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Towards Real-Time and Efficient Compression of
Human Time-Varying Meshes

Alexandros Doumanoglou, Dimitrios Alexiadis, Dimitrios Zarpalas, Petros Daras

Abstract—In this work, a novel skeleton-based approach to
Human Time-Varying Mesh (TVM) compression is presented.
The topic of TVM compression is new and has many challenges:
handling the lack of obvious mapping of vertices across frames,
handling the variable connectivity across frames, while maintain-
ing efficiency with respect to the above are the most important
ones. Very few works exist in the literature, while not all of
the challenges have been addressed yet. Moreover, developing an
efficient and real-time solution, handling the above, obviously is a
difficult task. We attempt to address the Human TVM compres-
sion problem inspired from video coding by using different types
of frames and trying to efficiently remove inter-frame geometric
redundancy utilizing the recent advances in human skeleton
tracking. The overall approach focuses on compression efficiency,
low distortion and low computation time enabling for real time
transmission of Human TVMs. It efficiently compresses geometry
and vertex attributes of TVMs. Moreover, this work is the first to
provide an efficient method for connectivity coding of TVMs, by
introducing a modification to the state-of-the-art MPEG-4 TFAN
[1] algorithm. Experiments are conducted in the MPEG-3DGC
TVM database [2]. The method outperforms the state-of-the-art
standardized static mesh coder MPEG-4 TFAN at low bit-rates,
while remaining competent at high bit-rates. It gives a practical
proof of concept that in the combined problem of geometry,
connectivity and vertex attribute coding of TVMs, efficient inter-
frame redundancy removal is possible, establishing ground for
further improvements. Finally, this work proposes a method for
motion-based coding of Human TVMs that can further enhance
the overall experience when Human TVM compression is used
in a Tele-Immersion (TI) scenario.

Index Terms—Human capturing, time varying mesh, mesh
compression, skeleton, entropy-constraint vector quantization,
real-time, tele-immersion

I. INTRODUCTION

DURING the previous years a lot of effort has been
devoted in developing efficient compression algorithms

for static meshes and dynamic meshes found in typical 3D
animation sequences. Static mesh compressors target single
individual meshes, while dynamic mesh compressors target
animation sequences exploiting temporal redundancy between
frames. Contrariwise to the synthetic animation sequences (dy-
namic meshes) created by 3D artists, reconstructed 3D natural
scenes typically constitute Time-Varying Meshes (TVMs) [3].
The main difference between a dynamic mesh and a TVM is
that the former consists of a series of meshes that have constant
vertex and face count, as well as constant connectivity across
frames, but variable geometry (vertex coordinates). On the
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other hand, TVM is described as sequence of meshes whose
geometry, connectivity, vertex and face count are all varying
across frames, introducing complexities that are not faced in
dynamic mesh compression. The most important difference
is that no one-to-one correspondence exists between vertices
across frames and consequently the varying connectivity. In
addition, since TVMs are meshes of live captured natural
scenes that need to be compressed and streamed over the
network in real-time, form a causal signal. On the contrary, in
order to maximize exploitation of temporal redundancy across
frames and maximize the compression ratio, dynamic meshes
are typically treated as non causal signals.

In this work, we address geometry, connectivity and per
vertex color compression of Human Time-Varying Meshes
(H-TVMs), while remaining concerned about real-time per-
formance and thus enabling real-time tele-immersion (TI)
application scenarios [4], [5], [6]. Additional support for other
vertex attributes apart from per vertex color (i.e. normals, tex-
ture coordinates, etc) is straightforward. The proposed scheme
exploits recent advances in motion capturing that retrieves
human skeleton pose in real-time from depth-maps [7]. The
main contributions of this paper can be summarized to the
following:

• It is the first work to provide an efficient method for
connectivity coding in TVMs.

• It proposes a method that shows competent experimental
results when compared to the current state-of-the-art
static coders, especially in the low bit rates.

• It is the first to give a practical proof of concept that, when
considering the combined problem of geometry, connec-
tivity and per vertex attribute coding of TVMs, efficient
exploitation of inter-frame redundancy is possible.

• It proposes an innovative method for motion-based cod-
ing based on human skeleton extraction.

Overall, the paper introduces a chain of innovative ideas that
push research in TVM compression one step forward, aiming
to establish ground for further improvements.

The rest of the paper is organized as follows: In Section
II, previous related work in the area of mesh compression is
discussed. In Section III, an overview of the proposed H-TVM
compression framework is presented, while Sections III-C and
IV contain in-depth analysis of the proposed compression
scheme. Increasing further the effectiveness of a TI system,
in Section V motion-based coding is discussed. Section VI
follows with the presentation of the proposed algorithm’s re-
sults, with respect to both computational time and compression
ratio. In the same section, the state-of-the-art coder MPEG-
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4 TFAN [1] is compared against the proposed one. Finally,
Section VII summarizes this work and discusses open issues
and future work.

II. RELATED WORK

Related work in the field of mesh compression can be
categorized based on the nature of the mesh, being either static,
dynamic or time varying.

A. Static Mesh Compression
The field of static mesh compression has been extensively

explored during the previous two decades.
1) Connectivity Coding: The first attempt for a compact

triangular representation was made by Deering [8]. Taubin
et al. [9] introduced a mesh compression scheme based on
vertex and triangle spanning trees to encode geometry and
connectivity, respectively. Touma et al. [10] encoded mesh
connectivity by applying entropy coding on the valence of
mesh vertices, using a predefined traversal scheme resulting in
practice 0.2 - 3.5 bits per vertex (bpv). A slightly more efficient
approach than [10], was presented by Alliez et al. [11], based
on the same valence-driven concept. Rossignac in [12], by
providing both a rigorous theoretical analysis and an outstand-
ing worst case upper bound on the connectivity compression,
proposed a triangle conquest approach to encode triangle mesh
connectivity. This algorithm, namely Edgebreaker, constitutes
a state-of-the-art technique for triangular mesh connectivity
coding. The initial method of [12] has a theoretical upper
bound of 4 bpv. Since then, advances have been proposed
that improve this theoretical upper bound [13], [14]. Later,
Coors et al. [15] presented Delphi, a connectivity coder
that improves EdgeBreaker by introducing geometry driven
parallelogram connectivity prediction. A more recent work [1],
which has been adopted by MPEG-4 standard for static mesh
compression, exploits triangle fan representation for efficient
connectivity coding presenting state-of-the-art results.

2) Geometry Coding: While connectivity coding is lossless,
geometry is usually compressed in a lossy manner. A geometry
coder typically aims to reduce coordinate precision for a
better compression ratio. It is common for connectivity to
drive geometry coding. In that case, usually, geometry data
are encoded in a specific order determined by the way the
connectivity is coded. Most geometry coders pre-quantize
vertex positions, predict the quantized positions and entropy
code prediction residuals. In the pre-quantization step of
[10] and similar to most relevant coders, vertex coordinates
are uniformly quantized with 8-16 bit precision. Following
uniform quantization, the prediction step exploits the geomet-
ric correlation between adjacent vertices. Different geometry
prediction schemes have been proposed in the literature ([8],
[9], [10]), with parallelogram prediction [10] being the most
common. Lee et al. [16] proposed Vector Quantization (VQ)
for geometry coding reporting 6.7 bpv as opposed to [10]
that achieves 9 bpv at the same resolution, while Karni et al.
[17] proposed geometry coding by spectral compression. In a
more recent work [18], connectivity and geometry are encoded
simultaneously after segmenting the mesh in polygonal regions
using principal plane analysis.

