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Abstract 

Earth Observation data offer a unique opportunity to enhance capacity in open water surface 

resources monitoring from space. This needs to be quantitatively proven to achieve 

acceptability and integration to established decision-making processes. Lake Kerkini, in its 

function as flood regulator of Strymonas river, nesting site for migratory birds, irrigation 

water provider, feeding site for rare herbivores (e.g. Bubalus bubalis) and integrated in the 

protected areas network of Europe (Natura2000 & Ramsar Convention site), offers an 

advantageous testing bed for this activity. Landsat ETM+/OLI data were explored against in 

situ data to develop regression estimation models for temperature, Secchi disk depth, pH, 

dissolved oxygen, electric conductivity and nutrients. Results reached a coefficient of 

determination greater than 0.84 for some cases, even for employing the polynomial formulas 

across sensors (ETM or OLI), whereas for others, less accurate results are obtained (around 

0.6 R
2
), and in a few cases, failures are experienced. Transferability of results, challenges, and 

opportunities (e.g. application using up to 7 days distant image data) are presented and 

discussed.  
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1. INTRODUCTION 

 

Inland freshwater water bodies are important natural resources that support human well-being, 

in terms of providing food and shelter, climate and flood regulation, as well as providing 

income through tourism [1]. Any changes to these ecosystems, due to climate change, land 

degradation, unregulated withdrawal of surface and ground water, nutrient overload from 

agricultural or urban and industrial effluents, have led to the shortage and degradation of 

water quality [2–4]. The assessment and continuous monitoring of water quality in freshwater 

bodies can enhance understanding of the hydrochemical cycles and the effective management 

of water resources [4].  

 Water quality monitoring by conventional techniques depends on in-situ measurements or 

laboratory analysis of samples. These may provide accurate measurements, but they are 

usually time-consuming and costly, with the inability to investigate spatiotemporal variations 

and trend analysis of entire water bodies, especially in inaccessible locations. Monitoring 

water quality through the use of spaceborne Earth Observation (EO) data is a potential 
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solution to the obstacles of in situ monitoring [5–7]. Estimating quality features directly from 

satellite imagery can allow the rapid identification of water bodies that suffer from qualitative 

problems in a more effective and efficient manner [6]. Empirical and analytical approaches 

can be used to retrieve water constituents. Analytical approaches utilize inherent and apparent 

optical characteristics, independent of the available ground truth data and retain greater 

transferability [8]; however, this approach is highly reliant on extensive and accurate optical 

characteristics, and is highly dependent on the availability and efficacy of the atmospheric 

correction model [9]. Contrary to the prior, empirical approaches do require the use of in situ 

measurements to establish a relationship between them and the radiance measured in one or 

more sensor bands, with no interference from underlying atmospheric. These models can be 

generated through: statistical regression with band ratios, single/multiple band algebra, 

Artificial Neural Networks (ANN), Support Vector Machine (SVM), Particle Swarm (PSO), 

Genetic programming (GP) and unsupervised/supervised classification. Most commonly used 

models are those generated with linear regression techniques, as they often present reliable 

results when applied on sites where they were generated. However, their accuracy decreases 

when applied to other water bodies, due to the changing site-to-site nature of the components 

of the water bodies [8].Focusing on empirical models, water quality regression estimation 

models were generated to showcase the capability of application of satellite remote sensing in 

the characterization of inland lake water quality features at the foothills of Kerkini Mountain 

in northern Greece. Models were generated using the relationship between temperature, 

Secchi disk depth, pH, dissolved oxygen, electric conductivity and nutrients (nitrates and 

phosphorus), and the reflectance recorded in Landsat ETM+ and OLI. 

