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Abstract: Usage of Unmanned Aerial Vehicles (UAVs) is growing rapidly in a wide range of consumer
applications, as they prove to be both autonomous and flexible in a variety of environments and tasks.
However, this versatility and ease of use also brings a rapid evolution of threats by malicious
actors that can use UAVs for criminal activities, converting them to passive or active threats.
The need to protect critical infrastructures and important events from such threats has brought
advances in counter UAV (c-UAV) applications. Nowadays, c-UAV applications offer systems that
comprise a multi-sensory arsenal often including electro-optical, thermal, acoustic, radar and radio
frequency sensors, whose information can be fused to increase the confidence of threat’s identification.
Nevertheless, real-time surveillance is a cumbersome process, but it is absolutely essential to detect
promptly the occurrence of adverse events or conditions. To that end, many challenging tasks arise
such as object detection, classification, multi-object tracking and multi-sensor information fusion. In
recent years, researchers have utilized deep learning based methodologies to tackle these tasks for
generic objects and made noteworthy progress, yet applying deep learning for UAV detection and
classification is considered a novel concept. Therefore, the need to present a complete overview of
deep learning technologies applied to c-UAV related tasks on multi-sensor data has emerged. The
aim of this paper is to describe deep learning advances on c-UAV related tasks when applied to data
originating from many different sensors as well as multi-sensor information fusion. This survey may
help in making recommendations and improvements of c-UAV applications for the future.

Keywords: deep learning; multi-sensor; data fusion; UAVs; security; surveillance

1. Introduction

Unmanned Aerial Vehicles (UAVs) or Systems (UAS) (The terms UAVs, UAS, and drones are
equivalently used in this document) are becoming a part of citizens’ everyday life. UAVs have
proven to be both autonomous and flexible in a variety of environments and tasks and they bring a
continuous market increase in a growing number of useful applications. Recent reports [1,2] confirm
the proliferation of UAV production worldwide. Today, UAVs are used from government authorities
for tasks such as border security, law enforcement, and wildfire surveillance to commercial related tasks
used by civilians such as construction, agriculture, insurance, internet communications, and general
cinematography. However, the rapid spread of UAVs is generating serious security issues. In recent
years, newspapers and mass media have reported dozens of incidents involving UAVs flying over
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restricted areas and around critical infrastructures or during public events. On December 2018, a UAV
was spotted flying close to Gatwick airport ultimately causing the closure of Britain’s second largest
airport for 36 h and disrupting 1000 flights. Reports estimated that this incident alone cost £1.4 m
and affected the lives of many passengers [3]. Prisons, airports, sporting venues, public buildings,
and other sensitive sites are at serious risk, and correctly understanding the multitude of challenges
that UAVs present is central for the effective protection of critical infrastructures and citizens.

Recent advances in counter UAV (c-UAV) solutions offer systems [4] that comprise a multi-sensory
arsenal in an effort to robustly maintain situational awareness and protect a critical infrastructure or an
important event. These applications include multiple integrated sensors for detecting the threat, mainly
through radar and/or electro-optical/thermal (EO-IR) sensors and less commonly through acoustic and
radio frequency (RF) sensors. Unfortunately, the majority of these systems are commercial applications
and elaborating on their specifications would go beyond the purpose of this work. In Figure 1, a general
comparison between individual components of such systems in terms of detectable range, localization
accuracy, classification capabilities, multi-target extension, and operational conditions with respect to
environmental settings and price is presented. Non-automatic systems that include end users who
monitor and confirm the classification label of the detected target are usually the best performing in
classification capabilities but have generally a high operational cost due to training of personnel and
system maintainance. Both electro-optro and thermal cameras offer high classification capabilities
with accurate localization and ranging, when multiple sensors are deployed. Electro-optro cameras are
generally cheap, though thermal cameras are more expensive, but both are sensitive to environmental
settings. On the other hand, acoustic sensors are generally robust to environmental settings, but their
limited effective range makes them a less common option. Finally, radar sensors are the most common
solution for the detection part due to precise localization and long ranging, combined with decent
classification capabilities that operate regardless of environmental settings.

Figure 1. Comparison of key characteristics between individual components of counter-UAV systems.

A considerable drawback in multi-sensory c-UAV applications is that the information from the
different sensors is not fused to produce a result but instead the alert signals are used independently
from each system component to provide multiple early warnings that are later confirmed by a
human operator. For example, an early detection coming from the radar sensor is later confirmed
by the operator looking at this direction through an optical camera. The system can be fully
automatic by leveraging recent advances in data fusion techniques without a considerable trade
off in classification capability. Data fusion techniques have gathered significant attention in recent
years mainly due to the interest of combining information from different types of sensors for a
variety of applications [5]. The target scope of data fusion is to achieve more accurate results than
those derived from single sensors, while compensating for their individual weaknesses. On the
other hand, artificial intelligence and deep neural networks (DNNs) have become a very attractive
methodology for data representation [6]. They are utilized to process a large variety of data originating
from many different sources because of their ability to discover high-level and abstract features that
typical feature extraction methods can not [7]. Therefore, the utilization of deep learning methods in
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data fusion aspects can be of significant importance in addressing the critical issue of multi-sensory
data aggregation.

A complete c-UAV solution needs to be able to automatically detect the intrusion of potentially
multiple UAVs, identify their type and possible payload, and track their movement consistently inside
the monitored area. Additionally, multiple information from the available sensors need to be fused to
increase the threat’s identification confidence. In summary, multi-object detection and classification as
well as multi-object tracking and data fusion are the key tasks at hand. Recent advances with deep
learning in several application domains, including generic object detection, salient object detection,
face detection, and pedestrian detection are summarized in [8]. Similarly, in [9], an extensive review
with the latest advances in tracking algorithms and evaluation of the robustness of trackers in the
presence of noise are studied. Finally, Zhu et al. [10] provide a systematic analysis on advances with
deep learning on remote sensing applications including data fusion with deep learning. Therefore,
many recent scientific publications utilize deep learning based methodologies to tackle these tasks for
generic objects showing improvements in performance, yet applying deep learning for UAV detection
and classification is considered a novel concept.

The soaring of UAV production has brought an increase in research publications related to UAV
detection and classification over the past few years. Since 2017 more than 100 publications have
emerged, whereas, in prior years, fewer than twenty had been published each year. In Figure 2,
the number of scientific publications with terms UAV or drone detection and/or classification in
their title, excluding patents and citations, since 2015 and up until 2018 based on Google scholar’s
search [11], is presented. From January and up until June 2019, another 26 related publications were
produced. This steady increase in the number of related publications confirms the valid and increasing
motivation of the research community on such task.

Figure 2. Number of publications with terms UAV or drone detection and/or classification in their title
since 2015 based on Google scholar search.

In this paper, we focus on the UAV detection and classification related scientific publications
which are utilizing radar, electro-optical, thermal and acoustic sensors for the data acquisition and
deep learning as the primary tool for data analysis. We specifically select those sensors because
they are traditionally included in surveillance systems due to their high performance and can also
cover each other’s weaknesses in a potential multi-sensory information fusion scheme. Electro-optical
cameras are the most commonly employed sensors for general surveillance. When the target is visible
the detection and classification capabilities are the highest. However, occlusions, nighttime and low
visibility conditions are the biggest disadvantages. To address some of these issues thermal cameras are
often used in combination. Thermal cameras are excellent for nighttime surveillance and depending on
the technology they can also “see” through rain, snow, and fog. However, high end thermal cameras
are utilized for military applications and the ones found in commercial applications might still face
issues with high humidity in the atmosphere or other adverse environmental settings. On the other
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hand, radar sensors are invariant to environmental settings but may lack in classification capabilities
compared to camera sensors. Moreover, high end acoustic sensors are usually robust to environmental
settings and provide adequate classification capabilities which make them another reliable choice.
Furthermore, we extend our study by presenting recent advances in data fusion methods in order to
make recommendations for a potential multi-sensor information fusion based algorithm for increased
performance in threat identification. The fundamental aim of multi-sensor learning is to handle
and associate information from multiple sensors through a holistic perspective [12]. Dealing with
multiple input signals reveals the difficulty of interpreting with a large heterogeneity of data which in
most cases results to lack of domain knowledge and data examination [13]. On the other hand, deep
learning presents the ability to manage complex and diverse data. Multi-sensor deep learning networks
learn features over multiple input streams. Specifically, these networks learn relationships between
dissimilar input signals. Moreover, they discover how multi-sensory data can share a representation in
a common space [14]. Utilizing deep learning techniques for multi-sensor learning tasks displays major
benefits. In particular, multi-sensor learning is capable of understanding in detail real world problems,
as well as filling the missing or corrupted sensor data. Consequently, it is obvious that multi-sensor
deep learning research constitutes an emerging field, the development of which is critically required to
manage the challenging tasks of interpreting, perceiving, and modeling multi-sensor signals.

In Figure 3, we present the overall structure of this review. A section for every selected sensor
where the state of the art in uni-modal (analysis on the data originating only on this sensor) UAV
detection and classification methods when utilizing deep learning as the main analysis tool is provided.
For the case of thermal cameras, we present deep learning based methods for general object detection
and classification because, to the best of authors’ knowledge, there is currently no work tackling the
UAV detection and classification problem. Finally, a section for multi-sensor information fusion is
presented. This section includes a description of the existing multi-sensor fusion methodologies and
schemes, and it also reviews scientific publications based on deep learning for the task at hand.

Figure 3. Overall structure of this review.

The principal aim of our research is to develop an understanding of the available tools for the task
at hand and provide a general road map for the interested reader, as well as make recommendations
and improvements on the design of an effective c-UAV system. An essential challenge that remains
open and deep learning methods need to solve is the UAV detection and classification problem. In order
to contribute to this research, we gather related works that are associated with c-UAV tasks using deep
learning methods for following areas: a. Multi sensor fusion, b. Radar sensors, c. Electro-Optical
cameras, d. Thermal cameras, and e. Acoustic sensors. The target audience of this systematic review
are researchers who focus on UAV detection and classification utilizing deep learning as the primary
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data analysis tool for each of the aforementioned areas as well as developers from the industrial sector
who want to improve their c-UAV applications.

