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This paper presents a novel stereo disparity estimationmethod, which combines three different costmetrics, de-
fined using RGB information, the CENSUS transform, as well as Scale-Invariant Feature Transform coefficients.
The selected cost metrics are aggregated based on an adaptive weight approach, in order to calculate their corre-
sponding cost volumes. The resulting cost volumes are thenmerged into a combined one, following a novel two-
phase strategy, which is further refined by exploiting scanline optimization. A mean-shift segmentation-driven
approach is exploited to deal with outliers in the disparity maps. Additionally, low-textured areas are handled
using disparity histogram analysis, which allows for reliable disparity plane fitting on these areas. Finally, an ef-
ficient two-step approach is introduced to refine disparity discontinuities. Experiments performed on the four
images of the Middlebury benchmark demonstrate the accuracy of this methodology, which currently ranks
first among published methods. Moreover, this algorithm is tested on 27 additional Middlebury stereo pairs
for evaluating thoroughly its performance. The extended comparison verifies the efficiency of this work.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Stereo reconstruction is one of the most active research fields in
computer vision [1]. Though mature, the task of estimating dense dis-
parity maps from stereo image pairs is still challenging, since there is
still space for improving accuracy and providing new ways of handling
uniform areas, depth discontinuities and occlusions. Several approaches
have been proposed so far, targeting the improvement of the recon-
struction accuracy and/or minimization of the computational cost.
Section 1.1 reports on the approaches in this field. Paper's contribution
is described in Section 1.2. While, Section 1.3 compares the proposed
work to state-of-the-art methods.
1.1. Review of previous work

The work in [1] presents a complete taxonomy of approaches used
for stereo disparity estimation. The categorization of the approaches is
based on the following four generic steps, into whichmost of the stereo
algorithms can be decomposed: 1. matching cost computation; 2. cost
(support) aggregation; 3. disparity computation/optimization; and 4.
disparity refinement. Several metrics have been proposed in the litera-
ture for the computation of matching costs between pixels. Prevalent
pixel-based cost measures include the absolute difference of image
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intensity values, gradient-based measures and non-parametric trans-
forms such as spearman, CENSUS and rank [2]. The CENSUS transform
has been successfully used for disparity estimation and several modifi-
cations of it have been presented [3–5]. Many approaches combine var-
ious cost measures in order to boost accuracy. The work in [6] is based
on the self-adapting dissimilarity measure, which combines the sum
of absolute intensity differences and a gradient based measure. The
works in [7–9] exploit a combination of absolute intensity differences,
as well as the hamming distance of CENSUS transform coefficients.
The matching cost values over all pixels and all disparities form the ini-
tial disparity space image (DSI) or the initial cost volume.

In order to reduce matching ambiguity, the pixel-based matching
costs are aggregated spatially over support regions in the DSI. The perfor-
mance evaluations on different cost aggregation approaches [10,11] show
that adaptive-weight [12] and segment-support [13] outperform the rest
of cost aggregation approaches.More recent cost aggregationmethods in-
clude successiveweighted summation [8] and guided image filter [14,15].

The disparity optimization step includes local, global, cooperative
and semi-global methods. Local methods [8,12–14,16,17] put emphasis
on matching cost computation and cost aggregation. The final disparity
map is computed by applying a simple local winner-take-all (WTA) ap-
proach independently for each pixel. Global optimization methods aim
at assigning a disparity label to each pixel, so that a global cost function
is minimized over the whole image area. Efficient techniques include
Graph Cuts [18], Belief Propagation [6] and cooperative optimization
[19]. In an additional category of approaches, the energy function is
minimized on a subset of points of the stereo pair (semi-global
methods), for instance along 1D paths. Such approaches, which de-
crease the computational complexity compared to global optimization
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algorithms, involve Dynamic Programming [20] or Scanline Optimiza-
tion [21] techniques.

The disparity results have to be refined, since they are “polluted”
with outliers in occluded areas, depth discontinuities and uniform
areas that lack texture. Several stereo algorithms, such as those in [21,
22], use segmented regions for reliable outlier handling. The work in
[9] uses iterative region voting and proper interpolation to fill outliers.

1.2. Contributions of this paper

In this paper, a methodology for accurate dense disparity estimation
is proposed. Most significant contributions of this work include the
following:

• The algorithm acquires a combined cost volume by exploiting three
types of cost metrics. The first cost metric combines RGB-CENSUS in-
formation, the second one uses only CENSUS information and the
third one SIFT (Scale Invariant Feature Transform) information. The
costmetrics are aggregated using adaptive weights and their cost vol-
umes are acquired. A reliable two-phase strategy is then followed to
merge the individual cost volumes into a combined one.
This approach, to the extent of our knowledge, is the first one that
combines efficiently RGB, CENSUS and SIFT information.

• This method exploits mean-shift image segmentation in several
stages of this approach. In our approach plane fitting is applied just
to segments that correspond to large uniform areas and not to all seg-
ments. This fact reduces the dependency of our method from the re-
sult of the disparity plane fitting, which may be of reduced accuracy
for small segment areas, due to the decreased number of contained
disparities. Also, a metric is used to verify if planar fitting is successful,
since not all large uniform areas can be considered as planar.
Segmentation is also useful in the disparity optimization step. Inmore
detail, the mean-shift segmentation maps of the stereo pair are used
to introduce a new criterion for the definition of the smoothness pen-
alty terms that are used in the semi-global scanline optimization
method of [21] (previously exploited, among other works, in [9,
23–25]). Themodified scanlinemethod is employed for the optimiza-
tion of the combined cost volume.
Moreover, segmentation is exploited for the occlusion handling
task, where an efficient strategy that incorporates mean-shift
segmentation-based occlusion handling to successfully cope with
occluded areas is presented.

• Handling of large uniform areas is based on disparity histogram
analysis, which removes outlier disparities from large uniform re-
gions, before applying disparity plane fitting in each region using
the remaining reliable disparities.

Except for the major contributions, some secondary contributions
are the following:

• Aweighted variant of the original CENSUS transform, which improves
the disparity accuracy, is proposed.

• Disparity refinement at disparity discontinuities is performed by ap-
plying a two-step disparity edges refinement approach. The first
step handles disparity errors at depth discontinuities in a coarser
level and the second one in a finer level.

This approach, by encompassing the aforementioned contributions,
manages to rank 1st among already published methods in the
Middlebury Stereo Evaluation benchmark [26] and gives superior re-
sults on an additional dataset of 27 stereo pairs.

1.3. Proposed methodology and state-of-the-art methods

This method is the first one that combines RGB, CENSUS and SIFT
information by utilizing an efficient strategy. There are several works
that use RGB and/or CENSUS information, such as [3,4,7–9,25], but
they do not exploit the SIFT information, which could probably im-
prove their performance. However, the approaches that use SIFT de-
scriptors, or similar ones (such as SURF-Speeded Up Robust Features
[27]), for the case of short-baseline stereo disparity estimation, are
limited. For instance, the work in [28] combines mutual information,
SIFT descriptor, and segment based plane-fitting to robustly find cor-
respondences for stereo image pairs which undergo radiometric var-
iations. The paper in [29] uses SURF key points for the initial disparity
estimation, which is further improved by using graph cuts for dispar-
ity plane assignment.

