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ABSTRACT

In this paper, we propose a novel, full-body, real-time 3D re-
construction framework that makes use of pre-scanned body
parts (more precisely pre-scanned 3D heads) so as to pro-
vide a more detailed 3D reconstruction mainly in the semanti-
cally important head area. Our framework deals with 3 major
challenges: a) multiple depth sensors collaboration, b) pre-
scanned head positioning and c) reconstruction and texturing.
In all the above challenges, we propose novel solutions so as
to cope with time and space complexity, synchronization and
3D mesh quality. Experimental evaluation provides evidence
that superior 3D mesh quality can be achieved compared to
simple (not enhanced) use of depth cameras’ data.

Index Terms— 3D reconstruction, 3D head tracking,
RGB-D sensors

1. INTRODUCTION

Real-time, full 3D human reconstruction is an important
task with multiple applications in the industry. From tele-
immersion to gaming and from novel virtual collaboration
platforms to novel social networks’ platforms, real-time, full
3D reconstruction is in the core of such promising tech-
nologies. Although a great demand, from the industry, is
emerging, technological advancements in the area are still
in a prototype phase and usually demands for either large
and expensive capturing apparatuses and setups, to provide
better accuracy in depth measurement, or considerable com-
putational power that prohibit such technologies to home
users.

After the commercialization of Kinect and other depth ac-
quisition devices (Time of Flight cameras), the research com-
munity has shown a great interest towards achieving full, real-
time 3D reconstruction. Several such solutions have been pro-
posed so far. Most of them try to tackle the way the 3D re-
construction is undertaken with a wide series of publication
to that direction [1]-[4]. Other research works focus on the
real-time aspect of the whole framework and usually transfer
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and modify methods of 3D reconstruction to GPU implemen-
tations, using the very powerful CUDA framework [5], aim-
ing to achieve better results with respect to time complexity
[6], [7]. The full 3D reconstruction aspects is also signifi-
cantly researched [8]-[11]. Finally, the dynamic aspect of full
3D reconstruction is much less studied due to the high com-
plexity of the real-time depth capturing devices collaboration
schemes that need to take under consideration several aspect,
such as, synchronization, network streaming of “heavy” data
(i.e., coding), texturing from multiple devices, spatial calibra-
tion of different devices (online or offline) and others. Due
to these inherent issues, full 3D reconstruction of dynamic
scenes is lagging behind, but nevertheless some very interest-
ing works have also been reported [12]-[14].

In the present work, we propose a novel framework for
real-time, full 3D reconstruction of moving humans from
multiple depth capturing devices (Kinect V2), exploiting
pre-scanned heads to semantically enhance important facial
details. To achieve our goal and provide a holistic approach,
several novelties in all the above domains enter the play. The
most important ones are the following:

e Real-time face (2D) capturing from multiple depth sen-
sors and head (3D) positioning,

e frame synchronization between different sensors,
e fusion of pre-scanned 3D data with live raw 3D data,
e weighted texturing from multiple RGB cameras.

To the best of the authors knowledge, no similar work has
yet been reported making use of predefined scans that inte-
grate with real-time, raw data coming from multiple Kinects
to provide a more detailed reconstructed model.

2. PROPOSED FRAMEWORK

2.1. Overview

The proposed framework provides a holistic solution for cap-
turing and 3D reconstruction, while at the same time it en-
hances the raw data with a pre-scanned 3D head mesh. Firstly,
the head is scanned offline with the KinectFusion algorithm



Fig. 1: KinectFusion 3D scanning and head post processing.
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Fig. 2: Kalman filtering to facial 3D points trajectory

[4] and therefore the scanned head is pre-processed to cut in-
formation other than the head (shoulders, neck, etc.) as well
as other inconsistences that may appear in the reconstructed
object. In Fig. 1, the preprocessing steps are shown from raw
KinectFusion reconstruction to the head scan. Subsequently,
we chose 5 landmarks (nose, left eye, right eye, left mouth,
right mouth) on the pre-scanned head.

At the hardware level, the proposed framework comprises
of 4 Kinect V2 cameras and 5 PCs (i.e., 4 client PCs for each
Kinect V2 and 1 Master-Server PC collecting data). Each
client PC streams data (color, depth and facial points) to the
server PC in real time rates (15fps) through a network inter-
face. The reason for using several computers is the fact that
the new Kinect V2 does not support installation of multiple
Kinects onto the same computer, due to bandwidth limita-
tions. Each Kinect client (i.e. Kinect V2 and PC) is responsi-
ble to provide data to the server, which will perform on-the-fly
a 3D reconstruction, fusing also the pre-scanned 3D head data
in the reconstruction process. At the client level, other than
simple depth, color and facial points acquisition, smoothing
of the head position and orientation extraction is performed.

The overall setup provides a functional (acquisition) space
of diameters larger than 4 meters, which is adequate for most
known tele-immersion applications.