B. Progressive Mesh Compression

Progressive transmission permits rendering of a rough ap-
proximation of the model and progressively refines it as
more data arrive to the receiver. Hoppe [19], [20], whose
encoding algorithm was based on mesh simplification by
edge contraction, was the first to introduce progressive mesh
representation. Taubin et al. [21] improved [19] by proposing
split operations to be performed in batches, while further
improvements were later proposed by Pajarola et al. [22].
Alliez et al. [23] proposed valence driven decimation to guide
progressive compression. The simplification process of the
progressive mesh was based on vertex removal and hole re-
triangulation. Valete et al. [24] introduced a wavelet-based
progressive compression scheme, while Peng et al. [25] pro-
posed a progressive mesh encoding algorithm based on octree
decomposition. Later, Valette et al. [26] redefined progressive
mesh compression as a mesh generation problem. The results
presented in their work show superior quality compared to
either [24] or [27].

C. Dynamic Mesh Compression

In dynamic mesh compression, with connectivity being
constant across frames, the focus is on efficient geometry com-
pression. Dynamic mesh compression algorithms try to exploit
temporal geometric redundancy of vertex trajectories across
frames. Ibaria et al. [28] used a spatio-temporal prediction
scheme to compress animated mesh sequences. The algorithm
of Karni et al. [29] was based on Principal Component
Analysis (PCA) and linear prediction coding (LPC). In [30],
PCA is applied on the trajectory of vertices and each vertex’s
trajectory is expressed in the PCA space. The prediction resid-
uals and the PCA basis functions are then encoded. The same
authors proposed COBRA [31] as a method for efficiently
compressing the PCA basis. Payan et al. [32] tackled the
problem using wavelets. Later, Mamou et al. [33] proposed
a method consisting of a piecewise affine predictor coupled
with a skinning model and a temporal Discrete Cosine Trans-
form (DCT) representation of the residual errors. Their work
with some improvements, was standardized under MPEG-4
Frame-Based Animated Mesh Compression (FAMC) [34]. The
proposals included in [34] as well as the combination of [30]
and [31] are considered to be today’s state-of-the-art.

D. Geometry Images and Videos

Based on the interesting work of [35], an arbitrary mani-
fold static mesh can be remeshed into a completely regular
mesh structure, called “geometry image”. A geometry image
effectively captures geometry (vertex coordinates) information
into a 2D square array of [X,Y, Z] values, while connectivity
is implicitly defined. Consequently, geometry images can be
encoded using standard image compression techniques.

As an extension to geometry images, the concept of “geom-
etry videos” [36] was introduced by Briceno et al. In [36], an
animated (i.e. dynamic) mesh sequence is treated as a video,
offering the possibility to apply traditional video compression
techniques. Taking into consideration the isometric nature of
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3D articulated motions, “conformal geometry videos” were re-
cently proposed in [37] by Quynh et al., in order to efficiently
represent articulated motions, such as human motion.

Since geometry images and their extensions can be com-
pressed using mature ideas from standard image/video coding,
their compression can be obviously very efficient. However,
geometry images and videos themselves constitute actually a
remeshing process, rather than a compression scheme. Addi-
tionally, since the generation of geometry videos results into
a constant number of vertices and connectivity, coding of
geometry videos lies actually in the field of dynamic mesh
compression. Geometry images and consequently their video
counterparts, can represent only manifold input 3D surfaces
[35], which is not the usual case in real-world 3D captures.
Finally, the parametrization (remeshing) process requires sig-
nificant computational effort. Thus, geometry video concepts
are not applicable in scenarios that involve compression of
TVMs, especially considering real-time constraints.

E. Time-Varying Mesh Compression
To the best of our knowledge the first attempts to compress

Time-Varying Meshes was described in [38] and [39]. In
[39], Gupta et al. used the Iterative Closest Point (ICP) [40]
algorithm to exploit temporal geometric redundancy across
frames. This scheme, uses I and P frames, in a sense similar
to traditional MPEG-2 Video Coding. This method was the
first to deal with TVM connectivity coding.

Block matching is a common technique used in 2D Video
for motion compensation (MC). Concerning geometry com-
pression in TVMs, Han et al. in [3] extended this concept in
3D space, forming the Extended Block Matching Algorithm
(EBMA). After MC the residuals are transformed using DCT,
uniformly quantized and entropy coded. Motion vectors are
encoded as well. In their method, additional information,
such as vertex indices and block sizes, is needed in order
to decode mesh geometry. The authors chose to use simple
entropy coding to compress this kind of information. Later,
the same authors, used coarse and fine levels of quantization
[41] and were able to improve geometry compression of
TVMs as opposed to [3]. Yamasaki et al. [42] proposed patch-
based compression of TVMs showing significant improvement
among previous attempts. Additionally, they handle per vertex
color and encode triangle connectivity by re-indexing triangle
vertices.

In the context of real-time compression of TVMs being used
in a TI system, Lien et al. [43] used a skeleton-based approach
for compressing geometry of H-TVMs. In their innovative
work, apart from exploiting skeletal motion data for efficient
prediction, they also employ traditional image compression
techniques to encode the prediction residuals.

F. Discussion
Following the literature overview, in this subsection we

highlight the gaps of existing methodologies in TVM com-
pression that are addressed in the proposed work. In [3], the
problem is addressed only in terms of point-cloud compres-
sion. No connectivity coding is considered. Moreover, side-
information is proven to be very expensive (∼ 6 bpv), as later

was admitted in [42]. Contrariwise, in this paper we discuss
all side-information aspects and give a theoretical proof for its
encoding cost. In the proposed method this side-information
is reasonably small (∼ 2 bpv). Similarly, in [41] only point-
cloud compression is considered, while in [42] a very expen-
sive approach for connectivity compression is employed that
requires approximately 55 bpv. Furthermore, to the best of
our knowledge, no appropriate connectivity coding approach
has been proposed that can be combined with the previous
geometry coding methods, in order to form an actual mesh
(geometry and connectivity) encoder. All the above mentioned
works could not efficiently deal with mesh connectivity in
the combined problem of TVM geometry and connectivity
coding, thus inevitably their performance is inferior when
compared to the state-of-the-art static coders. The need for
developing efficient connectivity coding algorithms for TVMs
has been admitted by the authors in [42]. The hereby work
proposes a solution to the TVM connectivity coding problem,
by modifying the existing state-of-the-art TFAN [1] algorithm.

The method of [43], while utilizing a skeleton-based ap-
proach like the proposed one, does not deal with mesh con-
nectivity. On top of that, it is not using a bijective projection
function to encode geometry residual and consequently is
highly sensitive to skeleton errors. The proposed method, as
verified in Section VI, is robust to skeleton errors and does
not compromise visual quality.

The methods of [38] and [39], are indeed tackling the com-
bined problem of geometry and connectivity coding. However,
they rely on assumptions about the inter-frame variation of
vertex count (requiring 1%-2% inter-frame variation), as well
as for the reconstruction method used to produce the meshes
(delaunay triangulation). The proposed method is not restricted
by such constraints.

Finally, among the TVMs compression methods reported in
the literature, only the method of [43] is concerned with real-
time performance in a TI application scenario, similarly to our
requirements.

III. PROPOSED SYSTEM OVERVIEW

In this section, a high level overview of the proposed system
is given. The system aims to efficiently compress H-TVMs
and has been put into practice with the multi-sensor Microsoft
Kinect setup of [44], [45].