Manymethods, such as [6,19,29–31], exploit image segmentation
algorithms in order to separate images into segments and then solve
the disparity estimation problem by assigning, in various ways, a dis-
parity plane for each estimated segment of the scene. In contrast to
this class of approaches, the proposed method applies plane fitting
only to large segments that correspond to low-textured areas. Addi-
tionally, in order to prevent application of plane fitting to low-
textured areas that are not (near) planar, a metric is used to verify
if plane fitting is successful.

The disparity histogram analysis, described in this paper, could be
used as preprocessing step in algorithms that perform plane fitting
using methods that are sensitive to outliers, such as the least square
error (LSE) based plane fitting algorithm, which is used in [30,31].
Even plane fitting algorithms that are insensitive to outliers, such
as RANSAC (Random Sample Consensus) [32], could be fostered by
our outlier filtering technique, since their computational cost
would be reduced in case the data to be fitted contains less outliers.
Disparity estimation methods that exploit RANSAC plane fitting
include [22,29,31].

Many methods, such as [6,9,19], are evaluated using just the
four well-known stereo pairs of the Middlebury Stereo Online
Evaluation Benchmark and they manage to rank among the top
methods. However, there are additional Middlebury stereo pairs
that can be used to present a more thorough and complete evalu-
ation. The presented approach, except for the well-known stereo
pairs, uses 27 more stereo pairs for assessing the overall perfor-
mance of this approach.

The rest of this paper is organized as follows. In Section 2, the pro-
posed method is presented in detail. Section 3 provides information
on the parameters used, as well as the experimental results, while con-
clusions are drawn in Section 4.
2. Proposed method

The proposed algorithm is divided into four steps, as visualized in the flowchart of Fig. 1. The values of the parameters defined throughout this
section are analyzed in Section 3.

2.1. Preprocessing steps

2.1.1. Rectified stereo pairs

The input stereo image pair is rectified, so that the epipolar lines becomehorizontal [33]. Therefore, the search of point-correspondences between
the two images can be performed along the same horizontal epipolar line. Except for limiting searching area, rectified input makes the application of
optimization algorithms simpler, such as the scanline optimization used in this work that uses specific path directions. Additionally, since the



Fig. 1. Flowchart of the proposed method.
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resulting rectified images have similar scale and the epipolar lines have the same orientation, it is feasible to define and compare adaptive support
areas of the same size and orientation between two rectified images. The rectification process is beyond the scope of this paper. Any efficient existing
algorithm, such as the one in [33], can be used for this task.

2.1.2. Mean-shift segmentation
Low-level image segmentation, which groups pixels into homogeneous regions based on color or texture, is exploited by numerous disparity es-

timation methods ([6,13,19,34,35]) in various ways, since it assists to acquire disparity results of high accuracy.
In this work, the stereo images are initially segmented into non-overlapping regions using a state of the art mean-shift segmentation software

(EDISON software [36]), which relies on color and edge information. Detailed information about the mean-shift segmentation and the EDISON soft-
ware can be found in [37–39]. The parameters used for themean-shift segmentation are the segmentation spatial radius hs, which is set to hs=3 and
the segmentation feature space radius hr, which is set to hr=3. The selection of these strict values ensures that the segmentationmapwill be of high
reliability, meaning that most likely a segmentwill not overlap a depth discontinuity, and this fact is verified also in [13,35]. Themean-shift segmen-
tationmap for the “Tsukuba” left image (see Fig. 2a) is visualized in Fig. 2b. The pixels that belong to the samemean-shift segment have an individual
label and their mean color value is computed. Let the labels image be denoted as Lab(x). The segmentation maps of the left and the right image are
computed once and then used in the following algorithmic steps.

2.2. Matching cost computation

This stage considers cost metrics for estimating the similarity between two pixels. In this work, absolute differences (AD) of RGB values, AD of
weighted CENSUS coefficients and AD of SIFT coefficients are exploited to define the used costmetrics. This choice is made for the following reasons:
i) Exploitation of RGB information gives better results in areaswhere depth discontinuities exist; ii) CENSUS is able to copewith radiometric changes
and noise [9], while iii) the exploitation of SIFT improves the results in textured unconcluded areas, as verified in Section 2.3.2.

2.2.1. Weighted CENSUS transform
In order to define the original CENSUS transform [3], a function ξ, which represents the relationship between the intensity of a pixel x= (x, y)T

and a neighbor pixel xn, is used:

ξ x;xnð Þ ¼ 1; if I xnð Þ b I xð Þ
0; otherwise;

�
ð1Þ

where I(x) represents the image intensity of pixel x.
(a) (b)

Fig. 2. (a) Left “Tsukuba” image and (b) its mean-shift segmentation map.
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The CENSUS transform for pixel x is computed by comparing its intensity with the intensity of other pixels xn that lie within a square win-
dowN xð Þaround x. The results of these comparisons are then concatenated into a single CENSUS binary vector. Thus, the CENSUS transform of
a pixel x is defined as:

CENSUS xð Þ ¼ ⊗
xn∈N xð Þ

ξ x; xnð Þ; ð2Þ

where ⊗ represents the concatenation operation.
This paper proposes a modification of the original CENSUS transform defined as a weighted CENSUS transform. In the proposed transform (see

Fig. 3) the bit string that is generated from the original CENSUS transform for a central pixel x, is multiplied by a weight vector, whose elements cor-
respond to theweights between x and each pixelxn∈N xð Þ. Theweight between the central pixel x (red circle in Fig. 3) and a pixel xn (green circle in
Fig. 3) is defined as:

μ x;xnð Þ ¼ 1−β � Δe x;xnð Þ; ð3Þ

where Δe(x; xn) is the Euclidean distance between x and xn and β is a constant parameter. The window size of the weighed CENSUS transform is set
experimentally to 5 × 5. The weight vector gives greater weights for pixels closer to the central pixel, since they are considered asmore reliable than
those which lie further. Let us denote as CEN(x; c) the weighted CENSUS transform at pixel x for the color band c ∈ {R, G, B}.

2.2.2. SIFT-based cost
The SIFT coefficients are extracted densely from an image using the SIFT implementation that was used in the work of [40], which deals with vi-

sual concept classification. In detail, the parameters used for the SIFT coefficients extraction were selected as: Size of subregions NP = 1, Scale of
Gaussian Derivatives σDOG = 1, and number of subregions NS = 2. These parameters define a SIFT descriptor composed of NS × NS subregions
with subregions' size equal to NP × NP pixels. The horizontal and vertical responses for SIFT are calculated using a Gaussian derivative filter, while
the diagonal responses are calculated using a fast anisotropic Gaussian derivative filter [41], both using a scale of σDOG. When, a larger support
area was used for the extraction of the SIFT descriptor vector (by increasing NP and/or NS), the foreground fattening effect [1] was becoming more
intense in the estimated disparity map. Let us denote SIFT(x; c) as the SIFT descriptor at pixel x for the color band c ∈ {R, G, B}.