 

 

2.  MATERIALS AND METHODS 

 

2.1 Study area 

Lake Kerkini (41°13’N, 23°08’E) refers to the artificial lake (reservoir) constructed in 1932 

and the surrounding wetland area (Figure 1). Its surface area, according to the height of the 

water-surface, ranges from 37.34 km
2
 to 72.52km

2
. Lying at the transboundary area of 

Strymonas River in northern Greece close to the border with Bulgaria, Lake Kerkini’s 

drainage area extends over 11,600km
2
, with the Hellenic sub-basin making up to 803 km

2
 

[10,11]. Kerkini climate is an intermediate between Mediterranean and Mid-European, with 

hot summers and cold winters, and average annual rainfall reaching 463.5 mm [12]. Lake 

Kerkini has developed into one of the most popular stops for migratory bird populations in 

Europe, as well a wetland of international significance; established as a Natura 2000 protected 

area and a RAMSAR wetland of international importance. Kerkini accommodates over 300 

bird species; with at least 1300 plant species; including indigenous and rare species, as well as 

Greece’s largest water buffalo population (Bubalus bubalis). Deforestation and cultivation 

along the river corridor has caused extreme erosion of the slopes, the eroded materials having 

been transported to the Lake. Additionally high concentrations of artificial polluting materials 

are brought into the lake system by Strymonas River. Thus, monitoring lake water quality is 

crucial in order to support the Lake Kerkini Management Authority (LKMA) with an 

enhanced monitoring capacity to protect the biodiversity and the species that depend from the 

lake, following the guidelines of the Water Framework Directive 2000/60/EC 
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2.2 Water quality samples 

Lake Kerkini Management Authority carried out water quality measurements on a monthly 

basis between 2010 and 2015 along seven sites (Vironeia, Center of Kerkini Lake, Kerkinitis, 

Lithotopos, Mesaia, Bistritsa, and Noufara), two of which (Lithotopos and Mesaia) had no 

samples after January 2012. Sampled water quality parameters included temperature (T, °C), 

pH, electric conductivity (EC, μS/cm) and dissolved oxygen (DO, mg/L) collected using a 

CONSORT C392 instrument. Secchi disk depth (SDD, cm), was collected with a handheld 

Secchi disk Instrument. Water samples were analysed using HANNA HI 83200 

Multiparameter Photometer [13], to extract the concentrations of phosphate (PO4, mg/L) and 

nitrate (NO3, mg/L).  

 

2.3 Remote Sensing imagery 

Landsat’s predominant use in environmental management as well as 40 years of calibrated 

high spatial resolution data makes it suitable in the study to monitor water quality parameters. 

Landsat 7 (ETM+) and Landsat 8 (OLI/TIRS) satellite images, were acquired from the USGS 

Global Visualization Viewer (GloVis), and utilized for suggesting the best suited workflows 

to monitor lake water quality status. The selected images (path 184; row 31, path 183 row 31 

and path 183; row 32) were acquired with up to seven day difference from in situ collection 

date. This margin was adopted in order to increase the availability of images with cloud cover 

less than 15%. In addition for certain parameters (i.e. SDD), longer windows up to seven days 

may be acceptable [14,15].  

 

 
 

Figure 1: Location of in situ sampling stations in Kerkini Lake 

 

2.4   Image processing methodology 

The image processing methodology included radiometric and atmospheric corrections, 

extraction and averaging of spectral reflectance band values at each sample point and 

statistical analysis (regression). The first two stages were completed using ENVI 

“Environment for Visualizing Images” software version 5.5. The metafiles of each Landsat 

image, containing the gains, offset, solar irradiance, sun elevation and acquisition time, were 



Water Resources Engineering and Management 

 

Proceedings 113 
of  the Eighth International Conference  
on Environmental Management, Engineering, Planning & Economics 
Thessaloniki, Greece, July 20-24, 2021 
ISBN: 978-618-5271-XX-X 

associated in the conversion of digital numbers (DN) to Top-of-Atmosphere (TOA) 

reflectance. This conversion step is essential in the comparison of multiple images for 

temporal analysis [16,17]. To ensure minimal interference of atmospheric components (i.e. 

water vapor and aerosols) and accurately determine surface reflectance data, atmospheric 

correction through dark object subtraction (DOS) is employed by subtracting a pixel value 

that represents a background signature from each of the bands [18,19].  