A. Requirements - Skeleton Motion Tracking
The system takes advantage of recent technological ad-

vances in motion capturing that allow for real-time extraction
of human skeleton from depth-maps. An enhanced version of
the work presented in [7] is already implemented in Microsoft
Kinect SDK, while Primesense’s OpenNI SDK contains an
equivalent proprietary algorithm (NITE). In addition, a method
to extract skeleton information from TVMs appears in [46].
In this work, the OpenNI skeleton tracking module is used
to extract the skeleton motion information, since studying
the problem of skeleton extraction is beyond the scope of
this paper. The field of skeleton extraction from 3D data is
expected to become even maturer in the near future, thus
offering a valuable and reliable tool.



4

Fig. 1: Proposed system’s encoder. Dashed lines denote external input to the encoder, while dotted lines denote data input to
internal subsystems from internal variables.

B. Core analysis

LetMt denote the triangulated human mesh to be encoded
in frame Ft, while St its respective skeleton information as ,
t ∈ N. Skeleton information includes joint positions and bone
orientations.

The input to our framework consists of Mt and St. The
output, inspired from animation sequence compression [34],
as well as traditional video compression methods, consists
of 3 types of frames: I Frames, P Frames and Enhanced-P
(EP) Frames. I-Frames are intra-coded, i.e. they can be recon-
structed without any reference to other frames. P-frames are
forward predicted from the last encoded I-Frame using vertex
transformations and taking advantage of skeleton information.
A P-Frame is reconstructed by animating the last encoded
I-Frame using rigid skinning. EP-Frames are similar to P-
Frames, with the addition of carrying prediction corrections
for improved mesh accuracy and quality. Hence, P-Frames
can be treated as a special case of EP-Frames, as discussed
in subsection IV-B. The compressed sequence consists of I, P
and EP frames, alternating at non constant intervals.

Fig. 1 provides a brief overview of the encoder. The first
frame is always encoded as I-Frame. Next frames are encoded
either as P, EP or I, depending on the overall motion obtained
from skeleton information. When the “skeletal motion” is
lower than a specified threshold, the frame is encoded as a P
frame. For a larger “skeletal motion”, the frame is encoded
either as EP or I Frame, with I-Frames being favored for
the very large “skeletal motions”, considering appropriate
thresholds. P and EP-Frames are encoded with respect to FI ,

i.e. the last encoded I-Frame. Thus, the “skeletal motion” of
Ft is calculated with respect to FI . The “skeletal motion”
metric used in this work is defined as the sum of all “per-
bone motions”. The “per-bone motion” is calculated as the
shift (euclidean distance) of the specific bone’s center from
frame FI to frame Ft.

The encoded mesh at time t, being either an I or EP Frame,
is denoted as M̂t. Let also M̂I and SI denote the decoded
mesh of FI and its corresponding skeleton information, re-
spectively. The encoder initially performs a skinning process,
associating each vertex and triangle ofMt to a skeleton bone
of St. We denote the output of the skinning process for frame
Ft as Kt and for FI as K̂I . The encoding of EP-Frames relies
on St, Kt, Mt, SI , K̂I and M̂I in order to exploit temporal
geometric redundancy across frames and encode prediction
corrections along with the mesh connectivity.

In the following sections in-depth information for each sepa-
rate module of Fig. 1 is provided. For the reader’s convenience,
the most commonly used notations in this paper are depicted
in Table I.

C. I-Frame Coding

I-Frames are intra-coded and theoretically any static mesh
encoder can be used for their compression. Depending on us-
age scenario, either a highly efficient static mesh compression
algorithm (like [1]) can be used, or instead a low-complexity
real-time algorithm like [47] can be preferred. The rest of the
proposed system is not affected by this choice.
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Ft The frame to be encoded in time t.

FI The last encoded I-Frame

Mt The mesh to be encoded in frame Ft.

St The skeleton of the mesh in frame Ft.

Vt The set of vertices contained in Mt.

Nt The number of vertices in Mt.

vk
t The k-th vertex of Mt.

M̂I The decoded mesh of the last encoded I-Frame FI .

ŜI The skeleton of the mesh in frame FI .

VI The set of vertices contained in M̂I .

NI The number of vertices in M̂I .

vk
I The k-th vertex of M̂I .

MP The predicted mesh for frame Ft.

VP The set of vertices contained in MP .

NP The number of vertices in MP .

vk
P The k-th vertex of MP .

bit The i-th bone in skeleton St.

j
(i,0)
t The first joint of bit.

j
(i,1)
t The second joint of bit.

P(bit) The set of vertices in Mt that can be orthogonally
projected on bone bit.

A(bit) The set of vertices in Mt that are associated with bone
bit.

ekt The k-th prediction residual when encoding Mt.

ekt
(kp)

The kt-th prediction residual when encoding Mt,
whose reference vertex in MP is v

kP
P .

v̂k
t The k-th decoded vertex when decoding frame Ft.

TABLE I: Notation table

IV. ENHANCED-P FRAME CODING

In contrast to I-Frames, which are intra-coded for both
geometry and connectivity, EP-Frames are inter-frame coded
with respect to the last encoded I-Frame for geometry and
intra-coded for connectivity. Encoding EP-Frames is a three
step process: 1) predict geometry, 2) find and encode geometric
prediction errors and finally, 3) encode connectivity. While
geometry coding can be lossy, connectivity coding shall not.

An overview of the EP-Frames encoding algorithm is
depicted in Fig. 2. The process of encoding Mt starts by
predicting its geometry from M̂I through per bone vertex
transformations by utilizing skeletal animation and the It-
erative Closest Points (ICP) algorithm. To accomplish per
bone vertex transformations, mesh vertices are required to be
associated with skeleton bones. Thus, a mesh skinning process
is employed for both M̂I and Mt. Geometry prediction
residuals are calculated afterwards in a per bone basis. The
prediction residuals are encoded with respect to their nearest
predicted vertex. Finally, connectivity is encoded using a
modification of TFAN [1], which allows geometry to be
encoded independently from connectivity (and thus exploiting
inter-frame redundancy) as opposed to the original algorithm.
In the following subsections the steps of EP-Frame coding are
discussed in-depth.

Fig. 2: Encoding of EP-Frames algorithm.

A. Mesh Skinning

For geometry coding in EP-Frames, the prediction scheme
used by the proposed encoder employs a skinning process in
order to associate the mesh’s vertices to bones. In general,
the skinning module approximates the human mesh with bone
cylinders whose axis are the skeleton bones themselves. To
accomplish the skinning task as accurately as possible, even
when the subject (human) stands in an arbitrary pose, an
offline skinning calibration process is required. During the
skinning calibration process the subject is required to stand
in a T-pose (as in Fig. 3) and the radii of the cylinders are
estimated. Later, when the user stands in an arbitrary pose,
the mesh skinning is achieved by associating vertices to their
closest bone, depending on their distance to the bone’s cylinder
surface. In the rest of the section we formalize this concept
using mathematical notation.

In the mesh skinning module of the proposed system,
depicted in Fig. 2, the input consists of St and Mt. For
notation simplicity, we drop the time parameter t in the
rest of this section. Considering the typical skeleton in T
pose of Fig. 3, each skeleton bone is represented using a
vector. Each bone is given an ID and is referenced as bi,
i ∈ B := {0, 1, . . . , B − 1}, where B denotes the number of
bones. Without loss of generality, in Fig. 3 and in the rest of
the paper for simplicity we use B = 14. Each bone bi consists
of a line segment li that is formed by the two skeleton joints,
denoted as j(i,0) and j(i,1), where j(i,0) refers to the joint at
the beginning of the bone vector and j(i,1) refers to the joint
at the end of the same vector. Additionally, the radii of the
bone cylinders are denoted as ri.