2.2. Face Tracking and Head Positioning
2.2.1. Face Tracking

With the term “face tracking” we refer to the 2D tracking of
the face from each Kinect V2 device. Kinect’s SDK provide
a framework for tracking a face in 2D for each Kinect and

more particulary in the Infrared data (IR). From an algorith-
mic point of view, the Kinect SDK uses the method presented
in [15]. By doing so, we obtain 5 points in the 2D space of
the IR image for each Kinect that has a valid face. Subse-
quently, we transform these points from the 2D space to the
world space (3D space) of each Kinect. Although the Kinect
sensor seems to behave quite good in localizing the face, re-
sults for the facial points are quite noisy. To resolve the latter
and provide robustness to our framework, we apply 5 distinct
Kalman filters [16] to each of the 3D facial points extracted
from the Kinect comprising the positions and velocities of
each 3D point (giving a 6-dimensional Kalman Filter). An ex-
ample of such data smoothness can be seen in Fig. 2 for the X
axis of a facial point (left eye). All the above are implemented
at each client separately and each client will then transmit the
filtered positions, in order to save calculation burden from the
server. It has to be noted that we apply Kalman filtering in
the 3D space and not in the 2D space of the extracted features
to also compensate for inaccuracies in the reprojection func-
tion. The physics implemented within the Kalman filter were
experimentally deduced through a trail-error procedure.

2.2.2. Head Positioning

In order to choose among all Kinects the one that will pro-
vide the head positioning information, we apply the following
steps:

e find all Kinects that detected a face,
e get the face orientation in local Kinect world space,

e compare the orientations and choose the one with the
minimum absolute value angle around the Y axis.

Once the winning Kinect has been chosen, we gather
a position vector v. = (X,Y,Z) € R?® and quaternion
q = (z,y,2z,w) € R* extracted from this Kinect sensor
for the head position and orientation, respectively. Therefore,
based on these two vectors, we construct a transformation
matrix RT as in [17]. The application of this transformation
to the pre-scanned 3D head gives the initial position esti-
mation of the head. Subsequently, the manually annotated
facial points on the pre-scanned head are registered with the
position acquired. The final RT transformation is obtained by
minimizing the squared distance between the facial landmark
3D points and the facial 3D points returned from the Kinect
Sensors.

2.3. Multiple Devices Collaboration

2.3.1. Network collaboration and synching

In order to be able to work with multiple Kinects V2 we need
to create a network infrastructure and resolve issues that span
from communication and calibration to synchronization. The
client program is responsible to gather data and stream them
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Fig. 3: Projection of 3D head model onto multiple “virtual”
RGB-D cameras.

(in real-time) to the server. The vast amount of data are the
HD color image that needs to be send through the network.
We use a standard JPEG compression scheme [18] before
sending the image through the network and thus achieve real-
time frame rates at the network level transmissions.

On the other hand, a crucial aspect of the algorithm is
to gather synchronized frames from all the capturing appara-
tuses. To achieve this goal:

e cach client grabs frames asynchronously,

e the server broadcasts a “ready-to-receive” message,
e cach client sends the last grabbed frame,

e the server collects and process the data.

The above protocol is based on a wait for all principle. Under
this principle the server has, each time it asks for, a global syn-
chronised frame (consisting of the frames from all Kinects)
grabbed from all clients at practically the same time, since the
broadcasted “ready-to-receive” message arrives to all clients
at practically the same time.

2.4. 3D reconstruction - Fusion of pre-scanned head data

This section addresses the problem of seamlessly fusing the
raw RGB-D data from multiple Kinects with the pre-scanned
head model information, to produce a single textured, mani-
fold and watertight mesh, on a per-frame basis. The basic 3D
reconstruction framework is initially shortly described, before
discussing the integration of the pre-scanned head model in-
formation in that framework.

Basic full-body reconstruction framework
2.4.1. Raw point-normal generation

For each “foreground” pixel u € Fj, on the k-th depth-map, a
raw 3D point Xy (u) is generated. The corresponding raw 3D
normal Ny (u) is calculated based on the connectivity infor-
mation, obtained using terrain Step-Discontinuity Constraint
Triangulation (SDCT) [13].