This literature review is defined in the following order. Initially, we focus on the techniques and
methods that have been proposed for c-UAV applications and more explicitly in the UAV detection and
classification tasks. Nevertheless, several methods that detect, classify and localize UAVs carried crucial
importance in recent years. Consequently, we cover both deep learning and traditional non-deep
learning based methods for the task at hand. Conventional methods based on handcrafted features
and attributes that are associated with the UAV detection and classification task are not as common
but are addressed whenever possible to cover the whole picture. Due to the rapid evolution of deep
learning, more and more architectures have been proposed, which have the ability to learn high-level
and semantic representations. Our taxonomy continues beyond the conventional approaches on UAV
sensing, in particular, radar-based techniques or alternative techniques like sound and video-based,
as we focus on the advantages and disadvantages of each sensing technologies.

Radar sensors have traditionally been a reliable choice for the detection part, but their classification
capabilities are not optimal. Small UAVs are easily mistaken with birds and in most cases, it is hard to
distinguish between them. Visual-based techniques utilize high-resolution cameras with the aim to
capture UAVs in several backgrounds, but might suffer from occlusions and the distinction between
similar shaped objects like birds and the main targets. Thermal vision-based techniques use infrared
cameras that take advantage of the heat that electric motors and engines emit. Thermal imaging has
gained more and more interest in computer vision since thermal images contain distinctive features
about the target object but are generally sensitive to high humidity in the environment. Sound-based
techniques make use of arrays of microphones in order to extract the unique acoustic signature of
counter UAVs. Typically, flying UAVs provide unique acoustic signatures in a specific frequency range.
Acoustic features can be extracted from the time and frequency domain. Sound-based methods can
rely on particular audio analysis techniques that are able to extract UAV audio detection from the
background noise. Despite all that, training robust deep neural networks require a large amount of
training data that in many cases are not feasible. Consequently, our work is motivated by the need
to address all the aforementioned challenges. Hence, the focus of our survey is on the deep learning
applications on UAV detection, localization and classification tasks.

The rest of this paper is organized as follows: Section 2 investigates research efforts in the context
of UAV detection and classification on radar based methods. In Section 3, learning based UAV detection
and classification techniques for electro-optical cameras are presented. Section 4 explores applications
of deep learning on thermal cameras. In Section 5, learning based UAV detection and classification
methods for acoustic data are discussed. Section 6 presents data fusion methods combined with deep
learning. In Section 7, a discussion about the impact of the reviewed publications for each topic and a
recommendation for an effective c-UAV system is provided. Finally, Section 8 concludes the literature
review across the field.

2. Radar Sensor

Radar is the traditional sensor for detecting flying vehicles. Compared to other technologies,
radar is in principle the only one able to provide long-range detection (from a few kilometers to
tens of kilometers, depending on the target radar cross section (RCS) [15]) and almost unaffected
performance in adverse light and weather conditions. However, radar sensors designed for detecting
standard (manned) aircraft, with relatively large RCS and high velocity, are not suitable for detecting
very small and slow moving objects, flying at low altitude such as UAVs [16]. Furthermore, UAVs
share key characteristics with birds and reliable classification between the two targets is another key
challenge to consider. Therefore, specifically designed radar architectures have been created for this
demanding application. The typical detection and classification pipeline is to perform radar signal
processing algorithms to detect targets and extract intrinsic features from the processed signal for
automatic classification with a machine learning algorithm [17]. Deep learning based pipelines, include
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processing of the raw data to a more meaningful representation suitable as input to a deep learning
network for automatic target detection and classification [18].

In the following subsections, we present recent works in literature tackling the UAV detection
and classification task for different radar architectures—initially for traditional machine learning
and non-learning based methods and subsequently focusing on recent deep learning based methods.
A summary of all the related works discussed throughout this entire section is presented in Table 1.
A description of the main radar signal processing methods whenever applied, the feature extraction
process, and the employed classifier are provided.

Table 1. Summary of radar based Unmanned Aerial Vehicle (UAV) detection and classification methods
in recent literature

Task Signal Processing Classification Reference

Feature extraction MDS1 with spectrogram, handcrafted features - [19]
Feature extraction MDS with spectrogram and cepstrogram, handcrafted features - [20]
UAV classification MDS with spectrogram, Eigenpairs extracted from MDS linear and non linear SVM2, NBC3 [16]

UAV classification, feature extraction MDS with spectrogram, cepstrogram and CVD4, SVD5 on MDS SVM [21,22]
UAV classification, feature extraction MDS with 2D regularized complex-log-Fourier transform Subspace reliability analysis [23]
UAV classification, feature extraction MDS with EMD6, features from EMD SVM [24]
UAV classification, feature extraction MDS with EMD, entropy from EMD features SVM [25]

UAV classification, localization MDS with EMD, PCA7 on MDS Nearest Neighbor, NBC, random forest, SVM [26]
UAV classification MDS with spectrogram, handcrafted features NBC, DAC8 [27]

UAV detection, tracking MDS with spectrogram, CFAR9 for detection, Kalman for tracking - [28]
UAV classification, feature extraction MDS with spectrogram, PCA on MDS SVM [29]

UAV trajectory classification Features from moving direction, velocity, and position of the target Probabilistic motion estimation model [30]
UAV trajectory and type classification, feature extraction Features from motion, velocity, signature SVM [31]

UAV classification, feature extraction Radar polarimetric features Nearest Neighbor [32]
UAV classification MDS with spectrogram and CVD CNN10 [33]
UAV classification SCF11 reference banks DBN12 [34]
Target detection Doppler processing CNN [35]

UAV classification Direct learning on Range Profile matrix CNN [36]
UAV classification Direct learning on IQ13 signal MLP14 [37]
UAV classification Point cloud from radar signal MLP [38]

UAV trajectory classification, feature extraction Features from motion, velocity, RCS15 MLP [39]

MDS1: Micro Doppler Signature, SVM2: Support Vector Machine, NBC3: Naive Bayes Classifier, CVD4:
Cadence Velocity Diagram, SVD5: Singular Value Decomposition, EMD6: Empirical Mode Decomposition,
PCA7: Principal Component Analysis, DAC8: Discriminant Analysis Classifier, CFAR9: Constant False Alarm
Rate, CNN10: Convolutional Neural Network, SCF11: Spectral Correlation Function, DBN12: Deep Belief
Network, IQ13: In-phase and Quadrature, MLP14: Multi Layer Perceptron, RCS15: Radar Cross Section.

In addition, Table 2 presents the classification results for most of the works included in this review.
Unfortunately, a direct comparison for all methods is not possible due to fact that they are evaluated
on different datasets, with the exception of [16,24,25] who evaluate under the same data.

Table 2. Results of recent radar based Unmanned Aerial Vehicle (UAV) classification methods

Classification Task (Num. of Classes) Classification Method Accuracy (%) Reference

UAV type vs. birds (11) Eigenpairs of MDS1 + non linear SVM2 82 ∗ [16]
UAV type vs. birds (11) MDS with EMD3 + SVM 89.54 ∗ [24]
UAV type vs. birds (11) MDS with EMD, entropy from EMD + SVM 92.61 ∗ [25]

UAV vs. birds (2) SVD4 on MDS + SVM 100 [22]
UAV type (2) SVD on MDS + SVM 96.2 [22]

UAV vs. birds (2) 2D regularized complex log-Fourier transform + Subspace reliability analysis 96.73 [23]
UAV type + localization (66) ∗∗ PCA5 on MDS + random forest 91.2 [26]
loaded vs. unloaded UAV (3) MDS handcrafted features + DAC6 100 [27]

UAV type (3) PCA on MDS + SVM 97.6 [29]
UAV type vs. birds (4) Radar polarimetric features + Nearest Neighbor 99.2 [32]

UAV vs. birds (2) Range Profile Matrix + CNN7 95 [36]
UAV type (6) MDS and CVD8 images + CNN 99.59 [33]

UAV type vs. birds (3) SCF9 reference banks + DBN10 90 [34]
UAV type (2) Learning on IQ11 signal + MLP12 100 [37]
UAV type (3) Point cloud features + MLP 99.3 [38]

UAV vs. birds (2) Motion, velocity and RCS13 features + MLP 99 [39]
UAV type vs. birds (3) Motion, velocity and signature features + SVM 98 [31]

MDS1: Micro Doppler Signature, SVM2: Support Vector Machine, EMD3: Empirical Mode Decomposition,
SVD4: Singular Value Decomposition, PCA5: Principal Component Analysis, DAC6: Discriminant Analysis
Classifier, CNN7: Convolutional Neural Network, CVD8: Cadence Velocity Diagram, SCF11: Spectral
Correlation Function, DBN10: Deep Belief Network, IQ11: In-phase and Quadrature, MLP12: Multi Layer
Perceptron, RCS13: Radar Cross Section. ∗ These numbers stand for comparable dwell time on the order of
< 0.25 s; ∗∗ Two UAV types, with 35 and 31 locations under test respectively.
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2.1. Traditional UAV Detection and Classification Methods for Radar Sensors

2.1.1. Micro Doppler Based Methods

The most commonly employed radar signal characteristic for automatic target classification is
the micro-Doppler (m-D) signature [40]. The m-D signature has been utilized by many works for
automatic target classification such as ground moving target classification [41–43], ship detection [44],
human gait recognition [45,46], and human activity classification [47,48]. In recent years, it has been
an active area of research in the field of c-UAV radar based applications. The intrinsic movements
of the targets could describe the rotation of rotor blades of a rotary wing UAV or of a helicopter,
the propulsion turbine of a jet, the flapping of the wings of a bird, and can be statistically described by
the radar m-D signature [19,20,49]. Publications based on m-D for UAV detection and classification
differentiate in the signal processing method to produce the signature, the feature extraction process
and the employed classifier.