Let M consist of N vertices, each one denoted as vk, k =
0, 1, . . . , N − 1. The skinning process associates each vertex
vk with a skeleton bone bn, when

dist(vk, bn) < dist(vk, bi) ∀ i ∈ B− {n}, (1)

namely it associates a vertex to its closest bone. The distance
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Fig. 3: Typical skeleton in T pose. Bones are numbered from
0 to 13.

of a vertex vk to a bone bi is given from:

dist(vk, bi) :=


dist(vk, li)− ri, when vk ∈ P(bi)

min(dist(vk, j(i,0)), dist(vk, j(i,1))), otherwise.
(2)

where P(bi) := {vk : vk projects to li} denotes the set of
vertices that project to the line segment li, considering typical
orthogonal projection. Such a vertex-to-bone association is
denoted as vk → bn.

The radius parameter ri is constant across frames (invariant
to t) and is calculated only once for each bone through
the skinning calibration process. In order to calculate ri, an
association between vertices of human mesh in T-pose and its
respective skeleton is made, according to the rule of (1) but
with dist(vk, bi) defined as:

dist(vk, bi) := dist(vk, li),vk ∈ P(bi). (3)

In the skinning calibration process, from (3) it is possible
that some vertices are not associated with any bone, due to
the fact that they do not project on any of li, i ∈ B. These
vertices are simply ignored. Let A(bi) := {vk : vk → bi}
denote the set of vertices associated with bone bi. Then,
ri = max

k
({dist(vk, bi) : vk ∈ A(bi)}), i.e. ri is equal to

the maximum distance of the associated vertices to the bone
and constitutes the cylinder radius of bone bi. Notice that in
eq. (2), dist(vk, bi) might be negative for some vertices vk,
meaning that those vertices lie inside the cylinder of bi.

B. Geometry Prediction

In the proposed method, skeleton information is used in a
straightforward manner, influenced by skeletal animation used
in traditional computer graphics. LetMP denote the predicted
mesh for frame Ft. The predicted mesh is initialized using
skeletal rigid animation of M̂I using SI and St. Let Ti

t denote
the 3×3 orientation matrix of bone bit at frame Ft, which is in
fact a rotation matrix. Let also j

(i,0)
t denote the first joint of bit.

Similarly, let Ti
I , biI and j

(i,0)
I be the respective symbols for

frame FI . Furthermore, let VI := {vk
I | k = 0, 1, . . . , NI −1},

denote the set of vertices in M̂I , where NI denotes the number
of vertices in M̂I . Similarly, in the rest of the paper, for the

mesh MP we use NP , vk
P and VP . It is obvious that NP =

NI , since MP is a transformed version of M̂I . The set of
predicted vertices VP is initially calculated using the following
rule:

vk
P := Ti

t(T
i
I)
−1(vk

I − j
(i,0)
I ) + j

(i,0)
t ,∀vk

I ∈ A(biI) (4)

where A(biI) is the set of vertices in I-Frame associated with
the i-th bone.

Equation (4) is the typical skeletal animation rule used
in computer graphics, where j(i,0) serves as the animation’s
rotation point. To further enhance the prediction obtained
through skeletal animation, a point-to-point ICP [40] algorithm
is applied on a per-bone basis. ICP is applied between the
source point-set A(bit) and the target point-set A(biP )∀i ∈ B.
The set A(biP ) consists of the vertices of A(biI) transformed by
(4). ICP outputs a rotation matrix R and a translation vector
U that can be used to align A(bit) to A(biP ). While decoding,
the alignment needs to be done in reverse order, i.e. aligning
A(biP ) to A(bit). Thus, the rotation matrix R′ := RT and
the translation vector U′ := RTU are used in the decoding
process using the formula:

vk
P := R′vk

P +U′ , ∀vk
P ∈ VP (5)

giving the final predicted mesh MP for frame Ft. The vertex
vk
P on the right hand side of (5) is the one obtained by (4).
Connectivity and skinning information are preserved be-

tween M̂I andMP . When decoding an EP-Frame, in order to
apply prediction, the decoder needs to have access to skeleton
information of both SI and St. Therefore, the encoder embeds
the respective skeleton information to I-Frames, whereas for
EP-Frames it embeds one transformation for each bone, being
the combination of (4) and (5). P-Frames, being a special case
of EP Frames, only carry per bone transformation information
that is used to animate M̂I in the decoder and they do not
carry any geometry prediction residuals.

C. Encoding Geometry Prediction Errors

In TVMs, the temporal correlation of vertex coordinates
is usually high. Thus, exploiting the temporal redundancy by
inter-frame coding of mesh geometry is beneficial. This ob-
servation is the leading concept behind encoding the geometry
in EP-Frames. In EP-Frames, the geometry of Mt is encoded
with respect to MP .

1) Calculating Prediction Residuals: Let each vertex of
Mt be denoted as vk

t , k = 0, 1, . . . , Nt − 1, where Nt is
the number of vertices in Mt. Let also Vt denote the set of
vertices of Mt. We use the same notation introduced since
the beginning of the paper, replacing t with P for concepts
related to meshMP . Each vertex vkt

t ∈ Vt can be expressed
with respect to an appropriate vertex vkP

P ∈ VP as

vkt
t = vkP

P + ekt
t . (6)

The objective for efficient geometry coding is to minimize
prediction errors |ekt

t |. Thus, an appropriate reference vertex
vkP

P in MP needs to be found for each vertex vkt
t in the
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Fig. 4: Graph mapping between Vord
P and Eord

original mesh Mt. The per-bone ICP algorithm, described in
section IV-B, serves for both minimizing the prediction errors
under a rigid transform constraint, as well as finding appropri-
ate reference vertices using the closest-point correspondences
established during the last iteration between the source and
target point-sets. The reference vertices are searched among
the vertices of ICP’s target point-set. ICP does not guarantee
that the vertices in the target point-set will have a unique corre-
spondence (or even any) in the source point-set. In practice, it
is usual that reference vertices of the target point-set may have
none or multiple correspondent vertices in the source point-
set. Having vertex correspondences calculated from ICP, the
prediction error vectors ekt

t , called residuals, can be computed
by (6). Using the correspondence mapping obtained through
ICP, an equivalent equation of (6) is also used to calculate
residuals for color and any other attributes associated with
each vertex, such as normals or texture coordinates.

2) Encoding Prediction Residuals: Let Vord
I denote the set

of vertices VI with its elements ordered in the same order
as they appear in the last encoded I-Frame. Let also Vord

P

denote the set of vertices VP with its elements ordered as
their respective elements of Vord

I . The mapping between the
elements of VP and VI is obvious from (4). From now on,
we use the notation ekt

(kP ) to refer to the residual ekt
t that

when added to vkP

P results the vertex vkt
t , as in (6). Let

E := {ekt

(kP ) : kt = 0, 1, . . . , Nt− 1} be the set containing the
prediction residuals. The ordered set Eord is the set containing
the elements of E in an ascending order with respect to kP .
The set Eord is quantized using Entropy-Constrained Vector
Quantization (ECVQ) [48] and then entropy coded. Encoding
of vertex attributes follow the same procedure. The quantized
vertex residuals may produce duplicate vertices when decoded.
Thus, the residuals that are responsible for the appearance of
duplicate vertices in the decoded mesh, are removed prior to
entropy compression, while triangle indices are re-indexed to
keep the topology intact.

3) Encoding the residual to reference vertex mapping: Up
to this point, the decoding process would be straightforward
except that the reference vertex vkP

P ∈ Vord
P for each residual

e ∈ Eord in unknown to the decoder. Thus, a mapping between
the reference vertices of Vord

P and the residuals of Eord needs to
be encoded.