2.2.3. Cost metrics
In this section, the way that RGB, weighed CENSUS and SIFT are used to define the similarity between pixels, is described. Given a pixel x on the

left image (reference image) Il(x), the corresponding pixel on the right image (target image) Ir for a candidate disparity d will be Ir(xd), where xd =
x − d and d = (d, 0)T, since the input stereo images are rectified and consequently the disparity has only a horizontal component. The individual
pixel similarity measures CRGB(x; d), CCENSUS(x; d) and CSIFT(x; d), between x and xd, are given from:

CRGB x;dð Þ ¼
X

c∈ R;G;Bf g
Il x; cð Þ−Ir xd

; c
� ���� ���; ð4Þ

CCENSUS x;dð Þ ¼
X

c∈ R;G;Bf g
CENl x; cð Þ−CENr xd

; c
� ���� ���

1
; ð5Þ
Fig. 3.Weighted CENSUS transform.
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CSIFT x;dð Þ ¼
X

c∈ R;G;Bf g
SIFTl x; cð Þ−SIFTr xd

; c
� ���� ���

1
: ð6Þ

Using the aforementionedmeasures three different matching costs are defined. A RGB-CENSUS combination cost CR − C(x; d) (following the par-
adigm of algorithms [7–9]), a pure weighted CENSUS-based cost CCEN(x; d) and a SIFT-based cost CS(x; d), which are given from:

CR−C x;dð Þ ¼ ρ CRGB x;dð Þ;λRGBð Þ þ ρ CCENSUS x;dð Þ;λCENð Þ; ð7Þ

CCEN x;dð Þ ¼ ρ CCENSUS x;dð Þ;λCENð Þ; ð8Þ

CS x;dð Þ ¼ ρ CSIFT x;dð Þ;λSIFTð Þ; ð9Þ

where ρ(Cy, λy) = 1 − e(−Cy/λy).
The exponential function ρ(Cy, λy) has the advantage of mapping the values of a measure in the range of [0, 1]. This allows different types of mea-

sureswith different ranges to be scaled into the same range and then to be combined. Additionally, this function allows trimming of outlier values of
Cy, depending on the value of λy.

2.3. Cost aggregation

2.3.1. Adaptive cost aggregation
In order to reducematching ambiguity, the pixel-basedmatching costs CR − C(x; d), CCEN(x; d) and CS(x; d) are aggregated spatially over support

regions around each pixel. According to the evaluation studies of [10,11], the adaptive weight approach [12] produces reasonably accurate disparity
maps. Thus, this aggregation approach with slight modifications is used in this work.

More specifically, adaptive support-weight based aggregation applies weights to each of the pixels surrounding the pixel of interest.
The adaptive-support weights notion is based on the Gestalt principles of similarity and proximity [12]. The similarity principle assumes
that the more similar color a surrounding pixel has to the central pixel of interest, the more likely it is to belong to the same surface, while
the proximity principle assumes that the closer a surrounding pixel is to the central pixel of interest, the more likely it is to belong to the
same surface.

In order to describe the adaptive-supportweight notionwithmathematic expressions, a pixel of interest x and a neighbor pixel xn are considered.
The adaptive weight between x and xn, is given by:

w x; xnð Þ ¼ e
−ΔI x;xnð Þ

γc

� �
� e

−Δe x;xnð Þ
γe

� �
; ð10Þ

where γe and γc are constant parameters, Δe(x; xn) is the Euclidean distance between x and xn and ΔI(x; xn) is given by:

ΔI x; xnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c∈ R;G;Bf g

jI x; cð Þ−Iðxn; cÞj2:
s

ð11Þ

Similar to [16], the adaptive weights are computed on the input stereo images after applying a median filter that uses a 2 × 2 neighborhood in
order to alleviate the impact of image noise and subtle non-Lambertian effects.

The adaptive weight approach used in this work has two slight modifications compared to the original work of [12]. Experimental results in [13]
proved that the use of the RGB color space for computing color similarity decreases the possibility that pixels belonging to different depths are being
aggregated in the same support region. For this reason the RGB color similarity is used, contrary to the CIELAB similarity used in [12]. Additionally,
instead of using all pixels in the square support region, only pixels within radius RS from the central pixel are used. In this way, the support region
becomes symmetric around the central pixel x of interest.

A weight support mask is generated for a pixel x on the left stereo image, denoted aswl(x; xn). Similarly, a weight support mask is generated for
the right stereo image around the corresponding pixel xd and is denoted aswr(xd; xnd). Bothwl(x; xn) andwr(xd; xnd) are taken into consideration to
define the aggregated cost V(x; d) between x and xd as:

V x;dð Þ ¼

X
xn∈SL ;x

d
n∈SR

wl x;xnð Þ �wr xd
;xd

n

� �
� C xn;dð Þ

X
xn∈SL ;x

d
n∈SR

wl x; xnð Þ �wr xd
; xd

n

� �
;

ð12Þ

where SL defines the support region aroundpixel x on the left image and SR is the support region around pixel xd, on the right image, as it is visualized
in Fig. 4. If cost C(x; d) is replaced by CR − C(x; d), CCEN(x; d) or CS(x; d), the aggregated cost volumes VR − C(x; d), VCEN(x; d) and VSIFT(x; d) can be
estimated, respectively. The schematic representation of a cost volume is depicted in Fig. 5a.

2.3.2. Combination of aggregated cost volumes
In the beginning of this section, we explain the reasons for using the specified cost metrics CR − C(x; d), CCEN(x; d) and CS(x; d). In this par-

agraph, we describe the details of combining their corresponding cost volumes VR − C(x; d), VCEN(x; d) and VSIFT(x; d) to produce a combined
cost volume.

The proposed approach uses a combination of RGB and CENSUS information via Eq. (7) in order to compute VR − C. However, after extensive
experiments, it was deduced that the cost volume VCEN computed using only weighted CENSUS information, could be efficiently exploited to



Fig. 4. Adaptive weights support region on reference and target “Tsukuba” images.
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refine VR − C. Additionally, it was noticed that the winner-take-all-estimated disparity map from VSIFT is reliable for unoccluded textured areas.
This fact is exploited here to further refine VR − C. The reason for not combining directly the SIFT information with the RGB and CENSUS infor-
mation (for instance using an equation similar to Eq. (7), with an additional term for SIFT information), is that the ability of the SIFT-based
metric to provide accurate disparity estimates at unoccluded textured areas degrades significantly when SIFT is combined directly with
other cost metrics, as experimentally verified. In the following, an efficient two-phase strategy for combining VR − C, VCEN and VSIFT is described.
This strategy is built upon the aforementioned conclusions regarding VCEN and VSIFT.

2.3.2.1. First combination phase. During the first phase, VCEN(x; d) is used to refine VR − C(x; d). The Peak Ratio confidence measure, one of the best
confidence measures according to [42], is used for this purpose.

2.3.2.1.1. Peak ratio confidence measure. Let us consider that we have the curve of cost variation along disparity d for a pixel x from cost volume
V(x; d). This term is depicted visually with green color in the visual representation of a cost volume V(x; d) in Fig. 5a and an example of cost variation
curve is shown in Fig. 5c. Let us define asG xð Þ ¼ min

d
V x;dð Þf g the global minimum of V(x; d) and as L(x) the second local minimum of V(x; d). Then,

the peak ratio confidence measure is defined as:

R xð Þ ¼ L xð Þ
G xð Þ : ð13Þ

Finally, let

α xð Þ ¼ arg min
d

V x;dð Þf g; ð14Þ

be the optimum disparity value that gives the global minimum of V(x; d). The higher R(x), the more confident the global minimum of V(x; d) is.
Based on this confidencemeasure, the optimumdisparity for a pixel x, as estimated from VCEN(x; d), will be propagated toVR − C(x; d). The curves

of cost variation along disparity for VR − C(x; d) and VCEN(x; d) are depicted in Fig. 5b and Fig. 5c, respectively.