Among the first who utilized the m-D signature for UAV classification were [19,20]. The authors
proposed to produce the m-D signature with spectrogram (Short Time Fourier Transform (STFT))
in [19] and with cepstrogram [50] in [20]. They focused their research on the feature extraction process
to produce key characteristics from the radar signal such as rotation rate, blade tip velocity, rotor
diameter, and number of rotors to classify between different rotary wing type UAVs. Following
a similar approach, Molchanov et al. [16] produced the m-D signature with STFT and extracted
eigenpairs from the correlation matrix of the m-D signature as intrinsic features to train three classifiers,
a linear and a nonlinear Support Vector Machine (SVM) [51] and a Naive Bayes Classifier (NBC) [52]
to classify between ten different rotary UAVs and one class including bird measurements.

De Wit et al. [21] followed a similar signal processing pipeline with [16] before applying Singular
Value Decomposition (SVD) to the spectrogram. The authors proposed three main features to allow
for quick classification: target velocity, spectrum periodicity, and spectrum width. Similarly, in [22],
the authors compared three commonly employed signal representations to produce the m-D signature,
namely STFT, cepstrogram and Cadence Velocity Diagram (CVD), followed by an SVD feature
extraction step combined with an SVM classifier to classify between real fixed and rotary wing
UAV measurements versus artificial bird measurements.

In an attempt to utilize the phase spectrum during the m-D signature extraction, Ren et al. [23]
proposed a robust signal representation, namely a 2D regularized complex-log-Fourier transform and
an object oriented dimensionality reduction technique, for subspace reliability analysis specifically
designed for a binary UAV-classification problem, separating UAVs from birds. Another non common
algorithm for m-D signature extraction was proposed in [24]. The authors utilized an empirical-mode
decomposition (EMD) [53] based method for automatic multiclass UAV classification. The radar
echo signal was decomposed into a set of oscillating waveforms by EMD and eight statistical and
geometrical features were extracted from the waveforms. A nonlinear SVM was trained for target class
label prediction after feature normalization and fusion. The authors validated their method on the
same dataset as [16] outperforming common Fourier based micro Doppler extraction methods. In an
extension of [24], Ma et al. [25] studied the usefulness of six types of entropy from a set of intrinsic
mode functions extracted from EMD on the radar signal for UAV classification. The authors proposed
to fuse the extracted features from the best three types of entropy, obtained with signal down sampling
and normalization and then fed as input to a nonlinear SVM. Another work based on both STFT and
EMD to extract the m-D signature from a low frequency radar is [26]. The authors studied both the
UAV wing type as well as the UAV localization. They handled localization as a classification problem
by expanding the number of different classes based on a set number of locations for each UAV type
under test. The proposed method combined both EMD and STFT to produce the m-D signature and
extracted features with Principal Component Analysis (PCA). The UAV classification and localization
was studied under four classifiers, namely a k-Nearest Neighbor, a random forest, a Naive Bayes,
and SVM.
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Apart from typical radars with one antenna for receiver and transmitter, multi-static radars
with more than one antennas are also considered in the literature. In [27], the authors proposed to
feed a Naive Bayes and a discriminant analysis classifier [54] with features based on the Doppler
and bandwidth centroid of the m-D signatures. The experiments included real measurements
of a rotary wing UAV, both loaded and unloaded with a potential payload. In a similar work,
Hoffman et al. [28] proposed a novel UAV detection and tracking method on the same multi static
radar as [27]. The authors combined m-D features with a Constant False Alarm Rate (CFAR) detector
to improve UAV detection results. The detection results are utilized with an extended Kalman filter
for tracking. Finally, in [29], the authors utilized two radars operating at different bands to extract
and fuse the m-D signatures from both radars in order to classify three different rotary wing type
UAVs. The m-D extraction was performed with STFT for both radars and the features were extracted
with PCA. The extracted features were fused and fed to an SVM classifier demonstrating gains in
performance compared to each radar separately.

2.1.2. Surveillance Radars and Motion Based Methods

A surveillance radar is operating with a rotating antenna to detect and track multiple target.
It is designed to constantly seek the space to find new targets [17]. Due to the fact that the radar
is constantly seeking the space for new targets, the time used for illuminating the target is usually
very small, which does not allow for the m-D extraction [55]. Hence, the classification of the detected
targets is performed with features describing the signature of the target, such as RCS, or the motion of
the target.

Chen et al. [30] proposed a probabilistic motion model estimation method based on calculating
the time-domain variance of the model occurrence probability in order to classify between UAVs
and birds with data originating from a surveillance radar. The authors utilized moving direction,
velocity, and position of the target information to build their motion estimation models and proposed
a smoothing algorithm on top of a Kalman filter tracking to enlarge the gap between the estimations of
target model conversion frequency for birds and UAVs. They validated their approach on simulated
and real data showing promising results. Torvik et al. [32] considered the UAV versus bird classification
problem by using nine polarimetric parameters combined with a nearest neighbor classifier extracted
from a signal captured by a surveillance radar. The authors proved that high classification accuracies
can be achieved even in the absence of micro-motion features.

Messina and Pinelli [31] study the problem of automatic UAV classification with data originating
from a Linear Frequency Modulated Continuous Wave (LFMCW) 2D surveillance radar. The proposed
method utilizes a two-step classification process that initially classifies targets between UAV and
everything else (e.g., aircraft, birds, humans) and subsequently classifies the recognized UAVs
between Rotary wing and Fixed wing type. The proposed classification method is built on [39,56] by
creating a set of handcrafted features based on radar signature (RCS, Signal-to-Noise Ratio (SNR), etc),
kinematic information (combined with a tracking algorithm for each detected target) and velocity based
information. The selected classifier was a SVM that was optimized to avoid overfitting by selecting
a subset of the proposed 50 features and by training it under three different schemes. Experimental
results show high classification accuracies for both tasks, especially for the first step between UAVs
and rest of the world.

2.2. Deep Learning Based UAV Detection and Classification Methods for Radar Sensors

Deep learning based methodologies have been the most successful approaches for many tasks in
image, video, and audio over the past few years. However, deep learning has yet to take over for tasks
concerning radar data. Typical end-to-end deep learning pipelines usually require a large amount of
ground truth annotated data that are easily produced and are widely available for common sensors
such as cameras and microphones but are scarce for radar sensors. Furthermore, the annotation of radar
data can only be performed by an expert in the field. Finally, acquiring raw data from a radar sensor
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may not be enough since sophisticated radar signal processing is usually required to modify the data
representation in order to extract spatiotemporal and intrinsic information which will be meaningful
for a deep learning architecture to learn. Despite all these challenges, there has been an increase in
works combining radar data and deep learning in recent years. High resolution surveillance radars
produce the High Resolution Range Profiles (HRRP) which have been employed by many related
works in the literature for large object classification in typical radar architectures ([57–59]). Moreover,
in [60,61], the authors proposed deep learning based methods for automatic target recognition based
on Synthetic Aperture Radar (SAR) images. However, both of these methods require that the targeted
objects are fairly large [16], hence are not applicable to UAV detection and classification. The current
literature on UAV detection systems that utilize data originating from different radar architectures
based on deep learning methods is described here. The main idea is to extract the spectrogram from
the radar signal in order to produce the m-D signature of the detected object and utilize the resulting
images as an input to a deep learning network [33].

The first work that utilized Convolutional Neural Networks (CNNs) to learn directly from the
m-D signature spectrograms and classify UAVs was [33]. The authors employed GoogleNet [62] and
trained it with spectrograms from real UAV measurements from a Frequency Modulated Continuous
Wave (FMCW) radar. In addition, they proposed a method to improve the shortfalls of m-D signature
by merging it with its frequency domain representation, namely the cadence velocity diagram (CVD).
They successfully performed tests under two different environments (anechoic chamber and outdoor)
with two drones flying under different numbers of operating motors and aspect angles.

Mendis et al. [34] considered a deep learning based UAV classification algorithm developed
for a S-band continuous wave radar. They experimented with three different UAV types two rotary
and one fixed wing. The spectral correlation function (SCF), which is the Fourier transform of the
autocorrelation function, was employed to identify unique modulations caused by the many dynamic
components of the target of interest. A deep belief network (DBN) [63] was utilized as the classifier of
this work; unlike typical deep neural networks, the layers are interconnected rather than individual
units, resulting in a very hierarchical and modular design. The measured data were passed through
four SCF pattern reference banks and these were weighted and summed before being fed into the
classifier to make a final decision on the target.

Typical radar detection pipelines include Doppler processing [17] and hypothesis testing under
the CFAR algorithm. Wang et al. [35] proposed a CNN based target detection algorithm on the
Range–Doppler spectrum and compared their method against traditional CFAR detector showing
promising results. The target detection problem is generic and does not specify targets to be UAVs,
but the same principles can be applied on the UAV detection problem without any constraint.
The proposed network architecture was a custom 8-layer CNN trained with different Range–Doppler
fixed window segments for targets and clutter under multiple Signal-to-Noise Ratio (SNR) values.
The detection problem was handled as a classification task between target and clutter classes where
the fixed size window slides over the complete Range–Doppler matrix so that all Range–Doppler cells
are checked. The authors validated their method on artificial data simulating that of a continuous
wave radar.

A similar work that utilizes the Range Profile and handcrafted features derived from the Range
Doppler matrices as input to a DNN for the task of UAV classification is [36]. The authors propose a
custom two stream 1D-based CNN architecture that utilizes the Range Profile matrix signature of a
detected target and features derived from the Range Doppler matrix such as RCS, SNR, and radial
velocity for every detection under test to classify whether it is a UAV or anything else. Experiments on
real world radar data collected from a surveillance LFMCW X-band radar indicate very promising
classification performances.

In an attempt to diversify from the micro motions analysis, Regev et al. [37] developed a Multi
Layer Perceptron (MLP) [64] neural network classifier and parameter estimator, which can determine
the number of propellers and the blades on a UAV. This is the first work that attempted to learn directly
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from the received complex valued signal. The network architecture consists of five individual branches,
which accept complex in quadrature (IQ), time, frequency, and also absolute data. There are two
unique MLP classifiers that first analyze the propeller signatures and then the number of blades; this is
then fed into an estimation algorithm. The classification accuracy is very dependent on signal-to-noise
ratio (SNR) but is near perfect when applied to synthetic data.