 Three out of the seven locations (Center of Kerkini Lake, Lithotopos and Noufara) are 

considered, due to their location in the central portion of the inland water, where reflectance 

would not be affected by vegetation, shoreline or the reservoir floor [20]. To extract 

reflectance data for analysis, a 3x3 pixel window centered on the x, y location of the in situ 

sample point, is selected. The selection of a nine-pixel window is driven by the assumption 

that water is heterogeneous and often in flux, due to seasonal, solar, and meteorological 

factors [14,20], and to account for the possibility of spatial misregistration between the GPS 

position of the water sampling position and the respective Landsat pixel position [14]. The 

extracted 3x3 pixel windows are resampled to the average over the 90 m pixel area for each 

band. These values are then combined with the consequent Landsat image date based on a 

time window (i.e., the time before and after sampling event) of 7 days. 

 

2.5 Models for estimating water quality parameters 

Preliminary testing between step-wise multiple linear regression, partial least square 

regression, simple linear regression and random forest regression had shown that step-wise 

multiple linear regression achieved the highest accuracies. Step-wise multiple linear 

regression (SWLR) was performed using the in situ parameter measures as dependent 

variable, the collection of reflectance bands as the independent variables and the selected 

level of significance of 0.05. These comprise of: 1) single bands, 2) single band ratio and 3) 

product of paired bands (Table 1). Model estimation was done on three different time frames 

(date ranges between image acquisition and in situ sampling): i) +/- 1 day, ii) +/- 3 days and 

iii) +/- 7 days. Parameter model estimation for ETM+ and OLI/TIRS sensors datasets were 

handled separately, for each time frame, taking the calibration dataset as the data in the 

specific time frame and validated against the rest of the available data. In the case of the +/- 7 

data frame, validation was based on leave-one-out cross-validation. In order to generate 

parameter models that could be utilized for either Landsat ETM+ or OLI/TIRS satellites 

(known hereafter as Landsat common), step-wise multiple linear regression was employed in 

the same manner, taking into account a collection of bands from both sensors. The selected 

common bands are represented as those for ETM+ and OLI/TIRS, respectively: Blue band 

(B1, B2), Green band (B2, B3), Red band (B3, B4), NIR (B4, B5), SWIR-1 (B5, B6), SWIR-2 

(B7, B7) and TIR (average of B6H
 
and B6L, average of B10

 
and B11). The in situ and imagery 

data from overlapping periods (same in situ dates covered by ETM+ and OLI/TIRS) were 

used as calibration data, and the non-overlapping sample datasets were used as validation 

dataset. 

  Several candidate step wise multiple linear regression equations (empirical models) were 

generated for each water quality feature. The coefficient of determination (R
2
) and root mean 

square error (RMSE) were calculated. To assess capacity in predicting parameters values, 

these equations were applied to all available data, and the accuracy between the in situ 

measurements and predicted measurements was calculated (predicted accuracy - PA) for each 

feature. Additionally, to assess equation transferability from ETM+ to OLI/TIRS and vice 

versa, bands in Landsat ETM+ equations were replaced to their similar bands in OLI/TIRS 
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equations, and the accuracy (accuracy of transferring - AT) between the predicted values and 

in situ measurements were calculated as well. As for finding empirical models with ability to 

be used across Landsat sensor, they were applied to the non-overlapping image dates (i.e. 

image window were both ETM+ and OLI/TIRS are different), where the accuracy (merged 

data accuracy - MDA) is calculated between the measured samples and the predicted samples 

in the non-overlapping dates. 

 
Table 1: Collection of bands used as independent variables in the regression analysis for water quality 