Inmore detail, for a pixel x, the confidenceRR−C xð Þ ¼ GR−C xð Þ
LR−C xð Þ based on VR − C(x; d) (Fig. 5b), is estimated. Similarly, the confidenceRCEN xð Þ ¼ GCEN xð Þ

LCEN xð Þ
based on VCEN(x; d) (Fig. 5c), is estimated.

In case that RCEN(x) N RR − C(x), at the disparity position αCEN(x) (position of the global minimum of VCEN(x; d)), the corresponding value of
VR − C(x; αCEN(x)) is modified according to:

VR−C x;αCEN xð Þð Þ←min
d

VR−C x;dð Þf g−δ ð15Þ

with δ→ 0+, so that the global minimum of VR − C(x; d) to coincide with the one of VCEN(x; d). The part of the curve that changes after this step
is depicted with green color in Fig. 5b. The case RCEN(x) N RR − C(x) means that the global minimum of VCEN(x; d) is more confident than that of
VR − C(x; d). In this case, information about the disparity that gives this global minimum is propagated to VR − C(x; d). After executing the first
phase, V ′R − C(x; d) is acquired. The winner-take-all (WTA) of V ′R − C(x; d) gives the disparity map of Fig. 6a.

2.3.2.2. Second combination phase. In a secondphase,VSIFT(x;d) is used to refineV ′R− C(x;d). TheWTAof VSIFT(x;d) gives the SIFT-based disparitymap
dSIFT(x) (see Fig. 6b), which provides reliable disparities in textured unoccluded areas where depth does not change. This is evident in Fig. 6b for the
disparity of the left “Tsukuba” image.

2.3.2.2.1. Detection of reliable disparities. In order to find the regions in dSIFT(x) that are reliable, the mean-shift color segmentation map (see
Section 2.1.2) is used. If n(S) denotes the number of pixels in a color segment S and nf(S) is the number of pixels that have themost frequent disparity

in this segment according to dSIFT, then Px Sð Þ ¼ n f Sð Þ
n Sð Þ is defined. If Px(S) ≥ 90 %, then it is assumed that the disparities inside this segment are reliable

(since the vast majority of pixels have the same disparity value).
According to the above, reliable disparities in dSIFT(x) are propagated to V ′R − C(x; d) in the following way: For every pixel x∈ S, the disparity es-

timate dSIFT(x) is propagated to V ′R − C(x; d) according to:

V 0
R−C x;dSIFT xð Þð Þ←min

d
V 0
R−C x;dð Þ
 �

−δ ð16Þ



(a)

(b)

(c)

Fig. 5. (a) Cost volume visualization and cost variation along disparity for a pixel x of (b) VR − C and (c) VCEN.
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with δ→ 0+. After executing this second phase, V ″
R − C(x; d) is acquired. Let theWTA-estimated disparity map from VR − C

″ (x; d) be dLR(x). After ap-
plying a 3 × 3 median filter on dLR(x), in order to remove spurious disparities, the disparity map of Fig. 7a is generated.

Comparing Figs. 6a and 7a, it is evident that dSIFT(x) can be exploited to efficiently enhance the results in unoccluded textured regions.
Except for the visual demonstration of using the two-phase combination strategy to improve the generated disparity map, an additional numeric

evaluation is presented in Section 3.2.2.



(a) (b)

Fig. 6. Disparity maps after applying WTA to (a) V ′R − C and (b) VSIFT.
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2.4. Disparity optimization

2.4.1. Outliers detection
The disparitymap dLR(x) is acquired considering as reference image the left image of the stereo pair. If the right image is considered as reference,

then the disparity map dRL(x) of Fig. 7b is acquired. The disparity maps dLR(x) and dRL(x) are taken into consideration to detect problematic areas,
especially outliers in occluded regions and depth discontinuities. A prevalent strategy for detecting outliers is the Left–Right consistency check
[24]. In this strategy, the outliers are disparity values that are not consistent between the two maps and therefore, they do not satisfy the relation:

dLR xð Þ−dRL x−dLR xð Þð Þj j ≤ TLR : ð17Þ

At this point of our algorithm, the threshold for outliers detection is set equal to TLR = 1. With this value, pixels with difference equal to 1 in the
Left–Right consistency check are not considered as outliers. This is plausible, since disparity in stereo images usually varies smoothly along the

epipolar lines, in regions without depth discontinuities. Fig. 8a shows the outliers mapOTLR¼1
1 xð Þ for TLR= 1. The blue regions are the outlier regions.

Let XOUT be the set of outlier pixels. Before applying scanline optimization, the cost values inV ″
R − C(x; d) that correspond to outlier pixels x∈XOUT

are set to zero. This way, the costs of these pixels do not affect the optimization result.

2.4.2. Semi-global, scanline optimization
The optimization of the combined cost volume VR − C

″ (x; d) is based on the semi-global, scanline optimization method of [21], which aggregates
matching costs in 1D equally from multiple path directions.

This work considers four path directions r, namely left-to-right, right-to-left, up-to-down and down-to-up, which are denoted as rlr = [+1, 0]T,
rrl = [−1, 0]T, rud = [0, + 1]T and rdu = [0, − 1]T, respectively (see Fig. 8b).

Let Lr be a path that is traversed in the direction r∈ {rlr, rrl, rud, rdu}. The path cost Lr(x; d) of pixel x at disparity d is computed recursively from:

Lr x;dð Þ ¼ V ″
R−C x;dð Þ þminfLr x−r;dð Þ; Lr x−r;d� 1ð Þ þ π1;min

i
Lr x−r; ið Þ þ π2g−min

i
Lr x−r; ið Þ ð18Þ

where i∈ [disparity range] and x− r denotes the previous pixel along thepath direction.π1 andπ2 are two smoothness penalty terms (withπ1≤π2)
for penalizing disparity changes of neighboring pixels. The works in [9,24] make the assumption that often a depth discontinuity (i.e. disparity
change) coincides with an intensity edge.
(a) (b)

Fig. 7. (a) dLR(x) and (b) dRL(x) disparity maps.



(a) (b)

Fig. 8. (a) Outliers map OTLR¼1
1 xð Þ for threshold TLR = 1 and (b) path directions used for cost volume optimization.
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In our approach, two criteria are used to check depth discontinuity and consequently compute the smoothing terms π1 and π2. The first criterion,
as in [24], checks the intensity difference between the current pixel and the previous one along the considered path direction. The intensity differ-
ence, on the two images, is defined as:

∇ xð Þ ¼ max
c∈ R;G;Bf g

Il x; cð Þ−Il x−r; cð Þj j ð19Þ

and

∇ xd
� �

¼ max
c∈ R;G;Bf g

Ir xd
; c

� �
−Ir xd−r; c

� ���� ���: ð20Þ

The second criterion, proposed in our approach, checks whether the current pixel and the previous one along the considered path direction be-
long to the same mean-shift segment.