We consider the directed graph of Fig. 4, which consists
of a single path. The purple nodes in the top row map in
exact order to the vertices of Vord

P , while the cyan nodes in
the bottom row map in exact order to the residuals of Eord.
Successful decoding can be achieved by traversing the graph
as shown in the figure and adding each residual ekt

t to the last

visited vertex vkP

P . This way the graph compactly represents
the reference vertices for all residuals, as well as all vertices
vkP

P : @ ekt

(kP ) ∈ Eord.
Let the graph consist of nodes nq , q = 0, 1, . . . , (NI+Nt−

1), with q increasing along the path. To encode the graph, we
assign to each node nq one bit cq ∈ {0, 1}, with cq = 0 when
nq+1 is a node in the same row as nq and cq = 1 otherwise.
Let Mord := {cq, q = 0, 1, . . . , (NI+Nt−1)} be the set whose
elements are placed in ascending order with respect to q. It is
obvious that the encoding of Mord has an upper bound rate of

R =
NI

Nt
+ 1 (7)

bpv, with respect to frame Ft. When Nt ' NI , which is
rather the usual case, (7) gives an upper bound of 2 bpv for the
graph coding. In practice, slightly better rates may be achieved
by applying run-length coding to the resulting bit sequence
Mord. The graph of Fig. 4 would be run-length encoded as
{3, 1, 1, 2, 1, 1, 1, 1}. Entropy coding is then applied to the
resulting sequence.

D. Encoding Connectivity

Concerning TVM connectivity coding, there are two can-
didate directions. The first direction is the one already taken
for geometry, i.e. inter-frame coding, while the second one is
intra-coding. The decision taken in this work was driven by the
observation of the following two key concepts. Firstly, it seems
rather difficult to successfully exploit temporal redundancy in
connectivity of a mesh sequence under the lack of objective
mapping between meshes’ vertices across frames. This concept
is supported by the experimental results of [39]. Secondly,
state-of-the-art static connectivity coders already show ex-
ceptional results and the major bottleneck in static mesh
compression is geometry coding. Given these observations,
intra-coding connectivity seems rather the reasonable solution.

In [42], connectivity is encoded by outputting 3 vertex
indices for each triangle of the mesh. As admitted by its
authors [42], this approach is inefficient, since the cost is
approximately 3log2(Nt) bpv. For a more efficient solution,
static connectivity coding approaches can be used. However,
there is one major issue that needs to be addressed when
attempting intra-coding connectivity with existing static con-
nectivity coders under geometry inter-frame coding, regarding
the order in which the vertex residuals are encoded.

Mesh connectivity, as described in Section II for static
meshes, is often used to guide geometry compression com-
monly by employing parallelogram prediction. For efficient
coding, the connectivity coder’s vertex/triangle traversal algo-
rithm determines the order in which geometry prediction errors
are encoded, in order to avoid vertex indexing overhead. In
that case, the mapping between connectivity and its respective
geometry is made by suitably ordering prediction residuals
according to the decoder’s connectivity traversal algorithm.
Conclusively, in static mesh coding geometry coding is cou-
pled with connectivity coding, while the mapping between
geometry and connectivity is implied by the placement order
of the prediction residuals.
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In TVM compression it is crucial that geometry and con-
nectivity are encoded independently, while maintaining the
mapping between the two. Using static connectivity coders
in TVM compression triggers the issue of vertex re-ordering.
Re-ordering geometry prediction residuals according to con-
nectivity traversal algorithm, as a means of low cost mapping
between connectivity and geometry, would probably make the
mapping between the residuals and their reference vertices
rather expensive (in terms of bit rate). Thus, a solution for
referencing vertices to encode connectivity is required, since
vertex re-ordering is not an option.

The obvious way to reference geometry while encoding
connectivity is to output the indices of each unvisited vertex
during the traversal of the mesh. Vertex indexing can be
combined with most connectivity coders available, such as
[12], [1] and [10]. However, this is an inefficient approach
that roughly requires at least log2(Nt) bpv just for referencing
vertices.

In this work, we address the TVM connectivity coding
problem by modifying the state-of-the-art connectivity coder
TFAN [1]. TFAN was chosen because of its applicability to
manifold as well as non-manifold meshes, its simplicity and
its high performance. However, the concepts introduced can
be easily incorporated into other static connectivity coders
as well. The modification attempts to address the issue of
mapping connectivity to geometry via a geometric distance
order metric, avoiding the huge indexing overhead of the
straightforward solution. In the rest of the section the proposed
connectivity scheme, called Modified-TFAN (M-TFAN), is
presented in detail. The interested reader is encouraged to refer
to [1] for more details on the original TFAN coder.

M-TFAN: The challenge of M-TFAN is to map connectivity
to geometry efficiently. Except for the modification dealing
with this part, M-TFAN is identical to [1]. Thus, in the
rest of the section only the mapping between geometry and
connectivity is discussed.

As in [1], a Triangle Fan (TF) of degree d is an ordered set
of d triangles, each one denoted as Tj , j ∈ {0, 1, . . . , d − 1}
and defined by a sequence of d+2 vertices (v0, v1, . . . , vd+1)
such that ∀j ∈ {0, . . . , d − 1}, Tj = {v0, vj+1, vj+2}. The
vertex v0 is so-called the center of the TF.

Simplifying the notation of [1], the traversal of a single TF
centered at v0 is considered. The algorithm treats iteratively
all the vertices of the TF. When treating an unvisited vertex vn
of the TF, a symbol s(n) = 1 is emitted, indicating that vn is
unvisited. Additionally, a reference to the underlying geometry
of vn is given, as described in the next paragraphs.

In [10], the Euler’s formula is used to conclude that the
average valence number of a vertex in a mesh equals 6. This
means that an arbitrary vertex v participates, on average, in
the formation of 6 triangles. We intuitively propose the rather
reasonable assumption that those 6 triangles involve the 6
nearest neighbor vertices of v with extremely high probability.
This is the key concept guiding the design of M-TFAN. When
traversing a TF centered at v0, the m nearest neighbors of TF’s
center are ordered with respect to their distance from v0. Then,
when treating an unvisited vertex vn of the TF, the index of vn

in the ordered set of m nearest neighbors of v0 is emitted as
a means to map connectivity to its underlying geometry. The
case of vn not belonging to the set of m nearest neighbors of
v0 is treated specially. In the rest of the section we formalize
this concept in a more precise manner using mathematical
notation.

Following Section IV-C, during decoding, each residual
ekt ∈ Eord produces a vector v̂k

t . Let V̂ord
t := {v̂k

t | k =
0, 1, . . . , Nt − 1} be the ordered set containing the vertices
of the decoded mesh with its elements in the same or-
der as their respective residuals in Eord. Consider a specific
vertex v̂ ∈ V̂ord

t and let NVord(v̂,m) denote the ordered
set of its m nearest neighbor vertices over V̂ord

t . The m
neighbors of v̂ are denoted as x̂0, x̂1, . . . , x̂i, . . . , x̂m−1, i ∈
{0, 1, . . . ,m − 1}, x̂i ∈ V̂ord

t . The set is ordered based
on neighbor vertices’ euclidean distance from v̂, i.e.
NVord(v̂,m) := {x̂0, x̂1, . . . , x̂i, . . . x̂m−1}, such that
dist(v̂, x̂i) ≤ dist(v̂, x̂i+1). Let also dorder(m)(v̂, x̂i) :=∑i−1

j=0 sj denote the distance order of x̂i with respect to v̂ over
NVord(v̂,m), where sj = 1 if the vertex x̂j is unvisited and
sj = 0 otherwise. M-TFAN outputs dorder(m)(v0, vn) each
time a vertex vn is visited for the first time while traversing
the TF whose center is v0.

