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Abstract

The knowledge of potentially druggable binding sites
on proteins is an important preliminary step to-
wards the discovery of novel drugs. The compu-
tational prediction of such areas can be boosted
by following the recent major advances in the
deep learning field and by exploiting the increas-
ing availability of proper data. In this paper, a
novel computational method for the prediction of
potential binding sites is proposed, called Deep-
Surf. DeepSurf combines a surface-based represen-
tation, where a number of 3D voxelized grids are
placed on the protein’s surface, with state-of-the-
art deep learning architectures. After being trained
on the large database of scPDB, DeepSurf demon-
strates superior performance on two diverse testing
datasets, by surpassing all its main deep learning-
based competitors. The source code of the method
along with trained models are freely available at
https://github.com/stemylonas/DeepSurf.git.

1 Introduction

Structure-based drug discovery relies mostly on
knowledge of potential binding sites of small com-
pounds on protein structures. Computational bind-
ing site prediction (BSP) allows to predict in silico
properties that would require much effort to estab-
lish experimentally and can enhance significantly the

drug discovery process.

Through the years, a plethora of methods have
been proposed for the structure-based BSP task, and,
according to [1], they can be roughly separated in
three categories: the geometry-based, the energy-
based and the template-based ones. Geometry-based
methods (ConCavity [2], Fpocket [3], CriticalFinder
[4]) predict binding cavities based solely on the ge-
ometry of the molecular surface, while energy-based
methods (FTSite [5], AutoSite [6], [7]) calculate inter-
action energies between protein atoms and chemical
probes and attempt to locate energy minima on pro-
tein’s surface. On the other hand, template-based
methods (Findsite [8], LBias [9], LIBRA [10]) aim
to extract binding sites on a protein by performing
global or local structural alignment between this pro-
tein and a set of preexisting templates. Furthermore,
consensus algorithms have been proposed that com-
bine the results from numerous standalone methods
(metaPocket2.0 [11], COACH [12]).

A new perspective on bioinformatics has been pro-
vided by the machine learning (ML) field. Machine
learning techniques exploit the available amount of
labeled data and, through the automated and itera-
tive process of learning, manage to analyze and ex-
tract the underlying patterns that eventually corre-
late the data with their assigned label. Such method-
ologies have also been recently introduced to the
structure-based BSP task [13],[14]. Specifically, Kri-
vak and Hoksza proposed the P2Rank method [14],
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which employs a random-forest (RF) classifier to pre-
dict ligandability score for points placed on the sol-
vent accessible surface of a protein. A set of chem-
ical and geometrical features are calculated on local
spherical neighbourhoods around these points and
operate later as input to the RF classifier. The
points receiving the highest ligandability scores are
spatially clustered to finally provide the predicted
binding sites.

Over the last few years, the increasing availability
of large amount of data has led to the development
of a subfield in ML, namely the deep learning (DL)
field. DL has surpassed by far more traditional ML
methods in many scientific domains (computer vision,
natural language processing, etc) and has been re-
cently applied in a variety of structural bioinformat-
ics tasks, such as virtual screening [15],[16], binding
affinity prediction [17],[18] or protein structure pre-
diction [19],[20]. DeepSite [21] was the first attempt
to employ a DL architecture in structure-based BSP
task, by using a rather shallow convolutional neural
network (CNN) of 4 layers. DeepSite, like P2Rank,
treats binding site prediction as a binary classifica-
tion problem, where ”binding” and ”not binding”
are the two considered classes. Their main difference
is that DeepSite does not utilize any surface infor-
mation but, on the contrary, operates on a 3D vox-
elized grid of the protein. For each voxel of the grid,
a feature vector is computed based on the physico-
chemical properties of the neighboring protein atoms.
Then, a sliding cuboid window of 16 × 16 × 16 tra-
verses the entire grid creating subgrids of features,
which are then imported to the CNN. Each subgrid
is finally assigned a ligandability score by the net-
work. A very similar approach has been proposed in
[22], where the main difference is the set of features
employed. Two recently proposed methods, called
Kalasanty [23] and FRSite [24], resemble to DeepSite
in protein representation, since they also employ a
3D voxelization of the entire protein, but they differ
on how they approach the BSP task. BSP is treated
as an object-detection problem by FRSite and as a
semantic segmentation problem by Kalasanty, where
in both cases the desired object to be extracted is the
corresponding binding site. In FRSite, a 3D version
of Faster-RCNN is employed, while in Kalasanty a

common segmentation architecture, called U-Net, is
adapted to the needs of the specific task. According
to the reported results in Kalasanty, this alternate
representation has achieved higher accuracies than
DeepSite.