features’ derivation from ETM+, OLI/TIRS and Landsat common bands 

 
 Single Bands Band Ratios Paired band product 

ETM+ B1, B2, B3, B4, 

B5, B7, B6L,  

B6H 

B1/B2, B1/B3, B1/B4, B1/B5, B1/B7, B2/B1, 

B2/B3, B2/B4, B2/B5, B2/B7, B3/B1, B3/B2, 

B3/B4, B3/B5, B3/B7, B4/B1, B4/B2, B4/B3, 

B4/B5, B4/B7, B5/B1, B5/B2, B5/B3, B5/B4, 

B5/B7, B7/B1, B7/B2, B7/B3, B7/B4, B7/B5, 

B6L/B6H, B6H/B6L 

B1
2
, B2

2
, B3

2
, B4

2
, B5

2
, B7

2
, B6L

2
, 

B6H
2
, B1*B2, B1*B3, B1*B4, 

B1*B5, B1*B7, B2*B3, B2*B4, 

B2*B5, B2*B7, B3*B4, B3*B5, 

B3*B7, B4*B5, B4*B7, B5*B7, 

B6H*B6L 

OLI/ 

TIRS 

B2, B3, B4, B5, 

B6, B7, B11, 

B12 

B2/B3, B2/B4, B2/B5, B2/B6, B2/B7, B3/B2, 

B3/B4, B3/B5, B3/B7, B4/B1, B4/B2, B4/B3, 

B4/B5, B4/B6, B4/B7, B5/B2, B5/B3, B5/B4, 

B5/B6, B5/B7, B6/B2, B6/B3, B6/B4, B6/B5 

B6/B7, B7/B2, B7/B3, B7/B4, B7/B5, B7/B6, 

B10/B11, B11/B10 

B2
2
, B3

2
, B4

2
, B5

2
, B6

2
, B7

2
,B10

2
, 

B11
2
 B2*B3, B2*B4, B2*B5, B2*B6, 

B2*B7, B3*B4, B3*B5, B3*B6, 

B3*B7, B4*B5, B4*B6, B4*B7, 

B5*B6, B5*B7, B6*B7, B10*B11 

ETM+ or 

OLI/ 

TIRS 

common 

bands 

Blue, Green, 

Red, NIR, 

SWIR1, 

SWIR2, TIR 

Blue/Green, Blue/Red, Blue/NIR, 

Blue/SWIR1, Blue/SWIR2, Green/Blue, 

Green/Red, Green/NIR, Green/SWIR1, 

Green/SWIR2, Red/Blue, Red/Green, 

Red/NIR Red/SWIR1, Red/SWIR2, 

NIR/Blue, NIR/Green, NIR/Red, 

NIR/SWIR1, NIR/SWIR2, SWIR1/Blue, 

SWIR1/Green, SWIR1/Red, SWIR1/NIR, 

SWIR1/SWIR2, SWIR2/Blue, 

SWIR2/Green, SWIR2/Red, SWIR2/NIR, 

SWIR2/SWIR1 

Blue
2
, Green

2
, Red

2
, NIR

2
, 

SWIR1
2
, SWIR2

2
, TIR

2
, 

Blue*Green, Blue*Red, 

Blue*NIR, Blue*SWIR1, 

Blue*SWIR2, Green*Red, 

Green*NIR, Green*SWIR1, 

Green*SWIR2, Red*NIR, 

Red*SWIR1, Red*SWIR2, 

SWIR1*SWIR2 

 

 

3.  RESULTS AND DISCUSSION 

 

Following the processing of the images and utilizing a 3x3 pixel window for each in situ 

sampling station location [14,20] the regression model with the highest R
2
, lowest RMSE, and 

highest predictive capability from cross-validation was identified. The possibility to apply 

derived equations to other sensors was also examined (see Tables 2 and 3).  

 

3.1 Estimation of water surface temperature 
The water surface temperature empirical model estimation for Landsat ETM+, OLI/TIRS and 

Landsat common, included the presence of the thermal band. Water surface temperature 

estimation for ETM+ (Table 2) during a time frame of +/- 1 day away from image the 

acquisition date explained 0.99 (R
2
) of the variance, with the accuracy resulting from 

predicting values against measured values in the larger time frame dataset being PA = 82.5%. 

This equation included the bands B1, B2, B3 and B6L. When applied to the OLI/TIRS dataset 

(Table 2) it achieved an AT = 63.5% between the in situ values and the predicted ones. 
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Estimating water surface temperature with OLI/TIRS band collection included bands: B11, 

B11
2

 and the product of B4*B7. This equation explained 0.94 (R
2
) of the variance in a time 

frame of +/-3 days away from image acquisition, while achieving a PA = 93.8% when 

validating the model prediction accuracy against the larger dataset. Once this OLI/TIRS 

model was applied to Landsat ETM+ dataset, it was able to predict the measured values with 

an AT = 86%. The equation derived to be used across Landsat sensors (Table 3), for 

estimating water surface temperature contained only the thermal TIR band and explained 0.84 

(R
2
) of the variance in the +/-3 days dataset. This empirical estimation model achieved a PA = 

79.6% when applied to the larger dataset (+/- 7 day timeframe), and also achieved MDA = 

82.2%, when estimating temperature in the non-overlapping dataset. 