π1;π2ð Þ ¼

Π1;Π2ð Þ; if ∇ xð Þ ≤ τso & ∇ xd
� �

≤ τso
� �

Π1

1:5
;
Π2

1:5

� 

; if Labl xð Þ ¼¼ Labl x−rð Þ & Labr xd

� �
¼¼ Labr xd−r

� �� �
Π1

4
;
Π2

4

� 

; if ∇ xð Þ ≤ τso & ∇ xd

� �
N τso

� �
or Labl xð Þ ¼¼ Labl x−rð Þ & Labr xd

� �
≠ Labr xd−r

� �� �
Π1

4
;
Π2

4

� 

; if ∇ xð Þ N τso & ∇ xd

� �
≤ τso

� �
or Labl xð Þ≠ Labl x−rð Þ & Labr xd

� �
¼¼ Labr xd−r

� �� �
Π1

10
;
Π2

10

� 

; otherwise:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð21Þ

Based on these two criteria,π1 and π2 are defined according to Eq. (21), whereΠ1=0.2,Π2=0.6 are constant parameters, τso=10 is a threshold
for color difference and Labl and Labr are the labels images after applying mean-shift segmentation (see Section 2.1.2) to the left and right images,
respectively. The denominator for the second condition of Eq. (21), has been slightly increased to 1.5 so as to compensate for segmentation errors.

To sumup,while the approaches in [9,24], employ only intensity based criteria to defineπ1 andπ2, the proposedmethod introduces an additional
criterion based on mean-shift segmentation that assists in enhancing the disparity estimation results, as it is experimentally verified in Section 3.2.4.
(a) (b)

Fig. 9. (a) d′LR(x) and (b) d′RL(x) disparity maps after optimization.



(a) (b)

(c) (d)

(e)

Fig. 11. (a) Reliability map, (b) an unreliable segment and its neighboring segments, (c) disparity map after applying basic occlusion handling, (d) disparity map mean-shift based seg-
mentation occlusion handling and (e) disparity map after combined occlusion handling.

(a) (b)

Fig. 10. Outliers map (a) OTLR¼0
2 xð Þ for threshold TLR = 0 and (b) OTLR¼1

2 xð Þ for threshold TLR = 1.
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(a) (b)

(c) (d)

Fig. 13. Inlier pixels (red regions) inOU(x) for (a) the left “Tsukuba” image and (c) the left “Cones” image. A segment on (b) the left “Tsukuba” image and (d) the left “Cones” image (shown
with blue).

(a) (b)

(c) (d)

Fig. 12. (a) Disparity map, (b) its disparity edges and (c) disparity map after coarse discontinuity refinement (d) canny disparity edge detection.
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(a) (b)

Fig. 14. Disparity histogram of the inlier pixels in a segment on (a) the left “Tsukuba” image and (b) the left “Cones” image.
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After computing the four path costs, the final cost volume VR − C
‴ (x; d) is calculated from:

V‴
R−C x;dð Þ ¼

X
r ∈ rlr ;rrl ;rud ;rduf g

Lr x;dð Þ

4
: ð22Þ

TheWTA of VR − C
‴ (x; d) gives disparity map d′LR(x) (see Fig. 9a). If the right image is considered as reference image, then the disparitymap d′RL(x)

(see Fig. 9b) is acquired.

2.5. Disparity refinement

The disparity map, after cost volume optimization, contains a large number of outliers in occluded regions, uniform areas and near depth discon-
tinuities.With the algorithmic steps, described through this section, these problematic areas can be handled efficiently in order to get a disparitymap
of high accuracy. The contribution of each refinement step, in the handling of problematic areas, is described later in Section 3.2.3.

2.5.1. Occlusion handling

2.5.1.1. Outliers detection. The disparitymaps of the left image d′LR(x) (see Fig. 9a) and the right image d′RL(x) (see Fig. 9b) are taken into account so as
to detect problematic areas. According to Left–Right consistency check:

dLR
0

xð Þ−dRL
0

x−dLR
0

xð Þ
� ���� ��� ≤ TLR; ð23Þ

for TLR = 0 and TLR = 1 the outliers maps OTLR¼0
2 xð Þ (see Fig. 10a) and OTLR¼1

2 xð Þ (see Fig. 10b) are acquired, respectively.
The detected outliers (due to occlusions) have to be filled with reliable disparities from neighboring areas. Occlusion handling is performed by

combining two occlusion handling schemes that are executed independently. The first occlusion scheme is very simple and the second scheme is
performed by exploiting the mean-shift color segmentation map.

2.5.1.2. Basic occlusion handling. The basic occlusion handling strategy is performed for the outliermapOTLR¼0
2 xð Þ (see Fig. 10a). Inmore detail, an outlier

pixel x is filled by the disparity of its closest inlier pixel. Practically, the disparity values of x's left nearest inlier pixel xl and x's right nearest inlier pixel xr
(a) (b)

Fig. 15. Fit a plane (blue) to a segment, applying PCA on the reliable subset of pixels (red) for a segment on (a) the left “Tsukuba” image and (b) the left “Cones” image.



Fig. 16. Disparity maps before (1st row) and after applying uniform region handling (2nd row).
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are denoted as d′LR(xl) and d′LR(xr), respectively. Then, the disparity value of min(d′LR(xl), d′LR(xr)) is assigned to x. The disparity map, after the basic oc-
clusion handling, is visualized in Fig. 11c.

2.5.1.3. Mean-shift segmentation-based handling. There is high probability that the candidate “outlier” points for TLR = 1, are not actual outliers. In-
stead, it is probable that there is a slight difference in the disparity estimation between the left and the right disparity maps. The following technique
is applied to propagate reliably disparity information from the right disparity map to the left disparity map.

For a pixelϕ, with TLR(ϕ)=1, the subset of pixelswithin radius 7 fromϕ, which at the same timebelong to the same segment asϕ, is defined. This
subset is used to estimate a reliability metric RelLR(ϕ), whose value is given by the division of the number of pixels within this subset with TLR = 0
towards the total number of pixels in this subset. Correspondingly, for a pixel ψ, which is the correspondence of pixel ϕ in the right image, is com-
puted similarly the metric RelRL(ψ). The disparity of pixel ψ is propagated to pixel ϕ in case that d′LR(ϕ) N d′RL(ψ) and RelLR(ϕ) b RelRL(ψ). Pixels ϕ,
(a) (b)

(c) (d)

Fig. 17. (a) Disparity mapwithout uniform area handling, (b) disparity mapwith uniform areas handling (without exploiting theMEDfit verification metric), (c) uniform areas where the
disparity plane fitting is assumed as successful according to MEDfit b 0.5 are denoted with green, (d) disparity map after uniform area handling for the areas that satisfy MEDfit b 0.5.



Table 1
Computational time and the percentage of time spent on each algorithm's stage.

Image Resolution Disp. levels Proposed (sec) M.C. (%) C.A. (%) D.O. (%) D.R. (%)

Tsukuba 384 × 288 15 24.33 4.30 88.93 0.93 5.84
Venus 434 × 383 20 49.25 3.71 89.72 0.92 5.65
Teddy 450 × 375 60 154.23 2.89 94.35 0.86 1.90
Cones 450 × 375 60 154.78 2.82 94.45 0.92 1.81
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whose disparity has been propagated from their corresponding ψ pixels and the pixels that correspond to TLR = 0 are considered as “unoccluded”.
These pixels are used in the application of the mean shift segmentation-based occlusion handling, as follows.

Initially, for eachmean-shift segment the ratio of the unoccluded pixels inside this segment over the total number of segment pixels is evaluated.
This ratio constitutes a reliabilitymeasure for the disparities inside this segment. Such a reliabilitymap is illustrated in Fig. 11a. Thewarmer the color,
the more reliable the disparities inside a segment are. A segment is considered as reliable if the ratio is over Tr (experimentally defined to be 0.3).