Among the aforementioned methodologies, both
DeepSite and Kalasanty exploit the inherent capa-
bilities of deep learning architectures to learn from
large databases and automatically extract features.
However, the voxelized representation of the entire
protein they adopt may have several limitations: It
neglects any knowledge of the surface morphology,
while this fixed structural discretization of the in-
put space can lead to information loss. On the other
hand, P2Rank tries to exploit the binding mechanics
in a more efficient way, by employing a surface-based
representation of the protein, which resembles more
to the actual binding process. As stated in [14], fo-
cusing on grid points or atoms has led experimentally
to significantly worse results than focusing on sur-
face points. Nevertheless, the classification approach
employed in P2Rank (using RF classifier) has lim-
ited generalisation capabilities comparing with ap-
proaches based on Deep Learning, which can benefit
from much larger training datasets.

Inspired by the aforementioned approaches, our
proposed DeepSurf method combines effectively the
learning capabilities of advanced CNN architectures
with the surface-based representation of the 3D pro-
tein structure. More specifically, DeepSurf employs
a 3D-CNN architecture on localized 3D grids, which
are appropriately oriented and placed on a set of se-
lected surface points, as detailed in Section 2.1. This
approach of localized grids resembles to P2Rank, in
the sense that both methodologies consider a local
neighborhood around each surface point. Their ba-
sic differences are that, instead of calculating hand-
crafted features, we employ a 3D-CNN for feature
extraction, and that we consider a voxelized cuboid
neighborhood, instead of a spherical one.

The main contributions of our approach are i) a
new representation of the 3D protein surface is in-
troduced, based on local voxel grids centred at sam-
ple points of the surface; ii) a novel residual network
LDS-ResNet that has shown better performance than
the baseline ResNet in image analysis tasks has been
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Algorithm 1 DeepSurf

Input: Protein structure
1: Create the solvent accessible surface of the pro-

tein
2: Reduce the set of surface points
3: for each point P do
4: Compute normal vector n on P
5: Create local grid on P, aligned according to n
6: Calculate grid features
7: Import grid to 3D-CNN and get ligandability

score for P
8: end for
9: Discard points with score less than T

10: Cluster the remaining points
11: for each cluster do
12: Assign each cluster point to its closest protein

atom
13: Form a binding site from these atoms
14: end for
15: Rank binding sites by average ligandability score
Output: Binding sites

extended in three dimensions to be applicable to vol-
umetric data. The proposed method has been evalu-
ated in binding site prediction using different bench-
mark datasets, demonstrating superior performance
among state-of-the-art approaches.

2 Proposed method

2.1 DeepSurf

A short outline of our method is given in Algorithm 1.
Firstly, the solvent accessible surface (SAS) of the
protein is created in a triangular mesh format. The
resulting mesh is usually too dense, with unnecessary
redundancy of points, which can lead our algorithm
to a severe computational burden. For this reason,
we apply a subsequent ”mesh simplification” step,
where the total number of surface points is reduced
by a factor of f (e.g. f = 10). For this task, we
employ the K-means clustering algorithm aiming to
aggregate adjacent points into one cluster. If np is
the number of original surface points, the total num-

ber of created clusters is equal to np/f . As we can
see, parameter f controls the density of the points to
be preserved and corresponds to the average number
of points per cluster. Finally, from each cluster the
closest point to the cluster center is kept.