As an example for the above definition, let NVord(v0, 8) =
{x̂0, x̂1, . . . , x̂7} be the set of 8 nearest neighbors of v0
ordered with respect to their distance from v0. Furthermore, let
us assume that the vertices x̂3 and x̂5 are already visited. Then,
dorder(8)(v0, x̂2) = 2 and dorder(8)(v0, x̂6) = 4. Ignoring the
already visited vertices encountered in NVord(v0, vn) results an
output sequence of lower entropy.

In practice, some fixed value is used for m, e.g. {8, 16, 32}
while on the implementation side, the search is sped up by
using a KD-Tree [49]. In case vn /∈ NVord(V,m), we encode
directly the index z : vn = v̂z

t of the vertex vn by outputting
−z − 1, so that a negative value indicates direct indexing.
Equation (8) summarizes the above discussion and determines
the output symbol of M-TFAN whenever a non-visited vertex
is encountered while traversing the input mesh.

dorder(v̂, x̂) :=


dorder(m)(v̂, x̂), x̂ ∈ NVord(v̂,m)

x̂ /∈ NVord(v̂,m),

−z − 1, x̂ = v̂z ∈ V̂ord
t

(8)
We call dorder(v̂, x̂) the generalized distance order of vertex
x̂ with respect to v̂ for some fixed m.

In Fig. 5, an example while traversing a TF centered at
v0 is illustrated. The already encoded triangles are in purple.
The triangle to be encoded in each step is marked green.
The yellow vertex denotes the center of the TF. The already
visited vertices are in red while unvisited vertices are in gray.
Before traversing the TF, the neighbor vertices of v0 are
ordered according to their euclidean distance from v0. Thus,
NVord(v0, 6) = {v3, v6, v5, v4, v2, v1}. In step #1, the vertex
v3 is visited. Since it is an unvisited vertex (previously gray),
M-TFAN outputs its generalized distance order which is 0.
Similarly, in step #2, v4 is visited for the first time. M-TFAN
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(a) M-TFAN Step #0: Before travers-
ing the TF.

(b) M-TFAN Step #1: Visiting vertex
v3

(c) M-TFAN Step #2: Visiting vertex
v4

(d) M-TFAN Step #3: Visiting vertex
v5

(e) M-TFAN Step #4: Encoding the
last triangle

Fig. 5: M-TFAN Example. The already encoded triangles are
in purple. The triangle to be encoded in each step is marked
green. The yellow vertex denotes the center of the TF. The
already visited vertices are in red while unvisited vertices are
in gray.

outputs its generalized distance order which is 1, since at
that point the vertices v3 and v6 are already visited and the
zero-based index of v4 in NVord(v0, 6), ignoring v3 and v6,
is 1. Following step #3, the previously unvisited vertex v5 is
traversed. Similarly, its generalized distance order 0 is being
output by M-TFAN. Finally, in step #4 no unvisited vertex
is traversed, thus M-TFAN does not output any generalized
distance order in this case. Concluding, the M-TFAN output
for the generalized distance order in the example case is
{0,1,0}.

V. MOTION-BASED CODING

Furthermore, for the needs of a TI system, where maxi-
mum compression ratio with minimum computational time is
desired, a simple extension to the proposed method can be
applied.

By using the skinning information of section IV-A, Mt

is segmented into sub-meshes with each sub-mesh being the
skin attached to a particular skeleton bone. When encoding
EP-Frames, only the sub-meshes that belong to bones that
are under significant “per-bone motion” are encoded using
skeletal motion thresholding, as described in subsection III-B.
For the rest of the mesh, only motion parameters (skeleton
bone motion and ICP rotation/translation information) are
transmitted. The decoder animates the corresponding sub-
meshes of M̂I that lack correction residuals and zippers [50]
the neighbouring sub-meshes. This simple concept enables to
further reduce the execution time of the proposed algorithm, as
well as to increase compression rates under a very reasonable
distortion. A demonstrative experiment for the motion-based
coding concept is presented in Section VI-B5.

VI. EXPERIMENTAL-RESULTS

In this section we present experimental results of our
work and compare it against the MPEG-4 TFAN [1] static
mesh coder. The datasets used for evaluation are H-TVMs
that are publicly available on http://vcl.iti.gr/
reconstruction/and are considered part of the official
MPEG-3DGC database [2]. When evaluating the proposed
method, I-Frames were encoded using [1] and their bit-rate
and distortion is counted for the overall performance of the
proposed method. Moreover, during evaluation we do not use
any P Frames at all. All the sequences are compressed using
only I and EP-Frames.

A. Distortion Metrics

To evaluate the proposed method we use three different
metrics each one serving a different purpose.

1) Point Cloud Metric [M1]: The first metric, presented
hereby and denoted as [M1], is the proposed metric for point
cloud comparison between the original and the compressed
TVM sequence. For the single frame Ft we consider the
original, uncompressed meshMt with Nt vertices and its cor-
responding compressed mesh M̂t. For any vertex vk

t ∈ Mt,
k ∈ {0, 1, . . . , Nt − 1}, let Ht(v

k
t ) := v̂0 ∈ M̂t denote its

nearest vertex in M̂t i.e. dist(vk
t , v̂0) < dist(vk

t , v̂)∀ v̂ ∈
M̂t with v̂ 6= v̂0. Let SM := {Mt, t ∈ {0, 1, . . . ,M − 1}}
and ˆSM := {M̂t, t ∈ {0, 1, . . . ,M − 1}}, where M denotes
the total number of frames in a sequence. The geometric root
mean squared distance of SM to ˆSM, is defined to be:

gdrms(SM, ˆSM) :=

√√√√ 1∑M−1
t=0 Nt

M−1∑
t=0

Nt−1∑
k=0

||vk
t −Ht(vk

t )||22 .

(9)
Similarly, the geometric root mean squared distance of ˆSM

to SM, denoted as gdrms( ˆSM,SM), is defined equivalently.

 http://vcl.iti.gr/reconstruction/
 http://vcl.iti.gr/reconstruction/


10

Given (9), the geometric root mean squared error for a
sequence of M frames is defined to be:

RMSEg := max(gdrms(SM, ˆSM), gdrms( ˆSM,SM)). (10)

To compute the root mean squared error for color we use
equations (9) and (10), but we plug in the color attributes of the
vertices vk

t and H(vk
t ), instead of their geometric coordinates.

2) Surface Error Metric [M2]: To measure RMSE surface
errors, the METRO [51] tool was employed. Following the
evaluation metric used in [33] and the notation of Section
VI-A1, we define the root mean squared surface distance
between the sequences SM and ˆSM to be:

sdrms(SM, ˆSM) :=
1

M

M−1∑
t=0

mdrms(Mt,M̂t), (11)

where mdrms(Mt,M̂t) denotes the root mean squared dis-
tance between Mt and M̂t, reported by METRO. Since
mdrms(Mt,M̂t) 6= mdrms(M̂t,Mt), i.e the forward dis-
tance between two meshes is in general different than the
backward distance, the root mean squared surface error for
a sequence of M frames is defined to be:

RMSEs := max(sdrms(SM, ˆSM), sdrms( ˆSM,SM)). (12)

The surface error metric is denoted as [M2].
3) PSNR Metric [M3]: According to [52], to measure

image-quality error a PSNR metric in image plane, denoted
as [M3], is used. The PSNR is calculated for the whole
sequence by rendering each mesh of the sequence from 10
views, equally distributed around the mesh, at a resolution of
1280× 1024 pixels.