2.5.1.3.1. Reliable segments. For the outlier pixels inside a reliable segment S, a voting scheme that counts votes of the reliable pixels disparities is
applied. In more detail, for each outlier pixel x ∈ S, the inlier pixels that belong to S and lie within Euclidean distance RS (radius of support region
defined in Section 2.3.1) from x are taken into account in order to get themost frequent disparity. This disparity is propagated to x, which is consid-
ered as reliable now. This process is repeated for all outliers inside a segment S.

2.5.1.3.2. Unreliable segments. For unreliable segments, the information from reliable neighboring segments is used to define their disparity. Reli-
able neighboring segments are the reliable segments that have common borderswith the unreliable segments. For example, in Fig. 11b the unreliable
segment is surrounded by the colored neighboring segments. The reliable neighboring segment that will propagate its prevalent disparity to the un-
reliable segment is the one that has themost similar color to the unreliable segment. Notice that themean color of each segment was estimated dur-
ing the mean-shift segmentation. The color similarity between two segments is defined as the mean Euclidean distance between their mean RGB
colors and should be over TS (experimentally defined to be 25). The disparity map, after handling occluded areas based on the mean-shift
segmentation-based approach, is visualized in Fig. 11d. The red areas in Fig. 11d correspond to pixels that have not been handled using the mean-
shift segmentation-based handling.

2.5.1.4. Combined occlusion handling. Finally, the occluded areas that have not been handled using the mean-shift based segmentation handling are
filled with the disparities that have been estimated through the basic occlusion handling and in this way the combined disparity map of Fig. 11e is
acquired.

2.5.2. Disparity edges refinement
Disparity edges, which correspond to depth discontinuities, may contain disparity errors [9]. Therefore, a two-step approach is used to refine the

disparity information at the edges. The first step detects and handles the disparity edges at a coarser level and the second one at a finer level.
The pixels that belong to a disparity edge are assumed to have a difference greater or equal to 2 with at least one of their 4-adjacent pixels dis-

parity. Otherwise, if the difference is below 2, then the surface varies smoothly and therefore one can assume that there is no depth discontinuity.
Fig. 12b shows the disparity edges extracted from the disparitymap of Fig. 12a. During thefirst step, around each pixel of the disparity edge, a circular
region of radius 3 is defined. The disparities of the pixels that fall inside the circular region and at the same time belong to the samemean-shift seg-
ment, as the pixel of the disparity edge, are used to find the most frequent disparity value. This value is propagated to the edge pixel. The disparity
result after the first step is depicted in Fig. 12c.

The second step handles discontinuities at a finer scale. Firstly, canny edge detection (see Fig. 12d) is applied to the disparity result of Fig. 12c.
Canny can detect disparity edges at finer scale than the coarse previously-described step (this is evident when comparing Fig. 12b and Fig. 12d).
Then a patch of size 3 × 3 is centered at each edge point and the disparity regions separated by the edge are found. Fig. 12d shows that the edge sep-
arates the patch into a yellow and green disparity region. The disparity region that contains the pixel with the greatest color similarity to the edge
pixel (the color similarity is found according to the initial reference stereo image) gives its disparity to the considered pixel.

2.5.3. Uniform areas handling
Usually, images contain large uniform areas, where it is difficult to establish accurate pixel correspondences between two images. In order to deal

with ambiguous matches in these areas, a new methodology is proposed in this paper.

2.5.3.1. Detection of uniform areas. Initially, large uniform areas on the image are detected. Large uniform areas are considered to be the mean-shift

segments that contain over 2 � RS
2 pixels (RS is the radius of the support region as defined in Section 2.3.1). Then, each segment's “inlier” pixels

are estimated and used for the uniform areas handling.
Table 2
Parameters testing.

“Best” β = 0.25 β = 0.35 λRGB = 25 λRGB = 35 γc = 7 γc = 9 λCEN = 40 λCEN = 50 RS = 17 RS = 21 No criterion

Avg. Rank 13.9 15.1 14.2 14.5 15.2 15.2 15.0 15.6 14.8 14.2 15.1 15.9
Nonocc 2.08 2.11 2.09 2.10 2.11 2.10 2.10 2.12 2.10 2.09 2.10 2.16
All 4.51 4.57 4.52 4.51 4.53 4.53 4.54 4.54 4.53 4.52 4.54 4.57
Disc 6.41 6.41 6.43 6.43 6.41 6.51 6.43 6.41 6.48 6.46 6.49 6.39



Fig. 18. Disparity maps generated with the proposed system and their corresponding disparity error maps for error threshold 1.
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2.5.3.2. Inlier pixel regions. Inlier pixels x from dLR(x) (Section 2.3.2), are used for the uniform-areas handling. We determine inlier pixel regions as
follows:

• The outliersmapOTLR¼1
1 xð Þof Section 2.4.1 (see Fig. 8a), aswell as the outliersmapOTLR¼0

2 xð Þof Section 2.5.1 (see Fig. 10a) are considered in order to
acquire their union, which defines the overall outliers map OU(x). In OU(x), outlier pixels are those that are outliers in eitherOTLR¼1

1 xð Þ orOTLR¼0
2 xð Þ.

Let XIn be the set of inlier pixels in OU(x).
A visual example is given in the first row of Fig. 13. Fig. 13a shows the overall outliers map that is generated after the union of the outliers maps
acquired in Sections 2.4.1 and 2.5.1. The inlier pixels XIn are denoted with red color.

2.5.3.3. Extraction of a reliable pixels, based on histogramanalysis.A histogramanalysis, based on the inlier pixels' disparities dLR(XIn) is applied in order
to acquire a reliable subset of the pixels. For instance, for themean-shift segment of Fig. 13b (markedwith blue color), the histogramof the disparities
of the inlier pixels inside this segment is depicted in Fig. 14a.

Theoretically, the disparities of the pixels in a segment S should vary continuously within a disparity range, since they belong to the same contin-
uous surface. Based on this assumption, the employed approach is followed to get the subset of the reliable pixels.

Initially, the histogramof disparities is separated into parts (each part expresses a disparity range), as shown in Fig. 14a. To separate the histogram
into parts, bins with a height below a “separation threshold” are ignored, so that they do not affect the separation process. This threshold is selected

equal to: Number of inlier pixels in S
Number of possible disparities. The reliable subset of inlier pixels includes the pixels whose disparities belong to the histogram part with themost

numerous population (3rd part of Fig. 14a).

2.5.3.4. Planar fitting. Afterwards, the reliable pixels and their disparities (red points in Fig. 15a) are used to fit a planar surface to the segment. The
robustmethod of Principal Components Analysis (PCA) described in [43] is used to estimate the parameters of the plane. The two first principal com-
ponents define the plane. Let the estimated plane be: dp(x) = pT ⋅ x, where p = [p1, p2]T. Then each x ∈ S is assigned the disparity dp(x). The new
disparity values inside the segment are depicted with blue in Fig. 15a.