 The incorporation of thermal bands, B6L/B6H (Landsat ETM+), B10/B11 (Landsat 

OLI/TIRS) and TIR (Thermal band of the Landsat common bands) has been previously 

successful in the estimation of surface temperature [16,21], as it has also been proven in this 

study. The SWIR band (B7), included into the OLI/TIRS temperature estimation model, is 

inversely proportional to moisture [22,23], since an increase in water content decreases 

temperature. Likewise, green (B2, ETM+ - Table 2) and red (B3, ETM+; B4, OLI/TIRS - 

Table 2) bands, used to measure green reflectance peaks of vegetation and chlorophyll 

absorption regions, respectively, are linked with the presence of vegetation, which also 

decreases temperature [23]. These models can estimate water surface temperature even if 

validation of samples are 7 days away from the image acquisition date. 

 

3.2 Estimation of Secchi disk depth 

Secchi disk depth is an attribute of water transparency. Performing step-wise multiple linear 

regression using the Landsat ETM+ data, resulted in no significant empirical models capable 

of explaining more than 0.50 of the variation (Table 2). The Landsat OLI/TIRS model, 

employed a low number of samples (n = 6) in the time frame of +/- 1 day away from image 

acquisition and was able to explain (R
2
) 0.99 of the variation. However, this low sample size 

caused an overfitting of the equation to the dataset, thereby affecting the accuracy of 

assessment of the SDD equation [24], as it achieved a PA = 26.3%, when applied to the larger 

dataset (Table 2). The equation derived to estimate SDD across the Landsat sensors (Table 3) 

incorporated ratios of Blue/NIR, Green/Red and SWIR-2/Red and the product of 

NIR*SWIR2. This combination of bands was able to explain the variation with an R
2
 = 0.88. 

Its capacity when predicting each value in the whole dataset through the leave-one-out cross-

validation process resulted in a PA = 78%. When this equation estimated SDD against the 

measured in situ values in the non-overlapping region, it resulted in a MDA = 42%.  

 The results show that more samples for each image analyzed can provide accurate and 

usable equations for SDD estimation  [25,26]. In addition to their small number, the in situ 

measurements themselves, can be affected by the subjective observation of the person taking 

the measurement, the solar angle and the margin of error of the instrument [27]. The blue 

(Blue, Landsat common- Table 3), green (B3, OLI/TIRS-Table 2, Green, Landsat common-

Table 3), red (B4, OLI/TIRS-Table 2, Red, Landsat common-Table 3) [6,28], NIR and SWIR-

2 (Landsat common-Table 3) [24] bands, have been incorporated in the SDD estimation 

equations in the past. However, the over-fitting of the equations to the dataset, due to the 

small sample size, hinders our ability to estimate SDD from Landsat imagery. 
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Table 6:  Empirical models derived from Landsat ETM+ and Landsat OLI/TIRS for estimating water 

quality features. These equations explain the variation with an R
2
 > 0.50. These parameters 

include: temperature (T, °C), pH (unitless), electric conductivity (EC, μS/cm), dissolved 

oxygen (DO, mg/L), Secchi disk depth (SDD, cm), phosphate (PO4, mg/L) and nitrate (NO3, 

mg/L). PA is the accuracy between in situ measurements and predicted measurements. AT is 

the accuracy of predicting feature values when transferring amongst sensors. 