One issue related to the voxelized representa-
tion of a protein is the lack of rotation invariance.
Specifically, due to lack of symmetry, the employed
3D cuboid grids are always rotation-sensitive and
strongly depend on the arbitrary placement of the
axes. Most methods attempted to address this issue
by augmenting the data with random rotations dur-
ing training [15],[23]. On the other hand, P2Rank, as
a non-voxelized method, bypassed this issue by uti-
lizing symmetric spherical neighborhoods. We aim
to alleviate this problem by aligning the local grids
with the orientation of the normal vectors of the cor-
responding surface points. This alignment approach
was inspired by a previous work [25], where local
spherical regions on a protein surface were aligned
according to the orientation of the normal vectors, in
order to extract local shape descriptors. An illustra-
tion of this step is shown in Fig. 1. A local grid of size
16×16×16 and resolution 1 Å is centered on surface
point P and is oriented such that the z-axis is always
parallel to the normal vector n on P, i.e. perpendic-
ular to the surface. With this approach, the rotation
issue is not eliminated, since random rotations are
still applied during training. However, this selective
initial placement of axes, instead of a random one,
resulted to a more effective training and evaluation
scheme.

After the proper localization and orientation of the
grid, the next step is to calculate the necessary fea-
tures that will form the 4D tensor which is then im-
ported to the 3D-CNN. We adopt here the featur-
ization scheme initially introduced by [17] and used
also in Kalasanty [23], which consists of 18 chemi-
cal features calculated per protein atom. Each grid
voxel receives the features of the atoms inside it. The
formed 4D tensor is then imported to CNN and pro-
duces at the output a ligandability score for the spe-
cific surface point. Although our approach has been
tested using specific deep neural network architec-
tures, the proposed methodology is generic, meaning
that any 3D-CNN architecture that receives as input
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Figure 1: Illustration of 3D grid localized on surface
point P and aligned according to normal n.

a 4D tensor and returns as output a float value in
range [0,1] can be used instead. The exact network
architectures employed in our experiments are elabo-
rated in the next subsection. After obtaining ligand-
ability scores for all surface points, we need to extract
distinct binding sites. Points with score less than T
are considered not reliable and are discarded, while
the remaining ones are clustered using the mean-shift
algorithm [26]. The main reason for selecting mean-
shift instead of other clustering algorithms, is that
with mean-shift we do not need to declare the num-
ber of clusters in advance. This property matches ex-
actly to our case, since the exact number of binding
sites is not known beforehand. Finally, the surface
points from each cluster are assigned to their nearest
protein atoms and form the desired binding sites.

2.2 Network architectures

As previously noted, the 3D-CNN in DeepSurf can be
substituted by any 3D convolutional network of user’s
choice. In this work we adopted the ResNet [27] ar-
chitecture, which belongs to the family of residual
networks. The main attribute of ResNet is the ex-
istence of skip connections between adjacent layers,
so as to avoid the vanishing gradient problem. The
baseline residual block of 3D-ResNet is depicted in
Fig. 2(a). ResNet is formed by stacking a number of
these blocks. We employed here a 18-layer ResNet,
with the exact structure being shown in the original
work [27]. Considering the fact that we are employ-
ing 3D convolutions, the number of parameters in
3D-ResNet can be dramatically increased compared
to 2D-ResNet. In the same work [27], the bottle-
neck architecture had also been presented, which al-
lows more effective training of deeper ResNets with
considerably less parameters per block. Recently,
a novel residual network has been proposed, called
LDS-ResNet [28], that has shown better performance
than the baseline ResNet in computer vision tasks.
Notably, LDS-ResNet acquired its best results when
combined with a bottleneck architecture, which sig-
nificantly surpassed all the non-bottleneck variants.
In this work, we implemented a 3D variant of the bot-
tleneck LDS-ResNet, with its main block depicted in
Fig. 2(b). The difference to Fig. 2(a) is the addition
of a second branch with an LDS module parallel to
the original convolutional branch and the subsequent
concatenation of these two branches. In the follow-
ing subsection, the extension of the LDS module in
three dimensions, which is proposed in this paper, is
illustrated.

