONCLUSIONS AND FUTURE WORK

This paper presented a method that permits semi-supervised
node classification in large datasets using graph community
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TABLE III
FULLY AND SEMI-SUPERVISED NODE CLASSIFICATION USING GRAPH STRUCTURE FEATURES

Method Fully-supervised Semi-supervised
Accuracy (%) AUROC Accuracy (%) AUROC

Baseline method 81.97 0.8072 70.49 0.6421
Fakhraei et al [25] - 0.8170 - -
Random S-GCN 16 81.52 0.7927 75.50 0.7080
Random S-GCN 64 82.33 0.8115 79.13 0.7516
Random S-GCN 256 85.59 0.8134 87.94 0.7777
Random S-GCN 1024 84.31 0.8120 77.68 0.7719
LabelPropagation S-GCN 256 85.95 0.8185 91.13 0.7802
Louvain S-GCN 256 92.11 0.8187 93.25 0.8023

Fig. 2. Training accuracy over epochs for the semi-supervised classification
task on the Social Spammer dataset using 3 different sampling methods.

algorithms. The recently developed graph convolutional net-
works are based on spectral graph convolutions and thus prove
inadequate when the size of the network adjacency matrix is
large, which is the case when dealing with big data (millions
of nodes). The idea of using subgraphs, in order to feed the
graph in the model to be trained, allows to scale up to millions
of entities (nodes).

As analyzed in [16], when the examples are not randomly
presented but organized in a meaningful order which illustrates
concepts in a gradually increasing quantity and complexity,
the learning procedure is expected to improve. Indeed, as it
was experimentally proven in this work, the more targeted
selection of subgraphs results in node embeddings superior to
embeddings created from random subgraphs. Furthermore, the
training time required to reach a certain classification quality
is reduced when using targeted subgraphs compared to random
ones.

Thus, comparing a no curriculum setting (random arrange-
ment) to the curriculum setting of Louvain algorithm, the
information is enough for the neural network to learn the
whole input embedding. The experiments presented with two
community detection algorithms indicate that the quality of
embeddings is directly influenced by the quality of subgraphs.

An interesting research direction to follow in the future is
the evaluation of other graph data organization algorithms for
subgraphs creation, such as [26]. The GCN model consists of
multiple embedding layers where each layer learns a different

level of the graph topology. Early layers of the model learn
local features while late layers learn the global features of
the graph. Taking this into consideration, another research
approach would be the evaluation of residual connections, e.g.,
as the ones that appear in ResNet [27] architectures.
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[10] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in
Neural Information Processing Systems, pages 3844–
3852, 2016.

[11] Chao Zhang, Keyang Zhang, Quan Yuan, Haoruo Peng,
Yu Zheng, Tim Hanratty, Shaowen Wang, and Jiawei
Han. Regions, periods, activities: Uncovering urban
dynamics via cross-modal representation learning. In
Proceedings of the 26th International Conference on
World Wide Web, pages 361–370. International World
Wide Web Conferences Steering Committee, 2017.

[12] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[13] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[14] LINQS. Cora dataset. In https:// linqs.soe.ucsc.edu/data/ ,
2015.

[15] Shobeir Fakhraei, James Foulds, Madhusudana
Shashanka, and Lise Getoor. Social spammer dataset. In
https:// linqs-data.soe.ucsc.edu/public/social spammer/ ,
KDD ’15, pages 1769–1778. ACM, 2015. ISBN
978-1-4503-3664-2. doi: 10.1145/2783258.2788606.
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