 
Parameter and equation: Landsat ETM+ Time frame 

(+/- days) 

R2 RMSE PA AT 

      

T = -9.92 + 104.4×B1 + 193.6×B2 - 286.3×B3  +1.1899×B6L 1 0.99 0.90 82.5 63.5 

pH = 8.206 + 0.04873 ×B6H  3 0.52 0.41 37.6 60.8 

DO = 16.37 - 16.21×(B3×B5) 1 0.60 3.73 21.2 15.0 

EC = 520.8 - 11.18×B6H 1 0.56 17.79 43.7 73.9 

PO4 = 3.735 - 2.762×B1
2 - 0.022×(B5/B7) 1 0.95 2.23 0.00 58.2 

NO3= -0.511 + 0.295× (B3/B4) + 0.66×(B4/B3) - 0.035×B6H + 

0.001×B6L
2 

7 0.79 0.2 69.8 4.7 

Parameter and equation: Landsat OLI/TIRS Time frame 

(+/- days) 

R2 RMSE PA AT 

      

T = 0.787 + 1.124×B11 - 0.009×B11
2 + 6.071×(B4×B7) 3 0.94 2.25 93.8 86.0 

SDD = 155.495 - 203.145×(B3×B4) + 2039.598×B6 1 0.99 2.35 26.3 21.3 

pH = 7.491 + 0.0476×B10 7 0.62 0.36 58.1 37.8 

DO = 15.189 - 4.190×(B3/B2) - 0.002×B11
2 - 2.133×(B4×B7) 3 0.85 0.75 10.2 1.6 

EC = 340.9 + 480×B2 - 5.479×B10 3 0.81 35.12 84.2 44.2 

NO3 = 3.17 - 0.1144×B11
 3 0.91 0.29 47.1 1.0 

 

3.3 Estimation of water acidity 

Performing step-wise multiple linear regression using Landsat ETM+, OLI/TIRS and Landsat 

common, resulted in equations capable of estimating water acidity, represented by pH. The 

use of only a thermal band, in the linear formula of: a*(Thermal Band) + b, in ETM+ and 

OLI/TIRS empirical models (Table 2), explained 0.52 and 0.62 of the variation in a time 

frame of +/- 3 days and +/- 7 day away from image acquisition respectively (Table 2). The 

ETM+ equation, applied to the larger dataset (+/- 7 days), was able to predict the pH values 

with a PA = 37.6%, whereas the OLI/TIRS equation, achieved a PA = 58.1%. The ETM+ 

equation when applied to OLI/TIRS dataset estimated pH with an AT = 60.8%, while the 

OLI/TIRS equation applied to the ETM+ dataset predicted pH values with an AT = 37.8%. 

The equation for estimating pH across Landsat sensors (Table 3),  included, the Red and NIR 

bands, in addition to the thermal band, and explained the variation of pH in Kerkini Lake with 

an R
2
 = 0.82 in the time frame of +/-7 days, as well as achieving a lower RMSE than the other 

equations. Its capacity in predicting each value in the +/- 7 day timeframe, had a PA = 72.5%, 

while using it to assess the accuracy between the measured and predicted in situ values in the 

non-overlapping region, resulted in an accuracy MDA = 36.2%.  

 Using empirical models in pH estimation has not been thoroughly addressed in literature 

[29,30]. Estimating pH depends mostly on the availability of in situ samples. Thermal bands 

(B6H, ETM+; B10, OLI/TIRS; TIR, Landsat common - see Tables 2 and 3) included in the 

empirical models, are linked to the hydrogen ionization process, where an increase in 

temperature favors hydrogen ionization in water thus lowering pH values. NIR and Red 

bands, incorporated into equation to be used across Landsat sensors  (Table 3), can be linked 

to pH indirectly, by observing phytoplankton blooms, which limit pH values or an increase in 

dissolved carbon concentrations which tends to increase pH values [6,31].  



Water Resources Engineering and Management 

 

Proceedings 117 
of  the Eighth International Conference  
on Environmental Management, Engineering, Planning & Economics 
Thessaloniki, Greece, July 20-24, 2021 
ISBN: 978-618-5271-XX-X 

Table 3:  Empirical models derived with the ability to be used across Landsat sensor for estimating 

water quality features. These equations explain the variation with an R
2
 > 0.50. These 

parameters include: temperature (T, °C), pH (unitless), electric conductivity (EC, μS/cm), 

dissolved oxygen (DO, mg/L), Secchi disk depth (SDD, cm), phosphate (PO4, mg/L) and 

nitrate (NO3, mg/L). PA is the accuracy between in situ measurements and predicted 

measurements. MDA is the accuracy of predicting feature values when applied to the non-

overlapping image dates of Landsat ETM+ and OLI/TIRS. 
 