B. Evaluation

1) Geometry and Connectivity Compression [M1]:
In this subsection we evaluate against four TVM se-
quences, considering only geometry and connectivity of
TVMs using the metric [M1]. The first sequence, namely
“S04 5KW DimitriosSession4-PoissonLow” (“Dimitrios” for
short), consists of 1600 frames with average vertex count per
frame 35100. The second one, namely “S17 5KW Xenia-
PoissonLow” (“Xenia” for short), consists of 6200 frames
with 35200 vertices per frame on average. Thirdly, we
use a subsequence of “S08 5KW LitosSession4-PoissonLow”
(“Litos” for short) consisting of 500 frames with 29667
number of vertices per frame. Finally, we use a subsequence
of “S13 5KW Stavroula-PoissonLow” (“Stavroula” for short)
with 33792 number of vertices per frame in 1000 frames
total. Geometry distortion versus bit-rate curves are depicted
in Fig. 6. The diagrams of Fig. 6 contend that for “Xenia”
and “Litos” sequences the proposed method significantly out-
performs MPEG-4 TFAN [1] at low bit-rates (below 12 bits
per vertex per frame (bpvf)), while for higher rates our method
competes with the state-of-the-art static coder. For “Dimitrios”
and “Stavroula” a similar fact holds for the margin of 14
bpvf. Thus, when high compression rates are desirable, the

(a) Sequence: “Dimitrios”. (b) Sequence: “Xenia”.

(c) Sequence: “Litos”. (d) Sequence: “Stavroula”.

Fig. 6: Geometry Distortion vs Bit-Rate [M1].

proposed method shows an advantage. The bit-rate interval
where the proposed method is advantageous when compared to
[1] is wider in “Dimitrios” and “Stavroula” sequences than in
“Xenia” and “Litos”. This difference in the performance of the
proposed method across the four sequences might be explained
when considering the skeleton quality in each sequence. The
skeleton quality, when judged visually, in “Dimitrios” and
“Stavroula” is better than the skeleton quality in “Xenia” and
“Litos”. Moreover, it is worth noting that the convergence rate
of the rate-distortion curves depicted in Fig. 6 for the proposed
method is lower than the one of [1]. As the experiments
were conducted with users standing in arbitrary poses, it was
observed that skinning errors may occur (e.g. vertices actually
belonging to torso are associated with a hand or vice versa).
This is due to the fact that the skeleton is not always accurately
aligned to the reconstructed mesh due to imperfect tracking.
Consequently, when per-bone prediction is taking place, the
mis-associated vertices ofter have large prediction errors which
cannot be effectively represented by a vector in the Vector
Quantization codebook, resulting lower convergence towards
zero of the rate-distortion curves. In Fig. 8 and Fig. 9 two
frames are depicted at various bit rates for both methods. Fig. 7
depicts the percentage of I-Frames used versus the bit-rate for
all the evaluation sequences. These diagrams where obtained
by varying the “skeletal motion” threshold in the range 400-
500mm.

2) Geometry and Connectivity Compression [M2]: In ad-
dition to the previous evaluation, we further evaluate the
proposed method in the sequences “Dimitrios” and “Stavroula”
under the metric [M2]. The evaluation results are depicted
in Fig. 10. As can be concluded from the diagrams, in
terms of surface error, the proposed method shows a signif-
icant advantage in the low bit-rates up to 11 bpvf. When
considering surface distortion, with respect to point cloud
error, the advantageous margin of the proposed method is
narrower. This is expected, since the EC-VQ method used for
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(a) Sequence: “Dimitrios”. (b) Sequence: “Xenia”.

(c) Sequence: “Litos”. (d) Sequence: “Stavroula”.

Fig. 7: Percentage of I-Frames for different bit-rates.

Fig. 8: Frame #500 from “Dimitrios” sequence at various bit
rates rendered with flat shading. The first picture of every row
is the original uncompressed mesh. Top row from left to right:
the proposed method at 6.3 | 8.7 | 10.55 | 11.5 bpvf. Bottom
row from left to right: MPEG TFAN [1] at 7.7 | 8.8 | 10.45 |
12.6 bpvf, respectively.

vertex quantization is an optimization technique that aims for
minimizing the overall mean squared error in terms of point
cloud, not taking into account any surface properties. Thus,
the high surface errors is an undesirable side effect stemming
from the nature of the optimization technique.

3) Geometry, Connectivity and per Vertex Color Compres-
sion [M1]: At this point we consider additionally per vertex
color attribute encoding. We evaluate against a subsequence of
“Xenia” and a subsequence of “Stavroula” that both consist of
400 frames using the metric [M1]. In Fig. 11, the performance

Fig. 9: Frame #336 from “Xenia” sequence at various bit rates
rendered with smooth shading. The first picture of every row
is the original uncompressed mesh. Top row from left to right:
the proposed method at 5.7 | 10.81 | 13.4 bpvf . Bottom row
from left to right: MPEG TFAN [1] at 7.5 | 12.58 | 14.75 bpvf
respectively.

(a) Sequence: “Dimitrios”. (b) Sequence: “Stavroula”.

Fig. 10: Surface Distortion vs Bit-Rate [M2].

of the two methods in terms of bit-rate and distortion for both
geometry and color is shown. In the x-y plane of this diagram
geometry and color distortions are given respectively, while
the z-axis depicts the total number of bits per vertex per frame
(bpvf) needed to encode all needed information i.e. geometry,
color and connectivity. Once again, the proposed method
performs better than the static coder in the lower bit-rates and
looses ground in the higher ones. However, when dealing with
the combined problem of geometry, connectivity and color
compression of TVMs, the area where the proposed method
is advantageous is wider than when considering geometry and
connectivity alone. Figures 12 and 13 further support the last
argument by depicting plane intersections of the 3D chart of
Fig. 11. In Fig. 14 and Fig. 15 two frames of the two different
sequences are shown for visual subjective comparison.

4) Geometry, Connectivity and per Vertex Color Compres-
sion [M3]: In this section we evaluate the proposed method in
terms of PSNR in the sequences “Dimitrios” and “Stavroula”,
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(a) Sequence: “Xenia”.

(b) Sequence: “Stavroula”.

Fig. 11: Geometry and Color Distortion vs Bit-Rate [M1].

using the image quality-related metric [M3]. The evaluation
results are depicted in Fig. 16. The evaluation curves were
produced by using a fixed configuration for color distortion
and varying the geometry distortion for both [1] and the
proposed method. The curves contend that when considering
the visual output of both compressors, the proposed method
achieves better performance for bit-rates up to 20 bpvf for the
“Stavroula” sequence. For “Dimitrios”, the proposed method
remains better than its competitor for up to 16 bpvf. Then, for
up to 19 bpvf the performance of the two methods becomes
comparable, while above 19 bpvf the state-of-the-art static
coder outperforms the proposed one. Thus, under an image
quality-related metric other than [M2], the proposed method
shows a significant range of advantageous performance.

5) Motion-Based Coding: When considering the evaluation
of Motion-Based Coding (Section V), we choose some fixed
quantization parameters and instead of encoding full-body
mesh in EP-Frames, we encode only sub-meshes attached
to the bones of the skeleton that are under significant “per-
bone motion”. By varying the used motion thresholds, we
can achieve different bit-rates that are not due to different
quantization parameters, but due to actually encoding less

(a) Sequence: “Xenia”.