In another body of work, Habermann et al. [38] studied the task of UAV and helicopter
classification by utilizing point cloud features from artificial radar measurements. The authors
extracted 44 features based on geometrical differences between point clouds. They adopted their
feature extraction process based on [65]. The authors trained a neural network with artificial data to
tackle two different classification problems, one between seven helicopter types and one between three
rotary UAV types.

Finally, Mohajerin et al. [39] proposed a binary classification method to distinguish between UAV
and bird tracks with measurements captured under a surveillance radar. The authors adopted a set
of twenty features based on movement, velocity, and target RCS extending the works of [56,66] that
initially proposed a similar approach to classify aircraft and bird tracks. The handcrafted features are
combined with an MLP classifier demonstrating high classification accuracy.

3. Optical Sensor

With the recent advancements in neural networks and deep learning algorithms, optical data
seem to be a really valuable source of information that may provide significant cues to a UAV detection
system. Research has evolved around the deep learning paradigm since its great success to classify
images on the popular ImageNet dataset [67] at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) contest in 2012. Most of the works that employ DNNs for determining whether an object is
UAV, utilize a generic object detection architecture, with a powerful DNN as a classification model
targeted for UAVs. To this end, DNNs are pre-trained beforehand in generic data (like ImageNet) so
that can be fine-tuned with UAV data, thus adjusting their parameters for recognizing such objects.
Some examples of UAV data captured with a standard visual optical camera are presented in Figure 4.

The work of Saqib et al. [68] examined the Faster-RCNN detection pipeline for the purposes of
UAV detection. They carried out many experiments using different baseline models (VGG-16 [69],
ZF-net [70], etc.) within the detection pipeline. Their study concluded that the VGG-16 performs
best among the other choices for base DNN. In addition, they argued that the existence of birds may
challenge the detector performance, by increasing the false positive detections. To address this issue,
they proposed that birds cannot be overlooked within training process, but rather they have to be part
of the training process as a distinct class, so as to drive the network in learning more fine detailed
patterns between UAVs and birds, thereby distinguishing them more efficiently. Moreover, a similar
study with more contemporary models as a backbone is carried out from Nalamati et al. [71].

In [72], the authors proposed a VGG based network combined with an RPN to handle small object
detection such as birds and UAVs. The network is composed of a convolutional layer, whose output is
fed into a classification layer and a bounding box regression layer. The classification layer provides a
confidence value about the presence of an object and the bounding box regression layer provides the
corresponding coordinates. The authors produced an extensive dataset with images crawled from the
web including birds, UAVs, and background photos proving that more diverse data are a winning
strategy to further improve the results.

Two recent publications go beyond the classic methods and propose the addition of another
sub-module before the detector pipeline, to enhance the representation of the input that is being fed
to the detector. In [73], the authors propose the insertion of the U-net before the detector, a network
that calculates the motion of successive frames and yields bounding boxes that may contain UAVs
with some probability. The final decision on the which boxes belong to UAVs is determined from
a Res-net. The other work [74] proposes a sub-module before the detector’s input which performs
super-resolution on the initial image, using a deep learning Single-Image-Super-Resolution (SISR)
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model to enlarge and further improve the initial input representation for the detector. The two models
are trained alongside in order to be optimized as a whole model. In doing so, small UAVs that appear
too small on the image array—since they usually fly away—can now be detected more easily by the
detector, thereby improving the recall performance of the system and thus extend the range detection
system’s capabilities.

Another work of Opromolla et al. [75] used traditional computer vision techniques for UAV
detection. They employed template matching (TM) using the Normalized Cross-Correlation (NCC)
metric to inspect the drone existence. To cope with illumination changes and appearance variations,
they applied a morphological filtering at the output of the TM, thus enhancing the detection capabilities
for the system, especially for extreme bright or dark UAVs, compared to the surrounded background.

Aker et al. [76] employed a more contemporary object detection pipeline, such as a YOLO (You
Only Look Once) detector [77] which enables very fast, yet accurate object detection. Moreover,
within the main contributions of the paper is a new artificial dataset they introduced to address the
scarcity of annotated public data with drones. To this end, they extracted the background from a
number of drones which were found publicly and by keeping only the drone instance, they added
it to different natural images with diverse and complex backgrounds. In doing so, they created
a sufficient dataset for training a deep learning model with drones at different scales and within
various backgrounds.

A different detection framework is proposed from Rosantev et al. [78]. Initially, they split the
video sequence in up to 50% overlapping temporal slices. After that, they built spatio-temporal
cubes in a sliding window manner for each scale separately. In addition, to yield motion stabilized
st-cubes, they performed a motion compensation algorithm to each patch. Finally, the motion
compensated patches can be classified as if they comprise any object of interest or not. For classifying
the st-cubes, they employed boosted trees and CNNs to infer which method performs better.
After extensive experimentation, they concluded that temporal information (motion compensation
step) is consequential towards detecting small moving objects like UAVs and CNN perform better in
terms of recall–precision metric.

UAV detection with optical cameras that make use of traditional techniques are proposed by
Gokcce et al. [79]. They employed traditional features such as Histogram of Gradients (HOG) to
describe small UAVs. Moreover, the machine learning detection part utilized a cascaded method of
classifier for evaluating at different stages increasingly more complex features, and, if all the stages
successfully pass, the object is considered detected. In addition, a Support Vector Regressor (SVR) is
trained with distances for each detection, so as to enable distance estimation capabilities at test time.

Hyperspectral Image Sensors

Hyperspectral image sensors collect information as a set of images across the electromagnetic
spectrum. Each image represents a narrow wavelength range of the electromagnetic spectrum,
also known as a spectral band. These images are combined to form a three-dimensional (x, y, λ)

hyperspectral data cube for processing and analysis, where x and y represent two spatial dimensions of
the scene, and λ represents the spectral dimension (comprising a range of wavelengths) [80]. The goal
of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the
purpose of finding objects, identifying materials, or detecting processes. Hyperspectral imaging
applications include the detection of specific terrain features and vegetation [81], mineral, or soil types
for resource management [82], the detection of man-made materials in natural backgrounds [83,84],
and the detection of vehicles or boats for the purpose of defense and intelligence [85]. These sensors
are often mounted on UAVs for airborne object detection applications like agricultural monitoring [86].

To the best of the authors’ knowledge, these sensors have not yet been utilized in a c-UAV
application. However, their usage could be a valuable recommendation for such a system. In an
urbanized environment, a UAV might fly lower than usual having buildings or ground (e.g., in front
of a hill) as its background in order to avoid the effective areas of mainstream sensors like radars.
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Radars are usually placed on the top of buildings in an urbanized environment to avoid clutter created
from other building reflections and also to minimize the exposure of the emitted radiation from the
radar antenna to where people live. Hence, a robust c-UAV system needs to be able to address a low
flight invasion scenario with its other sensors. This is a challenging case for a traditional RGB (Red
Green Blue) or even a thermal camera. Nevertheless, a hyperspectral image sensor could provide
appearance cues in any wavelength which are missing in a RGB camera for the prompt detection of
the adverse event.

General object detection algorithms on hyperspectral images can be utilized for UAV detection
and classification. This would require sufficient data from a hyperspectral image camera capturing
UAV flights to fine-tune the existing methods. Prior to the deep learning era, researchers have focused
on developing algorithms for target detection on hyperspectral image data using classical detection
theory and physics-based signal models. The review in [87] cover developments on such traditional
detection algorithms up to 2013. A more recent non-deep learning based method for hyperspectral
image reconstruction based on a Markov random field prior, which have labelled a Cluster Sparsity
Field (CSF), to model the intrinsic structure of a hyperspectral image probabilistically is presented
by Zhang et al. [88]. The authors exploit the spectral correlation and the spatial similarity in a
hyperspectral image simultaneously with mining the intra-cluster structures. With the learned prior,
the spectral correlation and the spatial similarity of the hyperspectral image are well represented.

With the advancement of deep learning and particularly CNNs, researchers have taken
advantage of the more powerful representation capability that CNNs provide and have achieved
remarkable results in detecting and classifying objects when using hyperspectral images [81,84,88–90].
Paoletti et al. [90] proposed a 5-layered 3D CNN model trained in a specific parallel GPUs (Graphics
Processing Units) scheme for training speed optimization, which utilizes all the spatial-spectral
information of the hyperspectral image in simultaneous fashion for crops and ground type classification
as well as object classification in an urban environment. The authors proved that the joint consideration
of spectral information together with spatial information provides better classification results than those
reached by traditional neural networks that only include spectral information. Zhou et al. [89] tackled
the hyperspectral image classification problem by proposing a discriminative stacked autoencoder
comprised in two learning stages which are optimized progressively. The first stage focuses on
low-dimensional feature learning and the second stage is used for the joint training of hyperspectral
image classifier and feature extractor. The proposed method attempts to learn a low-dimensional
feature space, in which the mapped features have small within-class scatter and big between class
separation. Extensive experiments in three common datasets and comparisons against other state of
the art methods proved the effectiveness of the method.

Figure 4. Images with rotary and fixed UAVs at different distances.
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4. Thermal Sensor

Unlike optical sensors, thermal sensors operate in the non-visible electromagnetic spectrum.
Thermal cameras are able to capture the infrared radiation emitted by all objects in the form of
heat. They are sensitive to the long-infrared range of the electromagnetic spectrum, with a wave
length between 9 and 14 µm. The main advantage when using a thermal camera in a security related
application is the ability to visualize the surrounding environment regardless of the external lighting
or weather conditions and even in total darkness. Furthermore, compared to traditional RGB cameras,
thermal cameras offer increased robustness against illumination changes. On the contrary, thermal
cameras usually produce lower resolutions images, while being more expensive. Thus, they were
initially utilized only in military applications, but recent advances in the technology reduced their cost
and allowed their usage in the industry and research sectors. An example of a high resolution thermal
panoramic image in depicted in Figure 5.

Figure 5. Thermal panoramic image.