2.2.1 Bottleneck 3D-LDS-Resnet

LDS-ResNets were inspired by the Linear Dynamical
Systems theory where a dynamical system is modeled
through two time-evolving stochastic processes. The
first process estimates a hidden state vector ht and
the second one provides the observed output yt as a
function of this hidden state. A similar approach was
adopted in the LDS-module proposed by [28], with
the exclusion of the time-evolution factor. The herein
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Figure 2: Baseline blocks for (a) original 3D-ResNet,
(b) bottleneck 3D-LDS-ResNet

proposed 3D variant of this module is illustrated in
Fig. 3. Let us assume the input X to the module is
a 4D tensor of size h × w × d × din, where h, w, d
are the spatial dimensions and din is the number of
channels. For clarification reasons, the operation is
presented in Fig. 3 just for one channel (din = 1).
The LDS module operates iteratively over X on 4D
patches Xt ∈ Rn×n×n×din (in our experiments we
used n = 3). The calculation of the LDS modules
output Yt involves two main steps.

The first one simulates the hidden state calculation
of the LDS theory. Each patch Xt is unfolded to a
2D matrix xt ∈ Rn3×din and the hidden state ht ∈
Rn3×din is obtained by:

ht = Axt (1)

where A ∈ Rn3×n3

is the hidden state transition ma-
trix. Its values are randomly initialized for each layer

and subsequently optimized during training through
backpropagation. Then, ht is folded back to Ht ∈
Rn×n×n×din and for every t these subvolumes are
stored successively without overlapping, resulting in
the intermediate volume of H ∈ Rnh×nw×nd×din .

The second step of the module performs the map-
ping from the hidden state ht to output yt, as in
original LDS theory. Specifically,

yt = f (W,ht) (2)

where f () is a non-linear function with learnable pa-
rameters W, and is implemented here by a convolu-
tional operation. Volume H is convolved with a set
of dout filters W ∈ Rn×n×n×din with a stride k · n in
each spatial dimension in order to align the filters W
with the regions corresponding to each of the patches
Xt. Factor k controls the downsampling rate of the
specific building block. When k = 1, the output Y of
the LDS module is a h × w × d × dout tensor, while
k > 1 downsamples all spatial dimensions of the in-
put tensor by a factor of k.

3 Materials

The demonstrated efficiency of deep neural networks
on many research fields lies greatly on the exploita-
tion of large amount of qualitative and properly la-
beled data that can be used for training. The largest
and most suitable database currently available for the
BSP task is the scPDB database [29], a continuously
updated collection of ligandable binding sites of the
Protein Data Bank. These binding sites are defined
from complexes between a protein and a pharmaco-
logical ligand. One asset of scPDB is that, beyond
the atom-based description of the protein and its lig-
and, it provides also their binding site, being thus
suitable for a robust comparison and assessment of
the examined methods. We utilized the 2017 release
of the database which comprises 16034 entries corre-
sponding to 4782 proteins with 17594 total binding
samples. After removing some entries due to failure
in reading or in feature extraction, the final dataset
contains 15182 structures. For training and valida-
tion purposes, the remaining structures were split to
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Figure 3: Graphical illustration of LDS-module’s operation in three dimensions. For presentation reasons,
only one input and output channel is considered (din = dout = 1).

5 folds according to their Uniprot IDs, so as struc-
tures from the same protein should be included in
the same fold. This separation ensures that the same
protein pockets does not coexist in the training and
testing set of a split, allowing a more robust and fair
assessment.

For testing purposes, two different datasets were
used, namely the COACH420 and HOLO4K. These
datasets were employed in the evaluation of the
P2Rank method [14] and the corresponding authors
provided them freely. COACH420 has been derived
from the COACH test set [12] and consists of 420
single chain structures containing a mix of drug tar-
gets and naturally occurring ligands. HOLO4K is
a larger dataset (4009 structures) containing larger
multi-chain structures and was initially utilized by
[30].

4 Implementation

The solvent accessible surface (SAS) of proteins is cal-
culated by the DMS software. Besides the molecular
surface, DMS also returns the normal vectors at each
surface point. Despite setting DMS to create surfaces
with the lowest possible density, the returned set of
points is still quite dense, with the average minimum
distance between neighboring points being 0.7 Å. Pa-
rameter f , that controls the subsequent simplification
process, should be set in a way that achieves a com-
promise between losing valuable surface information

and avoiding excessive computational cost. In our
case, we chose a value of f = 10, which raised the
average minimum distance of the remaining surface
points to 2.3 Å.