Parameter and equation: Landsat common Time frame 

(+/- days) 

R2 RMSE PA MDA 

T = 5.25 + 0.871×TIR 3 0.84 5.51 79.6 82.2 

SDD = -115.8 + 13.05 × (Blue/NIR) + 53.3× (Green/Red) +            

98.7 × (SWIR2/Red) + 53.95×(NIR×SWIR2) 

7 0.88 0.84 78.0 42.0 

pH = 8.879 - 25.3×Red + 23×NIR + 0.023×TIR 7 0.82 0.32 72.5 36.2 

DO = 7.98894 + 3.0449×Red2 1 0.99 0.35 7.0 2.3 

EC = 357.4 + 560× Blue - 5.336× TIR - 84.9× (SWIR1/Blue) 7 0.80 29.0 70.8 51.1 

PO4 = 3.340 - 1.454× (SWIR2/Green) - 0.0017×TIR - 2.914× 

(Green×NIR) 

3 0.95 1.07 36.0 15.3 

NO3 = 0.909 + 0.366× (SWIR2/Blue) - 1.695× SWIR12- 

0.63×SWIR22 - 0.88×(Blue×Red) + 2.118× (Red×NIR) 
7 0.89 0.38 61.8 6.2 

 

3.4 Estimation of dissolved oxygen 

The empirical models estimating dissolved oxygen (DO) from Landsat ETM+, OLI/TIRS and 

Landsat common, explained its variation with an R
2
 > 0.59 in Kerkini Lake. The equation 

resulting from SWLR using ETM+ satellite data (Table 2) incorporated the product of the Red 

band (B3) and SWIR-1 (B5) with an image window of +/-1 day. Its accuracy in predicting DO 

values in the larger dataset against in situ measurements was PA = 21.2%, while its 

application to OLI/TIRS dataset predicted the values with an AT = 15%. The equation 

resulting from using OLI/TIRS satellite (Table 2) explained the DO variation with an R
2
 = 

0.85. It incorporated the Green (B3) to Blue (B2) ratio, the product of Red (B4) and SWIR-2 

(B7) and the squared product of the thermal band (B11), in an image window of +/-3 days. 

Very low accuracies resulted from applying the equation to predict DO values in a larger 

dataset (+/- 7 day timeframe) (PA = 10.2%), as well as predicting DO values in the Landsat 

ETM+ dataset (AT = 1.7%). The equation for estimating DO across Landsat sensors (Table 

3), included the squared product of the Red band and explained the variation of DO in Kerkini 

Lake with an R
2
 = 0.999 in a time frame of +/-1 days. Its accuracy between predicting 

dissolved oxygen vs measured in situ values, achieved a PA = 7% when applied to the larger 

dataset, and a MDA = 2.3%, when applied to the non-overlapping dates between ETM+ and 

OLI/TIRS. These low predictive capabilities limit the ability to apply these models for 

estimating DO.  

 This poor accuracy for DO concentration retrieval is not uncommon in the literature 

[29,30,32], especially with a small sample size. Thermal and red bands have been shown to 

have the ability to estimate dissolved oxygen. The incorporation of thermal bands helped 

achieve high predictive accuracies in estimating dissolved oxygen concentration in water [32], 

as temperature and dissolved oxygen are inversely proportional. The red band, an attribute of 

vegetation linked to the photosynthetic process, (Table 3), didn’t provide any promising 

results when included in the equation derived for estimating DO concentration across Landsat 

sensors. The small sample size of in-situ data, resulted in the overfitting of the model to the 

dataset, which was evident when predicting the values in the +/- 7 image window (PAs for all 

three empirical models were < 20%). 
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3.5 Estimation of electric conductivity 
Electric conductivity is a measure related to the concentration of salts present in the water. 