A second example of uniform area handling is given considering the Cones stereo pair. In brief, Fig. 13c shows the overall outliers map. For the
mean-shift segment of Fig. 13d (marked with blue color), the histogram of the disparities of the inlier pixels inside this segment is depicted in
Fig. 14b. The reliable subset of inlier pixels includes the pixels whose disparities belong to the 1st histogram part of Fig. 14b. The reliable pixels
and their disparities (red points in Fig. 15b) are used to fit a planar surface to the segment. The new disparity values inside the segment are depicted
with blue in Fig. 15b.
Table 3
The rankings in the Middlebury benchmark.

Algorithm Avg. rank Tsukuba Venus Teddy Cones

Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc

LCU [44] 12.0 1.06 1.34 5.50 0.07 0.26 1.03 3.68 9.95 10.4 1.63 6.87 4.82
TSGO [45] 12.1 0.87 1.13 4.66 0.11 0.24 1.47 5.61 8.09 13.8 1.67 6.16 4.95
Proposed 13.9 1.02 1.23 5.51 0.08 0.20 1.11 5.16 9.43 13.0 2.07 7.16 5.97
JSOSP + GCP [46] 14.1 0.74 1.34 3.98 0.08 0.16 1.15 3.96 10.1 11.8 2.28 7.91 6.74
ADCensus [9] 16.5 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95
AdaptingBP [6] 20.4 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32



Table 4
Evaluation of the two-phase combination strategy.

Init. Phase1 Phase2 CENSUS SIFT

Nonocc 8.81 7.91 6.43 18.5 15.0
All 14.4 13.6 12.2 23.1 19.8
Disc 15.9 15.6 14.6 27.3 27.8
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Fig. 16 shows three examples of uniform region handling. In the first and second rows of Fig. 16, the disparity results before and after uniform
region handling are visualized, respectively. The first and second columns include the result of handling the blue-colored segments of Fig. 13b and
Fig. 13d, respectively. The third column shows an example for the Teddy stereo pair. The examples in the second and third columns show clearly
the improvements in the disparity maps after applying the plane fitting process.

However, it is not always valid to assume that large areas with low texture are planar. Additionally, some large areasmay have beenwrongly seg-
mented, leading to inaccurate plane fitting. Therefore, in this paper a specific metric is adopted, which is used to verify if the planar fitting is success-
ful. This metric is the median of the absolute differences between the initial disparities of the reliable pixels and the disparities of the reliable pixels
that are estimated after the plane fitting and is defined as: MEDfit (measured in disparity units). In this paper, the condition MEDfit b 0.5 has to be
satisfied, in order to consider the planar fitting as successful.

In Fig. 17 an example is visualized. Uniform area handling is applied on theMidd1 stereo pair, which belongs to the extended stereo dataset, and
contains large low-textured areas. In Fig. 17a the estimated disparity mapwithout applying the uniform areas handling is depicted. It is obvious that
disparity estimation is not reliable in low-textured areas. Fig. 17b shows the disparity map after applying uniform areas handling to all low-textured
areas. Fig. 17c visualizes with green the low-textured areas withMEDfit b 0.5 and with red the low-textured areas with MEDfit ≥ 0.5. In Fig. 17d the
disparity map after applying uniform areas handling only for the green low-textured areas is depicted. The disparity error for the case of all regions
and Δd N 1 for theMidd1 stereo pair is 40.65%, 14.88% and 9.69% for the disparity maps of Fig. 17a, Fig. 17b and Fig. 17d, respectively. Therefore, this
example verifies the efficiency of the uniform areas handling to decrease the disparity estimation error.

Amedianfilter using a 5 × 5 neighborhood is applied to the disparity result that is generated after executing all the steps of our approach, in order
to remove spurious disparities before acquiring the final disparity map.

2.6. Computational cost

A non-optimized C++ implementation of the algorithm is used to report on the required computational time. The algorithmwas executed
on a desktop PC with Core i7-3770 3.40 GHZ CPU and 8 GB RAM. The total processing time, using as input the four stereo pairs of the
Middlebury evaluation benchmark [26], is indicated in Table 1. The measured time is the average of 5 separate runs. Additionally, this table
provides the percentage of the total time that is spent for each of algorithm's stages, which include: 1. the matching cost computation stage
(M.C.) (Section 2.2), 2. the cost aggregation stage (C.A.) (Section 2.3), 3. the disparity optimization stage (D.O) (Section 2.4) and 4. the dispar-
ity refinement stage (D.R.) (Section 2.5). The cost aggregation is the most computational expensive stage (on average 91.84 % of the total pro-
cessing time). Nevertheless, this stage can be parallelized since cost aggregation can be performed independently for non-overlapping parts of
the image.

Concluding, most parts of the algorithm have low computational cost. The step of the algorithm with increased computational cost in-
cludes the adaptive support weight cost aggregation. However, this time consuming part can be implemented in Graphics Processing Units
(GPUs) as can be verified in [47]. Additionally, there are works, such as [48,49] that propose approximations to derive fast
implementations of the original adaptive support weight algorithm [12]. The drawback of these methods is that they sacrifice quality
for high computational speed [47].
(a) (b) (c)

Fig. 19. Average percent of bad pixels after applying sequentially refinement steps for (a) non-occluded regions, (b) all regions and (c) near depth discontinuities regions.



Table 5
Segmentation parameters testing.

(hs, hr) = (2, 3) (hs, hr) = (3, 4) (hs, hr) = (4, 4)

Avg. rank 16.1 16.9 16.0
Nonocc 2.16 2.14 2.12
All 4.77 4.69 4.69
Disc 6.51 6.54 6.59
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3. Experimental results

In this section the experimental results on multiple datasets are
presented. Inmore detail, the four stereo pairs of theMiddlebury online
stereo evaluation benchmark [26], except for the evaluation of this
method, are used to select a set of optimum parameters and to evaluate
the disparity refinement process. Furthermore, this section presents ex-
perimental results on 27 additional Middlebury stereo pairs in order to
verify the efficiency of the proposed approach.

3.1. Set of optimum parameters

The parameters used for the experiments are the same for all tested
stereo pairs.More specifically, β (defined in Section 2.2.1) is set equal to
β = 0.3, while the parameters used for the cost functions (see
Section 2.2.3) are λRGB = 30, λCEN = 45 and λSIFT = 45. The radius of
the support area (see Section 2.3.1) is set equal to RS=19 and the adap-
tive weight parameters are γc = 8 and γe = RS. Those values are select-
ed based on experiments that were performed on the Middlebury
Online Stereo Evaluation Benchmark.

In the column “Best” of Table 2, the numeric results from the
Middlebury Stereo evaluation for the disparity maps extracted using
these optimum parameters, are given. The results include the overall
performance measure (“Avg. Rank”), the error in non-occluded regions
(“Nonocc”), the error in all regions (“All”) and the error near depth dis-
continuities (“Disc”). In Section 3.2.4 further parameters testing is
performed.

3.2. Middlebury online stereo evaluation benchmark

3.2.1. Disparity results
The disparity results of the proposed method, for the optimum pa-

rameters set, accompanied with the disparity error maps as extracted
by the Middlebury evaluation system are visualized in Fig. 18. Errors
in non-occluded and occluded regions are marked in black and gray
respectively.

The ranking results in Table 3 (reference period: November 2014),
for error threshold equal to 1, indicate that the proposed method is
3rd out of 161methods that are included in theMiddlebury Stereo Eval-
uation. However, no information on the 1st [44] and 2nd [45] ranked
methods is available, since they are currently under review. Therefore,
the proposed method ranks 1st among already published methods.
More specifically, the proposed method ranks: 9th for the “Tsukuba”
image pair, 3rd for the Venus image pair, 32nd for the Teddy image
pair and 5th for the “Cones” image pair.