Prior to importing in DeepSurf, proteins should
also be properly pre-processed. Specifically, water,
ions and ligands are removed from the PDB struc-
tures, and the remaining structure is protonated, if
needed. Before the final step of binding sites extrac-
tion (step 12 in Algorithm 1), hydrogen atoms are
removed from the protein in order binding sites to
maintain only heavy atoms.

As previously stated, BSP is treated here as a bi-
nary classification problem, where the two considered
classes are the ”binding” and ”non binding” ones.
Therefore, the samples used for training of the 3D-
CNN should belong to one of these classes. For each
protein of scPDB, surface points that are within 4 Å
distance from any ligand atom are considered as bind-
ing samples, while all the rest ones are non-binding
samples. In this case, the resulting dataset would be
quite imbalanced, since the non-binding samples out-
number by far the binding ones.The class imbalance
problem is a well-known problem in machine learn-
ing applications and a number of tactics have been
proposed to tackle with it [31]. The most common
tactic lies on the data level and consists of either
undersampling the main class or oversampling the
secondary one. Due to the required time efficiency
during training, the former technique was herein fol-
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lowed. For each protein, from the set of non-binding
samples a number equal to the binding samples was
randomly chosen in order to obtain a 50/50 balance
between the two classes.

DeepSurf was implemented in Python and the
Tensorflow framework was employed for the deep
learning operations. As already shown in Fig. 3,
the LDS module consists of two layers: a custom
layer and a 3-D convolutional layer. The custom
layer consists of the transition matrix A calcula-
tion and the patch level multiplication (1). Since
this is a patch-based iterative operation, like con-
volution, it can become extremely computationally
heavy for larger input sizes. For this reason, the
custom layer was implemented in CUDA to enable
high level of parallelization and was, afterwards, in-
tegrated in Tensorflow. The source code of the
method along with trained models are available at
https://github.com/stemylonas/DeepSurf.git.

Regarding the training process, L2 regularization
was applied on the weights of all convolutional layers
(λ = 10−4), while batch normalization was applied
with its default parameters. All models were trained
for 20 epochs, with batch size of 64 samples, and were
optimized by the Adam optimizer [32] with a learning
rate of 10−3.

5 Results and Discussion

The evaluation criteria used to assess the perfor-
mance of the proposed method are the following:

• DCC: Success rate (%) when considering the
distance between the predicted pocket center
and the real binding site center. Distances less
than 4 Å are successful.

• DCA: Success rate (%) when considering the
distance between the predicted pocket center
and the closest ligand atom. Distances less than
4 Å are successful.

• OVR: Overlapping criterion on the atom level
defined as the intersection of the real and pre-
dicted binding sites divided by their union.

Table 1: Contribution evaluation of the core parts
of DeepSurf. Results depicted are average cross-
validation performances on scPDB dataset using the
DCC criterion.

Top-n Top-(n+2)

DeepSite’s network 62.1 64
ResNet-18 (w/o align) 66.8 69.1
ResNet-18 (w align) 68.1 70.4

The DCC and DCA metrics have been widely used
in previous works to evaluate the localization quality
of extracted binding sites by measuring their distance
from either the annotated binding site or the corre-
sponding ligand. On the other hand, OVR differs
from the above distance-based metrics by considering
also the shape of the binding sites, since it expresses
a normalized spatial overlap between the predicted
and the actual location of the binding pocket. In
the following experiments, the DCC metric is used
for evaluating the performance on scPDB, while the
DCA and OVR metrics are employed for the compar-
ative assessment on COACH420 and HOLO4K. In all
cases, the top-n and top-(n+2) predicted pockets are
considered, where n is the number of ligands for the
specific protein. Finally, the ligandability threshold
T is set to 0.9 in all experiments. The sensitivity of
DeepSurf on selection of T is examined more thor-
oughly in Section 5.3.