In a counter UAV system protecting a secure area, such as a prison facility, thermal cameras
are more likely to be positioned either on the ground or on top of other structures (e.g., buildings,
surveillance turrets). Some examples of thermal images of captured UAVs are presented to Figure 6.
To the best of our knowledge, there is no published work regarding the detection, tracking,
or classification of flying UAVs using stationary thermal sensors in such a setting. The most relevant
publication to the c-UAV task is [91] where the authors address some of the challenges a thermal
camera face against UAVs and propose a localization method via 2D and 3D triangulation for already
detected UAV targets when considering images from multiple thermal cameras. Thermal cameras
have been successfully employed in other application domains, such as pedestrian tracking or vehicle
classification. Furthermore, lightweight thermal sensors have been integrated into UAVs and deployed
to several aerial detection or surveillance scenarios. In the rest of this section, we review the recent
literature on the utilization of thermal vision in detection, tracking, and classification tasks.



Sensors 2019, 19, 4837 14 of 35

Figure 6. Examples of rotary and fixed UAVs captured by a thermal camera.

4.1. Deep Learning Based Methods Using Thermal Imagery

Most recent research on thermal imagery utilizes deep learning methods, which have proven
to be more effective compared to traditional image processing methods. More precisely, recent
methodologies usually employ CNNs for solving multiple and diverse tasks. These include the
classification of an entire input image or region proposals derived by other methods, the detection and
localization of targets within a larger frame or the automatic appearance feature extraction. Depending
on the application and the availability of training data, the employed CNNs can be either pre-trained
on large generic and multi-purpose datasets, such as ImageNet [92], fine-tuned, or trained from scratch
using task-specific data.

4.1.1. Detection

Liu et al. [93] designed and evaluated different pedestrian detection solutions based on the
Faster-RCNN [94] architecture and registered multi-spectral (color and thermal) input data. Starting
with separate branches for each type of input data, each realized as a VGG-16 [69] base network,
they explored feature fusion techniques at a low, middle or high level. Experimental results on the
Korea Advanced Institute of Science and Technology (KAIST) Multispectral Pedestrian Detection
Benchmark [95] suggested that halfway fusion at a middle level, using concatenation of deep
features and the Network-in-Network [96] paradigm for dimensionality reduction led to the best
detection performance.

Konig et al. [97] utilized a Region Proposal Network (RPN) for person detection from
multi-spectral videos consisting of RGB and thermal channels. Starting with two separate CNNs
based on the VGG-16 [69], they fuse the intermediate representations of the optical and thermal inputs
halfway in the proposed architecture and generate deep multi-spectral features for the RPN. Deep
features corresponding to each region proposal were then extracted from layers both before and after
the information fusion, pooled to a fixed size, concatenated and fed to a Boosted Decision Trees (BDT)
classifier. The proposed method was evaluated in the KAIST Multispectral Pedestrian Detection
Benchmark [95].

Bondi et al. [98] fine-tuned the Faster-RCNN [94] architecture to the task of poacher and
animal detection from thermal aerial images. They initialized the VGG-16 [69] base network of
Faster-RCNN [94] with a pre-trained weights from ImageNet and subsequently trained poacher and
animal specific models using manually annotated videos captured from a UAV.
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Cao et al. [99] adapted a generic pedestrian detector to a multi-spectral domain. They utilized
complementary data captured by visible light and infrared sensors to both improve the pedestrian
detection performance and generate additional training samples without any manual annotation
effort. Pedestian detection was achieved using a two-stream region proposal network (TS-RPN), while
unsupervised auto-annotation was based on a novel iterative approach to label pedestrian instance
pairs from the aligned visible and thermal channels.

Kwasniewska and Ruminski [100] demonstrated how CNNs can be efficiently utilized for face
detection from low resolution thermal images, embedded in wearable devices or indoor monitoring
solutions for non-intrusive remote diagnostics. Using the concept of transfer learning [101,102], they
fine-tuned the Inception v3 [103] model with set of 86k thermal images and modified the final part
of the network to enhance it with localization capabilities. This was realized by interpreting the last
feature map of Inception as a grid of features and classifying each feature vector independently, thus
providing a separate label for each spatial cell in a fixed-sized grid over the input image.

4.1.2. Classification

John et al. [104] utilized a CNN to perform classification of pedestrian candidates. Fuzzy C-means
clustering was employed beforehand to segment the input thermal image and localize pedestrian
candidates, which were then pruned according to human posture characteristics and the second central
moment ellipse. Then, cropped image patches around each candidate were resized to a fixed size and
fed to an 8-layer CNN for binary classification, which was trained with a dataset of 16k samples.

Lee et al. [105] used aerial thermal images captured from a flying UAV for early and
non-destructive sinkhole detection. Candidate regions were detected by analysing cold spots on
the thermal images. Each region was then classified by an ensemble consisting of a light 2-layer CNN
for feature extraction followed by a Random Forest for classification, as well as a Boosted Random
Forest (BRF) operating with hand-crafted features. Their approach was trained and validated on a
limited dataset of eight manually constructed holes with depths ranging from 0.5 m to 2 m, captured
from a drone flying at 50 m above them.

Beleznai et al. [106] proposed a multi-modal human detection from aerial views framework,
leveraging optical and thermal imaging, as well as stereo depth. The thermal and depth channels
were utilized within a shape representation driven clustering scheme for region proposal generation.
Afterwards, the proposals were classified as human or other object by two separate classification CNNs,
based on the LeNet [107] architecture, each operating either with thermal or optical intensity data.

Ulrich et al. [108] proposed simple two-stream neural networks for the classification of real and
mirrored persons, combining images from handheld thermal cameras (often used by fire-fighters)
and synchronised micro-Doppler (m-D) radar data. The Viola–Jones [109] method was first used to
detect people (either real or mirrored) in the thermal images. Then, an association step between the
thermal image detections and the radar targets is performed, using calculated distances from the
sensors. Finally, information retrieved from each sensor is first processed and then fused at a feature
level within a single joint classifier.

Quero et al. [110] trained shallow two and three-layer classification CNNs intended for the
identification of falls in indoor environments. To that end, they composed a dataset of low resolution
images captured with a non-invasive thermal vision sensor attached to the ceiling, including cases of
standing and fallen inhabitants, as well as images with single and multiple occupancy.

Bastan et al. [111,112] combined a CNN-based detector with a multi-frame classification CNN
in an idling car identification framework. Car detection was achieved using the Faster-RCNN [94]
architecture, where the VGG base network [69] was fine-tuned twice, first using the Pattern Analysis,
Statistical Modelling and Computational Learning (PASCAL) Visual Object Classes (VOC2007) [113]
and then with a private dataset of 5670 thermal images of parked cars captured every five seconds
in multiple views, with their engine either idling or stopped. Following single-frame car detection,
the authors used seven bounding boxes of the same car, uniformly sampled over a 3-minute period,
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in order to form stacks of cropped thermal images, which were used to model the temporal evolution
of the car’s temperature and train a 9-layer binary classification CNN.

4.1.3. Feature Extraction

Liu et al. [114] re-purposed pre-trained CNNs with visible images to the thermal object tracking.
They proposed a kernelized correlation filter (KFC) used to construct multiple weak trackers by
leveraging features extracted from different convolutional layers of VGG-19 [69] pre-trained on
ImageNet, as well as an ensemble method, based on Kullback–Leibler divergence, to fuse the response
maps of each weak tracker to a strong estimate of the target’s location. The performance of the
proposed framework was evaluated in the Visual Object Tracking Thermal Infrared (VOT-TIR) 2015
and 2106 thermal tracking benchmark datasets [115].

Chen et al. [116] utilized a pre-trained CNN as a feature extractor within a framework purposed
for facing direction detection and tracking using a low resolution thermopile array sensor. The first
part of a classification CNN, consisting of three convolutional and two max-pooling layers, initially
trained for the task of letter recognition, was integrated with an SVM classifier, which was trained
using the extracted features. Experimental results showed that CNN-based feature extraction, even
when the network is not trained or fine-tuned to the specific domain, outperforms manually defined
and extracted features.

Gao et al. [117] proposed a Large Margin Structured Convolutional Operator (LM-SCO) to
achieve efficient object tracking based on thermal imaging. Pre-trained CNNs with RGB images were
re-purposed to extract deep appearance and motion features of thermal images, which were later fused
within the tracking framework. Their method was evaluated in the VOT-TIR 2015 and 2016 thermal
tracking benchmarks [115].

4.1.4. Domain Adaptation

Herrman et al. [118] explored different preprocessing techniques, in order to transform input
thermal data as close as possible to the RGB domain and thus more effectively reuse pre-trained models
on large RGB datasets. Then, following the common practice, they addressed the remaining domain
gap by fine-tuning a pre-trained Signle Shot Detector (SSD) 300 [119] detector with limited sets of
thermal data. Experimental results on KAIST [95] showed improvements in the task of person detection,
derived from both the optimized preprocessing strategy and the adaptation of the CNN-based detector
through fine-tuning.

5. Acoustic Sensor

Computational Auditory Scene Recognition (CASR) is a research field that focuses on the context
recognition, or the environment recognition, rather than the analysis and interpretation of discrete
sound events [120]. Applications of CASR include detection of ambient sounds, intelligent wearable
devices, and hearing aids that sense the environment and adjust the mode of operation accordingly.
A general audio event detection system (Figure 7) consists of three main modules; Detection, Feature
Extraction, and Classification. The Detection module refers to capturing the target sound in a real-world
noisy recording. The Feature Extraction refers to the human engineered features that can be extracted
for the features in order to be used as an input to a classifier, or the automatic extracted features from
the raw signal when using neural networks. Finally, the Classification module assigns the probabilities
of the extracted features to the corresponding class.

The ability of deep learning networks to extract unique features from raw data and the high
processing speeds of modern Graphic Processing Units (GPUs) lead these networks to receive a lot
of attention in a wide range of scientific fields, such as natural language processing, image/video
classification and segmentation, reinforcement learning, and audio event detection.
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Figure 7. General audio event detection system.