(b) Sequence: “Stavroula”.

Fig. 12: Geometry Distortion under similar color distortion vs
Bit-Rate [M1].

vertex and color residuals than normal. We evaluate against
480 frames of “Stavroula” sequence. Fig. 17 depicts encoding
and decoding times vs bit-rate and Fig. 18 depicts PSNR
vs bit-rate. The computational time is measured in the same
workstation as in Section VI-B6. In Fig. 19 a frame from
“Stavroula” sequence is depicted for subjective evaluation.
When the mesh’s skeleton quality is good enough, differences
between the low and high bit-rates are hard to be visually
perceived.

6) Internal Evaluation: In this section we evaluate the
internals of the proposed method. The method is evaluated
against “Xenia” subsequence, frames #1100 - #1500, at a mean
rate of 13.2 bpvf. The internal evaluation involves full-body
(i.e. not motion-based) coding of geometry, connectivity and
per vertex colors. The output is split into four layers. The ge-
ometry layer contains the geometry prediction residuals, while
the color layer contains the per vertex color residuals. The
mapping layer that maps geometry and color residuals to their
reference vertices/colors consists of the encoding of the graph
presented in section IV-C. Lastly, the connectivity layer holds
the output of M-TFAN. The distribution of the bit-rate for the
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(a) Sequence: “Xenia”.

(b) Sequence: “Stavroula”.

Fig. 13: Color Distortion under similar geometry distortion vs
Bit-Rate [M1].

Fig. 14: Frame #1391 from “Xenia” sequence rendered with
smooth shading. From left to right: uncompressed mesh |
proposed method at 13.2 bpvf | MPEG TFAN [1] at 15.8
bpvf.

Fig. 15: Frame #615 from “Stavroula” sequence. Top row
rendered without lighting and bottom row rendered with flat
shading. From left to right: uncompressed mesh | proposed
method at 19.8 bpvf | MPEG-4 TFAN [1] at 20.09 bpvf.

(a) Sequence: “Dimitrios”. (b) Sequence: “Stavroula”.

Fig. 16: PSNR vs Bit-Rate [M3].

various layers is depicted in Fig. 21 and Fig. 22. Additionally,
in the left part of Fig. 23, the distribution of distance-order
values inside a single frame of the TVM sequence is given.
The experimental results align with our intuition for designing
M-TFAN. The extra cost for connectivity coding that M-TFAN
introduces, (compared to the original TFAN [1] is about 1.3
bpvf, as shown in the right part of Fig. 23. Fig. 24 gives the
distribution of the total bit-rate among the EP-Frames of the
subsequence.

Fig. 17: Average encoding and decoding times for various bit-
rates in Motion-Based Coding.
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Fig. 18: PSNR vs bit-rate in Motion-Based Coding.

Fig. 19: Frame #400 of “Stavroula” sequence encoded with
Motion-Based Coding. From left to right: uncompressed mesh
| 11.5 bpvf | 13.2 bpvf | 14.5 bpvf.

Finally, we evaluate the algorithm in terms of execution
time over the frames #1500 - #1920 of the same sequence
for 13.2 bpvf taking into account geometry, connectivity and
per vertex color compression/decompression. Fig. 25 presents
the computational time distribution for both encoding and
decoding for the mentioned subsequence. Despite the fact that
the computational complexity of the proposed method is not
cheap, a significant cut-down of the execution time is made
possible by utilizing GPGPU computing and multi-threaded
programming under a multi-core CPU. The execution times
where measured in a workstation equipped with Intel Core i7
2700K 3.5GHz CPU, 8GB RAM and NVIDIA GTX560 GPU.
The average frame rate for the encoder is near 5 frames per
second (fps), while the decoder is able to run at approximately
12 fps. These frame rates where measured when employing
full body EP-Frame coding and not the motion-based coding
concept presented in section V. In case motion-based coding
is employed, further drop in execution times can be achieved
with an obvious distortion penalty, as shown in section VI-B5.

7) Robustness to Skeleton Quality: The method is evaluated
for its sensitivity to skeleton quality against the sequence
“Alex”. This is a single view captured sequence (i.e not
full 3D-body), reconstructed using a simple terrain (step-

Fig. 20: Bit-Rate vs Geometry Distortion [M1] under different
Skeleton Qualities

(a) Geometry rate. Mean: 3.3 bpv. (b) Color rate. Mean: 1.9 bpv.

Fig. 21: Histograms of geometry rate and color rate

discontinuity constrained) triangulation [45] and consists of
100 frames. The specific sequence was chosen for the sensitiv-
ity to skeleton quality evaluation due to its near ground-truth
skeleton quality (as opposed to the rest of the sequences).
White gaussian noise of equal powers was added per joint
coordinate. Four different experiments were conducted, each
one having a different additive skeletal noise power (measured
in mm2). The “ground truth” skeleton was corrupted using per
joint coordinate noise powers of 20, 40, 60, 80. The curves
of Fig. 20 were obtained by using the metric [M1] for the
skeletons of different quality. The outcome of the experiment
is reasonable since the more the skeleton corruption, the worse
the proposed method performs in terms of compression rate.
Despite the compression inefficiency, the method is robust
to skeleton errors and does not compromise visual quality.
Instead, this comes with a penalty in the compression rate.
This can be concluded from the diagram since all the sampling
points that correspond to the same distortion parameters, lie
almost in the same ordinate.

VII. CONCLUSION AND FUTURE WORK

In this paper a novel skeleton based approach for H-TVM
compression was presented. Apart from efficiently encoding
geometry and per vertex color by exploiting the temporal
geometric redundancy, the proposed method is also shown to
efficiently compress mesh connectivity. The paper introduces
a modification to [1], named Modified-TFAN, that enables to
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(a) Residual graph mapping rate.
Mean: 1.6 bpv.

(b) Connectivity rate. Mean: 4.7 bpv.

Fig. 22: Histograms of residual graph mapping rate and
connectivity rate.

Fig. 23: Histograms of distance order values and M-TFAN’s
distance order rate.

encode connectivity at a small overhead when compared with
the original static coder [1]. Evaluation was carried out over
TVMs of MPEG-3DGC database [2]. The proposed method
was evaluated against the state-of-the-art static mesh coder
TFAN [1] that is currently a part of the MPEG-4 standard. The
presented algorithm showed significant lower distortions at low
bit-rates than its competitor, giving a practical proof of concept
that efficient inter-frame redundancy exploitation in TVMs is
possible and establishing ground for further improvements.
Despite being complex, the execution time of the algorithm on
a high-end PC is comparatively low when utilizing GPGPU
computing and multi-core CPU multi-threaded programming,
enabling for real-time transmission of H-TVMs. In addition,
a novel approach to TVM compression using Motion-Based

Fig. 24: Histogram of total rate for EP-Frames in a subse-
quence of “Xenia”.

Fig. 25: Histogram of encoding and decoding computational
time in a subsequence of “Xenia”.

coding was presented. In the future, attempting to further
reduce the size of the side information would probably allow
for efficient compression at higher bit-rates as well. Moreover,
there is no doubt that the proposed method will vastly benefit
from future research in the area of skeleton tracking. Advances
in skeleton tracking technology (e.g. Kinect 2) will provide an
even more accurate and robust prediction scheme, potentially
improving the rate-distortion performance of the proposed
method, as well as the performance of motion-based coding.
Finally, as a future work direction, we plan to study how
the framework could be modified in order to be used for the
compression of non-human TVMs, by replacing the skeleton-
based predictor with a more generic one.
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