5.1 Cross-validation on scPDB

The first stage of our experiments consists of the 5-
fold cross validation (CV) on scPDB. The goal of this
experiment is twofold. Firstly, we would like to eval-
uate independently some fundamental steps of our
method and, secondly, to test the behavior of Deep-
Surf with residual architectures of different size and
type. As described in Section 3, the scPDB dataset
was split to five folds and for each fold a different
model was trained. Results depicted in both Tables
1 and 2 are average performances on these folds.

Initially, in order to estimate the separate con-
tribution of some core parts of DeepSurf, we con-
ducted two additional experiments. In the first one,
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Table 2: Evaluation of DeepSurf with lightweight residual architectures. Results depicted are average cross-
validation performances on scPDB dataset using the DCC criterion.

#params(M) Top-n Top-(n+2)
ResNet-18 33.1 68.1 70.4
Bottleneck ResNet-18 1.7 66.8 69.4
Bottleneck ResNet-34 2.9 67.6 69.9
Bottleneck LDS-ResNet-18 3 68.3 70.8

we employed DeepSurf with the exact network archi-
tecture used in DeepSite [21] in order to demonstrate
the added value of our proposed representation. In
the second experiment, we examined the contribu-
tion of the surface grid alignment step by training
our method without this feature. The obtained re-
sults from both experiments are depicted in Table 1,
along with the performance obtained by DeepSurf
using the ResNet-18 architecture. Although, in the
original work of DeepSite, there is no exact refer-
ence to the obtained CV performance, we derived
from the provided results that the average CV per-
formance of DeepSite is about 50%. Here, DeepSurf
when using the same network architecture achieves
a clearly better performance of 62.1% proving thus
the effectiveness of the surface-based representation
in comparison to the strict voxelization of the entire
protein used in DeepSite. When the smaller network
of DeepSite is replaced by the larger ResNet-18 archi-
tecture, we observe that DeepSurf achieves a higher
top-n prediction score of 68.1%. This finding indi-
cates, as expected, that larger architectures are able
to exploit more efficiently the large amount of train-
ing data and can provide much better generalization
accuracies. When omitting the surface grid align-
ment step, the average performance drops by 1.3% in
both top-n and top-(n+2) accuracies. This decrease
is an indication that this feature, with no additive
cost, can boost the overall performance of DeepSurf.

In the next experiment, we employed some alter-
native lightweight residual architectures in place of
ResNet-18 in order to investigate whether lighter net-
works can achieve similar performances. The ob-
tained results, along with the number of parameters
of each network, are summarized in Table 2. As al-

ready stated in Section 4, the number of parameters
in 3D-ResNets can be quite large due to the 3D convo-
lutions, e.g. ResNet-18 has about 33 million param-
eters. When replacing the basic residual block with
the respective bottleneck (Fig. 2), the resulted net-
work has significantly less parameters (1.7 million),
yet it leads to an expected drop in accuracy of 1-
1.3%. The addition of LDS block (bottleneck LDS-
ResNet-18), which was detailed in Section 2.2.1, led
to a rise of 1.5% in accuracy comparing to bottleneck
ResNet-18, but at the cost of approximately double
parameters. For a fairer assessment of the contribu-
tion of the LDS block, we tested DeepSurf employed
with a bottleneck ResNet with 34 layers, which has
the same parameters as the bottleneck LDS-ResNet-
18. We notice that the LDS variant achieved 0.7%
higher top-n accuracy and 0.9% higher top-(n+2) ac-
curacy than bottleneck Resnet-34, making it prefer-
able as a lightweight architecture. Comparing now
to the baseline ResNet-18 variant, although bottle-
neck LDS-ResNet-18 has more than 10 times fewer
parameters, it achieves similar, if not better, CV per-
formance than its competitor.

5.2 Comparison to other methods

After evaluating the individual features of our
method through cross-validation, we perform com-
parison of DeepSurf to other competing in the BSP
task deep learning methods that are publicly avail-
able. Specifically, we perform comparison to Deep-
Site [21], Jiang’s method [22] and Kalasanty [23].
From the various architectures of DeepSurf tested
in Section 5.1, we keep for comparison the base-
line ResNet-18 and the lightweight bottleneck LDS-
ResNet-18, which provided the highest accuracies.
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Table 3: Performance comparison of DeepSurf with competing deep learning methods using the DCA crite-
rion.