Lee et al. [121] were one of the first ones to introduce unsupervised learning for audio data using
convolutional deep belief networks (CDBNs). In particular, they showed that the learned features from
the neural networks corresponded to phones/phonemes in speech data. They also showed that these
models could be applied to other datasets, such as music genre classification with promising results
(comparing to traditional mel-frequency cepstral coefficients (MFCCs) extraction with a classifier).
Since then, there were a number of research outcomes in the field of speech recognition [122–125].

Piczak [126] tested a very simple CNN architecture with environmental audio data and achieved
accuracies comparable to state-of-the-art classifiers. Cakir et al. [127] used 1-dimensional (time domain)
deep neural networks (DNNs) in polyphonic sound event detection for 61 classes to achieve an accuracy
of 63.8%, which was a 19% improvement over a hybrid HMM/Non-negative Matrix Factorization
(NMF) method. Lane et al. [128] created a mobile application capable of performing very accurate
speaker diarization and emotion recognition using deep learning. Recently, Wilkinson et al. [129]
performed unsupervised separation of environmental noise sources adding artificial Gaussian noise to
pre-labeled signals and used auto-encoders to cluster. However, background noise in an environmental
signal is usually non-Gaussian, making this method to work on specific datasets only.

Over the last few years, many researchers have worked on acoustic scene classification,
by recognizing single events in monophonic recordings [130] and multiple concurrent events in
polyphonic recordings [131]. Different feature extraction techniques [132], data augmentation [133],
use of hybrid classifiers with neural networks [134,135], and very deep neural models [136] have been
explored. However, the problem of audio-based event detection remains a hard task. This is because
features and classifiers or deep learning approaches that work extremely well for a specific dataset
may fail for another.

Regarding the field of audio-based detection of UAVs, researchers have exploited utilizing
microphones since the image detection methods contain a few drawbacks. First, the algorithms
developed for image detection require high resolution cameras for higher classification accuracy,
which results in a trade-off between cost and precision. Secondly, the images captured by these
high resolution cameras are significantly affected by the time of the day and the weather. On the
other hand, the aforementioned issues can be tackled using low cost microphone arrays with single
board computers for the digital signal processing tasks [137]. Other researchers [138,139] proposed
drone detection frameworks using audio fingerprints and correlation. The disadvantage of those
approaches was that they could not operate in real-time and would work in a very confined dataset.
Park et al. [140] proposed a system that used a combination of radar and acoustic sensors and a
feed-forward neural network in order to detect and track identifiable rotor-type UAVs. Liu et al. [141]
used the MFCCs, commonly used in the field of speech recognition, and an SVM classifier to detect
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UAVs. Recently, Kim et al. [142] introduced a real-time drone detection and monitoring system, using
one microphone. This system used the k-nearest neighbors and plotted image learning algorithms to
learn from properties of the Fast Fourier Transform spectra. The authors extended their work [143]
and increased the classification accuracy of their proposed system from 83% to 86%, using an artificial
neural network. They created a background noise class to separate the drone sounds using the
UrbanSound8K dataset [144]. Jeon et al. [145] presented a binary classification model that used audio
data to detect the presence of a drone. A Gaussian Mixture Model, a Recurrent Neural Network,
and a CNN were compared using the F-Score as a performance metric. This work also showed that
the classification performance increased when using data augmentation methods. In particular, they
synthesized raw drone sound with diverse background sounds to increase their training data.

There is a strong need for the collection of a real-world UAV audio dataset that could serve as
a benchmark for researchers to develop their algorithms. Two-dimensional computer vision neural
networks (e.g., DenseNet) should be tested using raw short-time Fourier Transform spectrograms or
mel-spectrograms, in order to have a robust UAV audio-based detection system.

6. Multi Sensor Fusion

Data fusion from multiple sensors aims to combine data from different modalities to generate
inferences that would not be possible from a single sensor alone [146]. It has various applications in the
fields of target recognition and tracking, traffic control, UAV detection, remote sensing, road obstacle
detection, atmospheric pollution sensing, monitoring of complex machinery, robotics, biometric
applications, and smart buildings. The wide variety of information resources in the real world enables
multi-sensor data fusion to discover relationships between different sensor type data, learn from them
and recognize patterns. The most interesting challenge in data fusion is to achieve a joint representation
of multi-sensory data. In recent years, artificial intelligence and deep neural networks have become
very attractive in representation of multi-sensory data [147]. In general terms, multimodal learning is
cumbersome since the data come in different representations. As a consequence of the multimodal
learning challenges, there are some possible solutions such as combining separate learning models for
single modalities at a higher and abstract level.

6.1. Multi-Sensor Fusion Methodologies

Ngiam et al. [148] described the general scope of multimodal learning. Moreover, they presented
how data can share the same representations from different modalities. Specifically, they used a cross
modality feature learning method using Restricted Deep Boltzmann Machines [149]. This research has
been evaluated in CUAVE [150] and AVLetters [151] datasets on classification purposes combining
audio and visual data.

Baltrušaitis et al. [147] presented various multimodal machine learning approaches. The findings
of such studies helped to understand the different ways that multi-sensory information, such as image,
video, and audio, can be handled. This research analyzed the various challenges that multi-sensor
data fusion deals with. The authors illustrated five technical challenges, which are representation,
translation, alignment, fusion, and co-learning. Specifically, representation is a learning method that
combines unimodal signals into a common representation space. Moreover, translation is defined as
the process of changing the form of data from one modality to another. Alignment is the operation
where direct relations between elements from various modalities can be identified. Fusion describes a
concept that integrates information from multiple sources for the purpose of a performance metric.
Finally, co-learning is a technique where knowledge is transferred between modalities.

Liu et al. [14] introduced learning techniques for multisensory information fusion and modalities
combination. In particular, they proposed a deep neural network architecture that multiplicatively
combines multi-sensory data. The proposed method has been validated in three domains: image
recognition using CIFAR dataset [152], physical process classification using HIGGS dataset [153],
and user profiling using Gender dataset [154].
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One of the most interesting works in data fusion was presented by Dong et al. [155]. This research
highlighted image fusion methods with emphasis on remote sensing field. Specifically, the authors
analyzed some standard image fusion algorithms, such as Principal Component Analysis (PCA) [156]
and IHS [157], whereas they inspected wavelet-based artificial neural networks based methods.

Khaleghi et al. [12] provided a survey about multi-sensor data fusion. This work studied the
advantages and the challenges of multi-sensor data fusion, along with the state-of-the-art algorithms.
Furthermore, it presented extended methodologies for fusion of defective or corrupted data.

Hu et al. [13] performed a study about a dense multimodal fusion. The scope of that work was
to densely integrate representations of different modalities. The authors studied the benefits of joint
representations and learned the dependence among hierarchical correlations. The aim of that paper
was to employ Dense Multimodal Fusion in the purpose of achieving faster model convergence, lower
training loss, and greater performance than common mutlimodal fusion methods.

6.2. Multi-Sensor Data Fusion Schemes

Data fusion technology can be divided into two main categories of fusion methods, namely Early
Fusion and Late Fusion. The choice of the fusion technique can be determined by the requirements of
the problem and the sensor types. Early and late fusion differ in the way they integrate the results
from feature extraction on the various modalities. Early fusion (Figure 8) yields a multimodal feature
representation, considering the features are fused from the start. In particular, early fusion combines
several features such as edges, and textures into a feature map. On the contrary, late fusion (Figure 9)
focuses on the individual strength of different modalities. Unimodal concept detections are fused into
a multimodal semantic representation rather than a feature representation.

Figure 8. General scheme for early fusion. The outputs of unimodal analyses are fused before a concept
is learned.

Figure 9. General scheme for late fusion. The outputs of unimodal analyses are used to learn separate
scores for a concept. After the fusion procedure, a final score is learned for the concept.

Snoek et al. [158] introduced a multimodal video semantic analysis. The authors performed two
categories of early fusion and late fusion, where the modalities are fused in a feature space and in
a semantic space accordingly. Both methods were validated within the TRECVID video retrieval
benchmark [159].
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Ye et al. [160] proposed a late fusion based rank minimization. Specifically, the work aimed to
predict confidence fusion of multiple models. The main assumption of that work was that relative score
relations are persistent between component models. The confidence scores are represented in the form
of vectors. The proposed work has been evaluated by utilizing the Oxford Flower 17 dataset [161].

6.3. Multi-Sensor UAV Detection

In recent years, the number of unmanned aerial vehicles (UAVs) has been greatly increased. This
growth is driven from the vastly expanded number of applications that a UAV can be used for. In this
context, there is emerging research regarding object detection methods. However, UAV detection
requires the development of more robust systems in order to safely perform identification. The major
challenge in UAV detection is mainly the small size to be detected. In addition, there is a possibility
that a UAV may not have an authorized and appropriate flight plan.

Bombini et al. [162] proposed a methodology of radar and vision fusion, in order to improve the
vehicle detection system’s reliability. The authors perform a radar-vision fusion that is based on a
conversion of radar objects into an image reference system. The aforementioned method has been
tested in urban environments achieving great results.

Jovanoska et al. [163] presented a research about UAV detection and multi-sensor data fusion
based on bearing-only as well as radar sensors for tracking and localization capabilities. A centralized
data fusion system was analyzed that was based on the multi-hypothesis tracker [164]. The authors
analyzed the behavior of each sensor and studied the advantages of using multi-sensor systems for
UAV detection. Its objective was the improvement of the localization of the detected targets by fusing
results from disparate sensor systems. The system consisted of radar and bearing only sensors (cameras,
radio frequency sensors). Its sensor data fusion scheme was comprised of three main functionalities:
data association, target detection, and target localization. It first identified which detections from
different sensors belong to the same target and which of them are false alarms. The targets were
recognized and the individual sensor’s contribution to the detection was measured. Finally, a fusion
algorithm was used for the estimation of the target location.