The 32nd position in the ranking for the Teddy image pair is because
of the very slanted surface at the bottom of the image, where the pro-
posed method cannot handle well the very slanted surface. However,
it can be deduced from the experimental results that the proposed
method outperforms the rest of the published stereo methods, which
are evaluated online in the Middlebury stereo evaluation benchmark,
in image areas excluding very slanted surfaces.

3.2.2. Evaluation of the two-phase combination strategy
The improvement in the accuracy of the initial disparity map,

which is achieved by using the two-phase combination strategy of
Section 2.3.2, is evaluated according to the Middlebury online evalu-
ation system. Table 4 depicts the average percent of bad pixels for the
disparity maps generated using the four Middlebury image pairs. In
specific, this table includes results for non-occluded regions
(“Nonocc”), all regions (“All”) and regions near depth discontinuities
(“Disc”).

The evaluation results for the disparity map resulting via WTA from
VR − C are given in the “Init.” column. The evaluation results for the dis-
paritymap resulting viaWTA fromVR− C′ (which is acquired after apply-
ing first combination phase) are given in the “Phase1” column. The
average numeric results for the disparity map dLR resulting via WTA
from VR − C

″ (which is acquired after applying second combination
phase) are given in the “Phase2” column. Obviously, each combination
phase assists in improving the accuracy of the generated disparity map.

Additionally, Table 4 includes in the “CENSUS” column the evalua-
tion results for the disparity map resulting via WTA from VCEN and in
the “SIFT” column the evaluation results for the disparity map resulting
via WTA from VSIFT. Though, the results in “CENSUS” and “SIFT” are
worse that the results in “Init.” the efficient exploitation of VCEN and
VSIFT in the two-phase combination strategy improves the disparity es-
timation accuracy.
3.2.3. Evaluation of the disparity refinement process
Furthermore, the Middlebury online benchmark is exploited in

order to examine the improvement introduced by the proposed dis-
parity refinement steps. Fig. 19 depicts how the average percent of
bad pixels decreases after applying sequentially each of the dispari-
ty refinement steps, which include occlusion handling, disparity
edges refinement and uniform regions handling. Fig. 19 includes re-
sults for non-occluded regions (see Fig. 19a), all regions (see
Fig. 19b) and regions near depth discontinuities (see Fig. 19c). As
it is expected, the occlusion handling decreases the bad pixels per-
cent more than the rest refinement steps, since it handles large out-
lier areas. Disparity edges refinement and uniform regions handling
improve further the accuracy, so that the proposed framework be-
comes the top ranked published method in the Middlebury stereo
evaluation.
3.2.4. Further parameters testing
As mentioned in Section 3.1, the column “Best” of Table 2 gives the

numeric disparity estimation results using optimum parameters. In
the rest columnsof Table 2,we provide the results in the case that all pa-
rameters are kept the same as the optimumones, except for the param-
eter in the top of the column. For each parameter a smaller and a larger
value than the optimum one are tested. Table 2 verifies that the opti-
mum parameters give the best results.

The last column of Table 2, with the annotation “No criterion”,
gives the results of this method for the best set of parameters, with
the difference that in this case the new criterion for the definition
of the smoothness terms in Eq. (21) is not used. The results prove
that without the exploitation of the new criterion the disparity accu-
racy decreases.

The segmentation maps are exploited in different stages of this
method. Therefore, it is important to verify that small variations to the
optimum parameters (hs, hr) = (3, 3) that adjust the segmentation re-
sult (see Section 2.1.2) do not affect significantly the performance of
this method. Table 5 exhibits the error results for different values of
the spatial radius and space feature radius. The rest of parameters are
set to their optimum value.

For all parameter tests, the proposed method ranks in the top five
ranking positions though the disparity accuracy decreases. This fact
proves that this approach maintains its good disparity estimation accu-
racy even with changes to the optimum parameters.



48 G.A. Kordelas et al. / Image and Vision Computing 35 (2015) 31–49
3.3. Extended comparison

Many ofmethods are evaluated on just the four stereo pairs from the
Middlebury online stereo database, which arementioned in Section 3.2.
However, evaluation on limited data is not sufficient to give a clear pic-
ture of the overall performance of an algorithm, since the average error
rates of the best performing techniques are close to each other. For this
reason, except for the four stereo pairs from theMiddlebury online ste-
reo evaluation benchmark, evaluation is performed on two additional
Middlebury datasets in order to assessmore rigorously the performance
of the proposedmethodology. The 2005 and 2006 datasets, presented in
[50], include 27 stereo pairs with their ground truth. The error percent-
age is measured for both non-occluded and all regions.

Table 6 shows the results for the percentage of erroneous pixels hav-
ing 1 or 2 disparity level difference with respect to ground truth. The re-
sults regarding the rest of methods in Table 6 are copied from the very
recent work of [8]. The column “All” refers to case where all pixels on
the disparity map are considered to estimate the percentage of errone-
ous pixels, while the term “Visible” refers to the case where only the
pixels on the disparity map that correspond to unoccluded regions are
considered to estimate the percentage of erroneous pixels. In general,
the proposed work gives better results for the case of “All” regions
than the rest of themethods that are evaluated in [8]. More specifically,
for the case of “All” regions andΔd N 1,Δd N 2 the disparity errors of our
approach are 2.02% and 2.7% less than the second best method, respec-
tively. The low error for Δd N 2 indicates that the estimated disparity for
some pixels is very close to their ground truth disparity and differs just 2
disparity levels.

The disparity maps for the 27 stereo pairs, with their respective dis-
parity error maps for Δd N 1, can be found in slides 4–17 of the supple-
mentary material that accompanies this paper.
4. Conclusions

In this paper a method that produces very accurate disparity results
for stereo image pairs is presented. In order to achieve increased accura-
cy, the proposed method uses efficiently three cost metrics to acquire a
reliable combined cost volume. The optimization of the cost volume is
performedusing a semi-globalmatchingmethod,where a new criterion
is introduced for the definition of the smoothness penalty terms that
improves the disparity results. Outliers handling is performed combin-
ing a simple scheme and mean-shift segmentation base occlusion han-
dling. Another innovative aspect of this paper is the way disparities
are filtered based on histogram analysis in order to be used in uniform
regions handling. The remarkable performance of the proposedmethod
is verified experimentally using the Middlebury evaluation benchmark
and an extended stereo dataset. The ideas introduced in this paper
could be used or extended by future stereo algorithms in order to
boost their accuracy performance.

Future work will focus on improving the disparity estimation for
very slanted surfaces. Probably, the employment of a different cost ag-
gregation approach is needed to achieve this objective.
Table 6
The error results for the extended stereo datasets.

Error% Δd N 1 Δd N 1 Δd N 2 Δd N 2

All Visible All Visible

Proposed 12.13 8.26 7.64 4.74
Inf. Permeability [8] 14.15 7.98 10.34 6.46
Guided Filter [14] 15.06 8.40 11.82 6.80
Geodesic Support [17] 16.49 9.85 11.76 8.04
Var. Cross [16] 17.13 8.81 12.69 7.04
Adapt. sup. [12] 16.94 9.54 13.10 7.42
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