COACH420 HOLO4K
Top-n Top-(n+2) Top-n Top-(n+2)

DeepSite [21] 57.5 65.1 45.6 48.2
Jiang et al. [22] 55 58.7 38.2 41.5
Kalasanty [23] 68 70.4 32.1 32.3
DeepSurf (ResNet-18) 71.9 72.3 50.7 51.1
DeepSurf (Bot-LDS-ResNet-18) 71.3 72.9 50.4 50.9

Table 4: Performance comparison of DeepSurf and
Kalasanty using the OVR criterion, computed only
for correctly located binding sites (DCA < 4 Å).

COACH420 HOLO4K

Kalasanty 0.21 0.15
DeepSurf (ResNet-18) 0.29 0.17
DeepSurf (Bot-LDS-Res-18) 0.28 0.16

For testing purposes, two different datasets were uti-
lized, namely the COACH420 and HOLO4K datasets
(for more details see Section 3). In order to avoid
data leakage, all proteins from COACH420 and
HOLO4k were removed from scPDB, and the remain-
ing dataset was used to train the two variants of
DeepSurf. Although all of the competing methods
have been trained on the same database (scPDB),
any proteins common to our testing datasets have not
been removed. This means that these methods have
a slight advantage due to this specific data leakage.
Provided DeepSite results are those obtained by [14].
In case that a method fails to produce any binding
site, an adequately large value of DCA is assigned for
each ligand of this protein ensuring that this solution
will be regarded erroneous.

The obtained DCA performances are shown in Ta-
ble 3. Regarding the three competing methods, we
notice that Kalasanty surpasses clearly the others in
COACH420, while DeepSite is by far superior in the
most challenging dataset of HOLO4K. Nevertheless,
DeepSurf clearly outperforms all competing methods
in both datasets. Specifically, DeepSurf is superior to

Kalasanty in COACH420 by 3.7% in top-n accuracy
and 2% in top-(n+2), while in HOLO4K, DeepSurf
outperforms DeepSite by 5% in top-n accuracy and
3% in top-(n+2). Among the two DeepSurf alterna-
tives, ResNet-18 achieves less than 0.5% higher top-n
accuracies in both datasets, while bottleneck LDS-
ResNet-18 prevails in terms of top-(n+2) accuracy in
COACH420. This indicates the computational and
generalization effectiveness of the LDS-equipped net-
work when applied to unknown structures, since it
achieves similar results to ResNet-18 but with the
benefit of more than 10 times fewer parameters.

For a more comprehensive comparison of the above
methods, an overlapping criterion should also be ap-
plied that evaluates the shape of the extracted pock-
ets. According to [33] and [34], binding sites are de-
fined as the non-hydrogen atoms of a residue that are
within 4 Å to a non-hydrogen atom of the ligand. Fol-
lowing this principle, we extracted binding sites for all
proteins in COACH420 and HOLO4K and computed
the OVR values only for the correctly located bind-
ing pockets (DCA < 4 Å) in each corresponding case.
The obtained average values are presented in Table 4.
Except from DeepSurf, Table 4 holds also the aver-
age OVR values obtained by Kalasanty, since it is the
only competing method that, additionally to centers,
returns explicitly the binding site atoms. As we can
see, DeepSurf achieves higher overlapping values in
both datasets, and especially in COACH420. Never-
theless, the attained values, mainly in HOLO4k, are
relative small compared to the ideal score of 1, indi-
cating that the extraction of properly shaped binding
sites is still an open issue.

A more qualitative assessment of the competing
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Table 5: Qualitative comparison of DeepSurf and the competing methods. The number of proteins where
each method failed and the average number of predicted pockets are shown.