Hengy et al. [165] proposed a sensor fusion scheme that aimed at detecting, localizing,
and classifying incoming UAVs by utilizing optical sensors, acoustic arrays, and radar technologies.
The system achieves localization accuracy with mean azimuth and elevation estimation error equal to
1.5 and −2.5 degrees, respectively. Localization from acoustic arrays is achieved using the MUltiple
SIgnal Classification MUSIC algorithm and the systems detection capability is enhanced by radar
technologies to minimize false alarm rate. Finally, the authors proposed a method that combines
images from short-wave infrared (SWIR) and visible sensors in order to achieve easier and faster
detection of the UAV in the presence of clutter, smoke, or dense background on the vision sensors.

In [166], Laurenzis et al. investigated the detection and tracking of multiple UAVs in an urban
environment. The proposed system is comprised from a distributed sensor network with static and
mobile nodes that included passive/active optical imaging, acoustic antennas, LiDAR, and radar
sensors. They proposed a fusion method of acoustic information, which was realized by triangulation
of the lines of bearing of the acoustic antennas. The method detects a drone and localizes it with a
mean error of about 6 meters when the localization results are compared to ground truth data.

6.4. UAV Detection Using Multi-Sensor Artificial Intelligence Enabled Methods

Park et al. proposed a system that combines radar and audio sensors [140] for detection of small
unmanned aerial vehicles. The system uses ‘Cantenna’, which is a modified version of a handmade
radar [167] to detect moving objects in a target area and an acoustic sensor array that determines
whether the object detected from the radar is a UAV or not. The system also used a pre-trained deep
learning algorithm consisted of three MLP classifiers that vote whenever they receive any acoustic
data about the existence or not of a UAV. The system was tested on both recorded and field data
and correctly detected all cases where a UAV was present with no false negatives and only few false
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positives. The estimated costs of each microphone assembly and the radar are quite small, which
makes this approach a very cheap solution. However, the system’s detection range is about 50 m,
which is limited compared to other UAV detection systems.

A larger installation of a multi-sensor fusion system was described in [168], where the authors
proposed an airborne threat detection system combined from low cost, low power netted sensors
that included a simple radar, infrared, and visible camera as well as an acoustic microphone array.
The system was able to identify and track a potential airborne threat by employing a Kalman filter for
associating the multiple sensor data in order to be fed to a nearest neighbor classifier for obtaining the
final results. The system was able to accurately track aerial vehicles up to 800 m range, providing also
a high modular and adaptive technology setup.

A solution [141] that used both a modular camera array and audio assistance presented results
of high detection precision. The system was tested against a dataset of multiple drones flying under
various conditions at maximum flight altitudes of 100 m and maximum horizontal distance of 200
m. The system was consisted of 30 cameras, eight workstation nodes, three microphones, and some
network devices. An SVM classifier was trained to detect a drone in the image while another SVM was
trained to detect the noise produced by the drones.

At [169], a general information fusion framework is proposed, in order to join information from
different sources. The major key of this work is to implement a robust algorithm that merges extracted
features from deep neural networks. Explicitly, the aim of this work is to efficiently perform a neural
network-based algorithm for the UAV detection task.

7. Discussion and Recommendations

In this literature review, various deep learning based methods for UAV detection and classification
using data from radar sensors, electro-optical cameras, thermal cameras, and acoustic sensors have
been thoroughly reviewed. A review on multi-sensor information fusion analysis with deep learning
for the same sensors and the same task is also considered. In the following sections, we focus on
the impact of the described work from each topic, introduce a comparative analysis with potential
limitations and drawbacks, and identify the key objectives for the described methods. Finally, we
recommend a c-UAV system, which we believe to be effective against the challenges posed by the
misuse of UAVs.

7.1. Impact of Reported Studies

7.1.1. Radar Sensor

UAV detection with radar sensors is mainly achieved with the classic radar signal processing
for target detection using Doppler processing and hypothesis testing under the CFAR algorithm as
it is described in [17]. Alternatively, there is a promising deep learning based method from [35] for
general target detection, but the experiments are on artificial data so it is not definitive if this method
is applicable in a real world application.

On the other hand, the UAV classification task using radar data is a much more active field of
research, and most practices have largely been successful through the transfer of established techniques
(deep learning or machine learning based) migrated from other automatic target recognition problems.
There are two directions on the UAV classification problem with radar data: methods that utilize
the micro-Doppler (m-D) signature and methods that rely on different sources of information such
as kinematic data or features derived from the Range Doppler and Range Profiles matrices. Both
directions have their merits and flaws that are summarized below. The key objectives that the proposed
method should answer to are to minimize false alarm rate and detect the target at all times regardless
of the way it moves.

The most commonly employed radar signal characteristic for UAV classification is the m-D
signature [16,19–26,28,29,33]. The main contributing factors for the m-D signature are the number of
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fast rotating blades, the wide range of angles incident to the radar, especially during manoeuvres,
the Pulse Repetition Frequency (PRF) of the radar, and the time which the radar is illuminating
the target. These factors are important to consider when designing a radar based c-UAV system.
The volatile nature of the target can make the reliable extraction of the m-D signature not a trivial task.
Most of the discussed work has been undertaken within ideal scenarios and usually at close range
(250 m furthest [19], 30 m furthest [16,24,25]), certainly having an effect on classification performance.
A further complication to the research is that not all of the aforementioned works evaluate on original
radar data with many conclusions being drawn on artificially created datasets trying to emulate a
UAV signature [38,39]. However, this is because radar sensors specialized for small target detection,
which usually operate at an X-band are not easily accessible to a university or a research centre,
and currently there is no publicly available dataset on UAV detection and classification with radar
data for researchers to develop and evaluate their methods.

To address some of these issues, techniques that employ different sources of information such
as motion and RCS related features derived from the Range Doppler and Range Profiles matrices
are of great interest [31,32,36,39]. Such data are produced by surveillance radars that provide 360◦

coverage of the protected area with a rotating antenna. Surveillance radar can not produce the m-D
signature because they do not illuminate the target long enough, hence they do not rely on micro
motions of the target for target classification. Trajectory classification is another successful approach to
differentiate between targets in such cases [30]. However, this area of research is rather underdeveloped
compared to m-D based approaches which could encourage further work to be made. In particular,
deep learning based methods for trajectory classification have been successfully studied for general
motion models [170,171] and such techniques could transfer to UAV trajectory classification making
the first step towards that research field. As radar systems become increasingly adaptive, it is safe
to assume that they will be able to fuse more information to enhance their classification capabilities,
whilst also exploiting the latest developments from the deep learning community.

7.1.2. Optical Sensor

Standard optical cameras are easily accessible to everyone and general object detection methods
for images and videos are well established since this is a very mature research field. The adaptation of
existing methods in the UAV detection and classification problem has already emerged with many
c-UAV related publications referring to common deep learning based object detection architectures
such as Faster RCNN [68,74], SSD [71], and YOLO [76]. There are also publicly available datasets for
UAV detection and classification when using a standard RGB cameras [172–174], which is another
proof to how accessible and mainstream optical sensors are. Finally, UAV detection and classification
challenges when using an optical camera are organized at workshops [175–177] in major conferences
such as the International Conference on Advanced Video and Signal-based Surveillance (AVSS) and
the International Conference on Computer Vision Systems (ICVS). Thus, it is clear that research on
optical sensor data are in a thriving state and the existing methods are expected to continue evolving.

Most successful approaches focus on deep learning since traditional methods from computer
vision with handcrafted features [75,79] can not achieve comparable performances. The key objectives
that the proposed method should answer to are accuracy and speed. The target is to minimize
false alarm rate and run the method at real time. When comparing the Faster RCNN [68], SSD [71],
and YOLO [76] architectures, YOLO is the fastest and Faster RCNN is the most accurate. SSD can
be a good choice only when the objects are large, which is rarely the case for a c-UAV application.
The work of [71] compared Faster RCNN with SSD for the UAV detection and classification problem,
both with Inceptionv2 as their backbone network architecture, and concluded that Faster RCNN has a
better accuracy, but SSD is faster. However, the research does not stop on migrating existing general
object detection methods on c-UAV data. Researchers are actively trying to improve these methods
by looking at the challenges that UAVs present. The small shape and unique manoeuvres are being
taken into consideration by utilizing temporal information across multiple consecutive frames [73] or
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by adding super resolution techniques [74] in an effort to avoid false positive detections and detect
very small objects.

In summary, general object detection architectures based on deep learning seem to work for the
UAV detection and classification problem but do not achieve the optimal results which has made
researchers to explore different information cues (e.g., temporal information, super resolution) in order
to improve existing methods. A very interesting future work would be a combination of existing
design elements, such as deep learning based detector combined with temporal information and
super resolution.

7.1.3. Thermal Sensor

Even though thermal cameras are very common in c-UAV systems, the related scientific work in
UAV detection and classification is nearly non-existent. This is attributed to the fact that the widely
available thermal sensors in commerce usually produce low resolution images which present a major
challenge in detecting small objects such as UAVs. At the same time, higher resolution thermal cameras
are quite expensive and they are not easily accessible to the research community. Consequently,
the creation of a dataset for UAV detection and classification based on thermal images without an
increased budget might be out of reach for many universities and research centers.

Nevertheless, deep learning based object detection algorithms developed for normal RGB
images have been successfully applied on thermal images for other problems such as pedestrian
detection [93,97,104] or idling cars detection [111,112]. Of course, the main characteristics of humans
and cars are vastly different from UAVs, but, if the target is visible, then these methods should also
work for UAVs. The key objectives that the proposed method should answer to are the same as that of
electro-optical cameras, accuracy, and speed. The prevalent method in literature for object detection
and classification with thermal images is the Faster RCNN architecture combined with VGG as its base
network [93,98]. While this approach is designed to detect and locate the target within a larger frame,
it does not utilize the information that multiple consecutive frames contain. Hence, the addition of the
detection and classification across time might fill in some of the gaps that low resolution images and
small shape of targets present.

7.1.4. Acoustic Sensor

Despite being low-cost type of sensors, acoustic sensors are prone to noise. The main limitations of
the aforementioned research are related with the number of microphones, used for the data collection,
and the distance of the acoustic sensor from the UAV. Additionally, there is a strong need for a public
dataset that includes sound signals from UAVs, in order to develop robust algorithms for the particular
task of drone detection.