2.4.2. 3D volume reconstruction

To produce a manifold and watertight surface from the raw
3D point-normals, a volumetric FT-based approach [19] is
employed, enriched with a smoothing scheme. The aim is
to calculate a scalar volume function A(q), which implicitly
contains the surface information as the isosurface at an appro-
priate level L. For details, the reader is referred to [19]. In the
standard version of the method, each raw point-normal sam-
ple is “clapped” to its nearest voxel. In the proposed method’s
variation, each normal Ny, (u) is smoothly “splatted”, accord-
ing to:

V(g) = ﬁz 3 g(Xe(w),qson) Ne(w), (D)
k ueFy
where g(Xj(u),q;o1) are “splatting” weights based on the
distance d of point X from voxel q using the Gaussian
g(d;o1) = oy'exp(—d?/o?). The normalization factor
d(q) = 31> wer, 9(Xk(u),q;02) is an estimate of the
points density at the voxel q, i.e. kernel density estima-
tion [20] is employed, using a Gaussian kernel. To avoid
singularities, o5 should always be larger than ;. It was ex-
perimentally selected to be equal to 03 = 207, With respect
to o1, the larger its value, the smoother the output gradient-
field and the final reconstruction will be, and it was set equal
to voxel radius.
The method was implemented with CUDA, to achieve
high-reconstruction rates.

2.4.3. Weighted texture blending

To produce the texture of the reconstructed mesh, a weighted
texture blending approach is followed, which is detailed in
[21]. In a nutshell, the color of a reconstructed vertex is ob-
tained as the weighted sum of the colors on the “visible” RGB
images, using weights Wy, (u) € [0, 1] that depend on: a) the
“viewing” angle of the captured surface, i.e. on the angle
between the line-of-sight and the vertex normal, and b) the
2D distance of the projection pixel u from the foreground hu-
man’s 2D silhouette.

Fusion of pre-scanned head information
2.4.4. Fusion of head geometry information

The raw point-normal cloud, as e.g. depicted at the left of
Fig. 4(a), generated according to subsection 2.4.1, is “aug-
mented” (i.e. by concatenation) by the aligned heads point-
normal cloud, as e.g. at the left of Fig. 4(b). The “augmented”
point-normal cloud is used as input to the volumetric recon-
struction process of paragraph 2.4.2. Since the head model is
much denser than the raw point-cloud, its contribution in the
volumetric reconstruction process will be locally larger.

2.4.5. Exploiting the head texture

Due to self-occlusions, or when Kinect sensors do not provide
enough coverage of the human (as e.g. shown in Fig. 6),



Fig. 4: “Gaelic football” sequence - (a) Without and (b) with
fusion of of pre-scanned head in the reconstruction. Left:
Raw point cloud and reconstruction (geometry only). Right:
Reconstruction with texture.

Fig. 5: Argyris sequence with fusion of pre-scanned head.
Left: Raw point cloud, “augmented” with the head and re-
construction. Right: Reconstruction with texture.

Fig. 6: Argyris sequence - Results using only two frontal cap-
tured views. Left: Raw point cloud without head. Right: Re-
construction with the head.

many reconstructed vertices may be invisible to all cameras.
However, the texture information existing in the pre-scanned
head model can be used to “paint” occluded or non-captured
regions of the head. To seamlessly fuse this information, the
following approach is used.

The 3D scanned head model is off-line projected onto
five “virtual” RGB-D cameras, as shown in Fig. 3, i.e. to
OpenGL cameras, with the OpenGL depth and color buffers
serving as the corresponding depth and RGB images. The
distance of these cameras from the heads centroid is set equal
to 400mm, while their poses RT%, k=1,...,5 are selected
such that they cover completely the head. These cameras are
supposed to have captured the head when it is positioned-
oriented by RTJ. , = I, where I, is the unitary 4x4 ma-
trix. Let now that for a frame n during the on-line recon-
struction process, the head is positioned-oriented by RT{ .
The virtual cameras pose matrices are accordingly updated,
i.e. RTY = RTJL ;- RTY. Given the OpenGL projection matri-
ces and the pose matrices RT},, the “virtual” cameras’ RGB-
D data are directly used in the employed texture mapping
method (paragraph 2.4.3), in exactly the same manner as the
Kinect cameras. The only difference is that the weight maps
Wi, (u) (calculated also off-line) are multiplied by a small fac-
tor, equal to 0.1. This way, mainly the live captured texture
is used at non-occluded regions. While, the weighted blend-
ing approach results into texturing without significant texture
discontinuities.

3. EXPERIMENTAL RESULTS

Results with respect to the enhancement of the reconstruction
by exploiting the pre-scanned head information are given in
figures 4, 5 and 6. As can be verified, the pre-scanned head
information can improve the reconstructed geometry: It helps
to get more accurate reconstruction at the semantically impor-
tant face region (the nose, eyes, etc. are better resolved) and
at the non-captured regions, such as the top of the head. Ad-
ditionally, it results into more complete texturing at the head
region, as shown mainly in Fig. 6.

4. CONCLUSIONS

In this paper, a novel methodology for enhanced real-time 3D
reconstruction of moving humans was presented. Providing
3D reconstructions of better quality is based on the idea of
fusing the real-time captured 3D point-cloud data with a static
pre-scanned mesh, adapted to the real-time positioning of the
scene under consideration. Results presented in the experi-
mental section provide evidence that the use of pre-scanned
meshes can improve the final quality of the rendered 3D re-
constructed model.
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