Number of
failed proteins

Average number of
predicted pockets

COACH420 HOLO4K COACH420 (1.2) HOLO4K (2.8)
DeepSite 3 21 3.2 2.8
Jiang et al. 12 65 1.4 3.4
Kalasanty 16 475 1.1 1.2
DeepSurf (ResNet-18) 10 9 1.1 1.8
DeepSurf (Bot-LDS-ResNet-18) 11 24 1.1 1.7

methods is given in Table 5, which provides the av-
erage number of predicted pockets along with the
number of proteins where each method failed to pro-
duce a result. As we can see, Kalasanty was unable
to extract binding sites for a large number of pro-
teins, even after adjusting its default parameters. For
example, in the case of HOLO4K, no binding site
returned for 475 out of 4009 proteins. Among the
two DeepSurf variants, ResNet-18 appeared more ro-
bust, since it encountered the fewer failures in case of
HOLO4K. Regarding the number of extracted bind-
ing sites, DeepSurf and Kalasanty have the tendency
to return fewer pockets than DeepSite and Jiang’s
method in both datasets. In the case of COACH420,
it is beneficial since both methods extract a number
of pockets similar to the average number of true ones
(1.2). On the other hand, in HOLO4K, DeepSurf,
and especially Kalasanty, return on average fewer
binding sites than the actual ones (2.8). This can
explain the larger differences between top-n and top-
(n+2) accuracies observed in the case of DeepSite and
Jiang’s method compared to the rest of the methods
(see Table 3).

5.3 Sensitivity on ligandability
threshold

A key parameter of DeepSurf is the ligandability
threshold T above which surface points are consid-
ered potential binders. In the above experiments,
a high ligandability threshold of T = 0.9 was se-
lected so as to preserve only the most reliably as-
signed points. This choice was based both on the

observation that the employed 3D networks return
a large number of high ligandability scores and on
visual inspection of the extracted pockets. An il-
lustrative example is given in Fig. 4, which displays
the binding sites extracted by DeepSurf for structure
1lqdB with T = 0.5 and T = 0.9, respectively. Al-
though, in both cases, the extracted pockets are con-
sidered successful due to low DCA values, we can ob-
serve that the extracted pocket in Fig. 4(a) is larger
and expands to undesired areas (marked with black
circles) away from the ligand. This is totally ex-
pected/reasonable, since a smaller value of T leads to
the preservation of more surface points before clus-
tering and, subsequently, to the formation of larger
binding sites. Furthermore, the influence of varying
T in the obtained results is examined quantitatively
in Table 6, where the DCA values for both DeepSurf
variants and for various ligandability thresholds are
presented. As we can see, lower values of T lead con-
sistently to smaller performances in both datasets,
especially when T = 0.5. Among the two DeepSurf
variants, the lighter one seems to be more affected by
variations of T (2% drop in COACH420 and 3% in
HOLO4K). From the aforementioned, it is concluded
that DeepSurf exhibits its optimal performance when
a high ligandability threshold is set.

6 Conclusion

In this paper, a novel method, called DeepSurf, was
presented for predicting potential druggable sites on
proteins. The identification of promising candidate
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Table 6: Performance of DeepSurf using the DCA criterion for different values of T .

COACH420 HOLO4K
Threshold T 0.5 0.7 0.9 0.5 0.7 0.9
DeepSurf (ResNet-18) 71.5 71.7 71.9 48.9 50.1 50.7
DeepSurf (Bot-LDS-ResNet-18) 69.4 71.3 71.3 47.3 49.2 50.4

areas for binding on a protein’s surface plays an im-
portant role towards drug discovery. DeepSurf pro-
poses a novel approach on this task by combining
a surface representation of the protein with a set of
local 3D voxelized grids placed on protein’s surface.
After computing appropriate chemical features, these
grids are iteratively imported to a state-of-the-art 3D
convolutional network and the resulted ligandability
scores of each surface point are, finally, clustered to
create the binding sites.

After comparing the proposed method with a set
of competing deep learning methods in two diverse
datasets, DeepSurf proved quite effective by outper-
forming all the competing methods in terms of both
localization and overlapping accuracies. Despite its
domination on overlapping accuracies, the attained
values remained quite small proving that the extrac-
tion of ideally shaped binding sites still remains an
open issue. Finally, a sensitivity analysis on ligand-
ability threshold showed that DeepSurf needs to pre-
serve only the most reliably assigned by the network
points in order to acquire its maximum performance.
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