Regarding the number of microphones needed for UAV detection and the distance of the acoustic
sensor from the UAV, past research [145] has shown that it is not possible to detect a drone’s sounds at
distances greater than 150 m. Furthermore, studies regarding multi-channel audio [141] have shown
that it is possible to significantly increase the performance of a detection framework, when using
state-of-the-art beam-forming algorithms and fusion with other sensors (e.g., cameras). Regarding
future research, it would be possible to transfer knowledge from the domain of speech recognition [178],
using far-field signal processing techniques.

Finally, creating a public database with drone sounds can be an expensive task. It requires many
data capturing sessions of drones flying at various distances from the sensor, at various sampling
rates and bit depths. Labeling such a dataset can be prone to human error, leading a machine
algorithm to learn from the wrong labels. Towards this end, unsupervised learning algorithms
(generative and discriminative) [135] have recently received great research interest, especially in the
field of environmental sound detection. Therefore, these algorithms could be adapted for the problem
of drone detection, increasing the recognition accuracy, since they can be used for data augmentation
(generative) and for clustering (discriminative).
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7.1.5. Multi-Sensor Information Fusion

The real-world experience involves information from several sources. Multi-sensor deep learning
provides a wide variety of application, for instance, audio-image translation, image fusion for object
detection. The concepts of Deep Learning can be easily related to the fusion of multimodal information
on the grounds that Deep Neural Networks have the power to learn a high-level representation of
data [147]. This fact results in achieving robust and in most cases the most optimal characterization of
the raw information. There are remarkable achievements of multimodal deep learning methods on
solving detection tasks. Although many deep learning techniques have demonstrated considerable
attention in vehicle detection tasks, the studies to detect explicitly UAVs have not yet taken advantage
of them.

An overall UAV detection system should be able to identify targets in several conditions such as a
possible presence of sensor noise, different flight range, elevation, or azimuth. Single sensor cases can
not ensure reliable detections. The single sensor observations may be noisy or incomplete. There can be
no doubt that multi-sensor information fusion techniques are applicable to UAV detection tasks. UAVs
can fly in different conditions such as urban or remote environments. In real UAV flight scenarios,
it is necessary to exploit a multi-sensor fusion sensing system in order to adjust UAV detections in
changing environments and achieve the greatest feasible localization of the targets [163]. Multi-sensor
information fusion can be implemented either constructing complicated architectures that process raw
multimodal data [140,141,168] or design novel frameworks that handle high-level representations of
multimodal data [169].

Meanwhile, there are some primary issues that are in great need of resolution. First of all,
a proper and efficient way to join information coming from several sources should be found. In many
circumstances, this information contains lots of noise. Moreover, multi-sensor information is recorded
using different sensor configuration which means that the raw information will be diverse in its
representation. In addition, diverse representation probably leads to different predictive power.

A variety of multi-sensor methodologies applicable to vehicle detection tasks have been proposed.
Each methodology has its features that have an effect on relevance in the UAV detection problem.
Multi-sensor information fusion can without difficulties complement more common methods, such
as optical and thermal cameras, acoustic arrays, and radar sensing systems in order to tackle counter
UAV detection challenges. Multi-sensor data fusion is capable of providing considerable advantages
over single-sensor data. Accordingly, employing multiple types of sensors and combining different
genres of data outcomes with increasing accuracy on the results.

7.2. C-UAV System Recommendation

UAV detection and classification can be an intimidating task because there are many different
c-UAV methods available. Nevertheless, a handful of technologies have gradually risen above the rest
and been adopted by the majority of researchers and airspace security providers. However, which of
the available choices do you pick and why? We outline the pros and cons of each sensor technology
and then recommend a potential multi-sensor c-UAV system that can provide the optimal threat’s
identification confidence. This recommendation is based on the outcome of the reported work in
this literature review, and it focuses on the multi-sensor deep learning fusion of the available data
for the UAV detection and classification task. A related deep learning fusion method for c-UAV
application that operates with three of the recommended four sensors (radar, electro-optical camera
and thermal camera) is reported in [169]. Without loss of generality, this recommendation can be used
for other similar surveillance applications that do not target UAVs. For example, the recommendation
multi-sensor fusion scheme can adapt to an environmental monitoring application that targets birds
that are similar targets to UAVs.

Radar can effectively detect potentially multiple UAVs and track many targets over a long range
with constant 360◦ coverage over a predefined area. Because UAVs are smaller than manned aircraft
and tend to fly close to the ground, this makes them very difficult for all but the most specialized radars
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to detect. Such systems do exist and they usually operate within the X-band, but they often present
additional issues such as cost (active detection method that requires high electrical power), high-false
alarm rate, and potential interference which might require authorizations from local authorities
to operate.

Optics allow visual and/or infrared thermal imaging detection and classification of approaching
UAVs and potentially identification of UAVs carrying payloads. Optic detection uses cameras to spot
intruding UAVs. The cameras can be divided into several types including standard visual security
cameras, or thermal cameras which are the most commonly employed for c-UAV systems. Some of the
biggest challenges an optic based anti-drone system needs to face are the high false alarm rates and
weather-related issues. Cameras have shown consistent issues with false alarms due to the difficulty of
differentiating between UAVs and similarly sized airborne objects like birds. Some of these challenges
may be mitigated by the complementary use of infrared thermal technology to ferret out UAVs by
detecting their heat signatures. However, thermal UAV detection can be adversely affected by weather
conditions. High humidity, rain, or dense fog can severely reduce the effectiveness of infrared thermal
UAV detection as the infrared radiation is scattered by water particles in the air.

Acoustic UAV detection sensors pick up vibrations made by the propellers and motors of drones
and can match them to a database of drone acoustic signatures. Acoustic technology is lightweight,
easy to install, and can be used in mountainous or highly urbanized areas where the presence of
hillsides or tall buildings might block some other detection methods. It is entirely passive and thus
doesn’t interfere with ambient communications and uses little in the way of electric power. However,
UAVs are becoming ever more silent as the technology evolves and market pressures demand a quieter
device. In addition, acoustic sensors can often detect UAVs, particularly in noisy environments, only
at relatively close distances. A single microphone array can detect a drone at less than 150 m so,
unless multiple microphone arrays are scattered around the protected area, there is no other way to
cover larger distances.

Each technology has pros and cons but adopting a single sensor for UAV detection and
classification will almost certainly not provide the desired situational awareness. Nevertheless, it is
possible to find an effective solution, particularly if complementary technologies are mixed (radar and
thermal cameras) to assure maximum coverage and secondary technologies (acoustic and optical
technologies) to fill in any potential gaps. In Figure 10, we present the recommended c-UAV system
that we believe can maintain situational awareness in a robust manner by fusing multiple information
from four different sensor types. At the center of the sensor topology, a long range radar is placed.
Radar is a reliable way for early detection and it is paired with two panoramic thermal cameras at the
edges of the topology to minimize the false alarm rate. The need for more than one thermal cameras
is created in order to provide range and azimuth localization of the detected target so as to assist
in the fusion of the available information with the radar detections. Due to the sensitivity of the
thermal cameras in adverse weather conditions, an optical camera is also placed at the front of the
sensor topology to provide an additional means of reducing false alarm when combined with radar
and thermal detections. This can be a PTZ (pan tilt zoom) camera that can look at a specific field of
view that is given by the radar and thermal detections so as to confirm the presence of a UAV. Finally,
in order for the developed c-UAV system to be used in mountainous or highly urbanized areas where
the presence of hillsides or tall buildings might block some other detection methods, a number of
microphone arrays are also placed scattered around the protected area to cover as much distance as
possible and provide another back up solution.

All of the recorded data from each sensor can be utilized by uni-modal deep learning networks
developed for UAV detection and classification based on the prevalent methods that were described
within the contexts of this literature review. Finally, the unimodal alert signals and the deep learning
features that are produced by each uni-modal deep neural network can be fused with a multi-sensor
information fusion deep learning network in order to complement each unimodal result and achieve a
combined increased confidence in a threat’s identification.
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Figure 10. Recommended counter-UAV system.

8. Conclusions

Research efforts on UAV detection and classification methods based on deep learning using radar,
electro-optical, thermal, and acoustic sensors as well as multi-sensor information fusion algorithms
have been thoroughly reviewed in the context of this literature review. Research on c-UAV systems is
an emerging field and the addition of deep learning may lead to breakthroughs in the years to come.
The following section deliberates noteworthy elements from each topic and highlights aspects, which
could systematically advance research efforts in the overall field.

Micro Doppler based approaches have shown the most promising detection and classification
capabilities. Research on different information sources, such as motion, is not as common, which could
encourage further work to be made and provide answers for different operational conditions. Deep
learning based object detection algorithms fine-tuned on UAV data are the most common approaches
in literature for UAV detection and classification with electro-optical data. Deep learning based object
detection and classification architectures have been successfully utilized on thermal imagery for generic
targets yet not for UAVs. This could be the motivation for researchers to turn their attention to this
novel subject. Recent technological advances in single board computers equipped with GPUs and the
low cost of microphones have increased the interest of the researchers in deploying microphones for
acoustic classification tasks. In particular, for the task of UAV detection, the deployment of microphone
arrays would help in a robust recognition framework, when combined with other sensor modalities.

The application of deep learning on multi-sensor data for UAV detection and classification is
considered a rapidly emerging research field. Diverse signals from a variety of sensors can provide
significant knowledge aggregation rather than single ones. The scientific publications presented in this
work prove the benefits and the necessity of multi-sensor deep learning from a data fusion perspective.
The heterogeneity of multi-sensor data leads to challenging constructions of joint representations
that exploit inherent relations. Multi-sensor learning employs several techniques for the purpose of
efficiently tackling the diversity of data representations. Furthermore, deep learning methods have
proved their significance in feature learning and feature representation generation by exhibiting their
ability to extract high-level features of different sensors that are semantically correlated. In addition,
modern applications of deep learning deal with several multi-sensory data in the form of images,
audio, radar signals, etc., which are complicated and require a great deal of effort to learn from them.
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Consequently, the literature review presented in the field of multi-sensor deep learning sets the basis
for a fundamental and promising research field.
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