The ETM+, OLI/TIRS and the Landsat common empirical estimation models, estimated the 

electric conductivity in Kerkini lake with an R
2
 = 0.55, 0.81 and 0.80, respectively (Table 2, 

3). The best-fit derived ETM+ equation, incorporated the thermal band (B6H) in an image 

window of +/-1 day. Its application to the larger dataset of ETM+, resulted in an accuracy in 

predicting EC values against the in situ measurement with a PA = 43.7%, while its estimation 

of EC in the OLI/TIRS dataset resulted in an accuracy of TA = 73.9%. The combination of 

the blue band (B2) with the thermal band (B10) in the OLI/TIRS equation increased the 

explanation of variability of DO to R
2
= 0.81, with an accuracy of PA = 84.2% in predicting 

the values in the larger dataset . However, once this empirical model was applied to estimate 

ETM+ EC values, it achieved an accuracy of TA = 44.2% between the predicted and 

measured EC values. The empirical model for estimating EC across Landsat sensors (Table 

3), included the SWIR1 band, in addition to the previous bands in the other equations. This 

resulted in the equation explaining R
2
 = 0.80 of the variability of EC. Its capacity in 

predicting each value in the +/- 7 day timeframe, through leave-one-out cross validation 

achieved a PA = 70.8%, while using it to assess the accuracy between the measured and 

predicted in situ values in the non-overlapping region, resulted in an accuracy MDA = 51.1%.  

 The incorporation of mainly the blue (B2, OLI/TIRS – Table 2, Blue, Landsat common – 

Table 3) and/or thermal bands for  estimating electric conductivity in water, increases the 

accuracy of estimation, and the applicability of use of the model [22]. The relationship 

between electric conductivity and temperature in electrolyte solutions is primarily controlled 

by the viscosity-temperature relation of pure water, where a 2% increase of electric 

conductivity coincides with a one-degree Celsius increase of temperature [33]. These 

empirical estimation models are applicable, where validation of the models through in situ 

sampling can be done within 3 days before or after satellite acquisition. 

 

3.6 Estimation of nutrients (Phosphate and Nitrate) 

The nutrients, phosphorus and nitrate, are important biological growth and eutrophication 

indicators, playing an important part in water quality assessment. There has been no 

consensus on the appropriate bands that define the estimation of both parameters. The best-fit 

equation using ETM+ satellite data (Table 2), explained the variation of phosphate with an R
2
 

= 0.95. This empirical model was applied to the larger dataset (+/-7 day timeframe) and to the 

OLI/TIRS dataset. It predicted the phosphate values with an accuracy PA = 0% and TA = 

58.2%, against the in situ measurements. This 0% accuracy is due to the small sample size 

(Table 2). Performing SWLR using the OLI/TIRS data, resulted in no empirical model with 

the ability to explain the variation in Kerkini Lake with an R
2
 > 0.5. The equation for 

estimating phosphate across Landsat sensors, explained the variation in phosphate 

concentration with an R
2
=0.95 in a +/-3 image window (Table 3). It’s accuracy in predicting 

phosphate against in situ measurements in a larger dataset and in the dates where ETM+ and 

OLI/TIRS don’t overlap, resulted in a PA = 36.0% and MDA = 15.3%, respectively. Certain 

studies have shown that incorporating the blue band (B1, Landsat ETM+, see Table 2) [34,35] 

and the SWIR bands (Landsat common, see Table 3) may help in estimating phosphorus [36]. 

Additionally, indirect indications of phosphorus concentrations could be related to the thermal 

band (i.e. TIR, see Table 3), which may reveal surface roughness information, however, this 

has not been concluded yet [37,38].  
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 Estimating nitrate concentration using the ETM+ dataset (Table 2), resulted in an 

equation explaining the variation of nitrate with an R
2
 = 0.79, in a +/-7 day timeframe, 

achieving a PA = 69.8% when validated, through a leave-one-out cross validation. However, 

this equation applied on the OLI/TIRS data, achieved an accuracy between the predicted 

values and in situ measurements of TA = 4.7%. Estimating nitrate concentrations through the 

use of the OLI/TIRS dataset resulted in an empirical model, containing only the thermal band 

(B11), while explaining R
2
 = 0.91 of the variation of nitrate in Kerkini Lake in a timeframe of 

+/- 3 days (Table 2). The ETM+ equation, applied to the larger dataset (+/- 7 days), was able 

to predict the nitrate concentration with a PA = 47.1% against in situ measurements, while 

applying it to the ETM+ dataset, achieved an accuracy AT = 1.0% between the measured and 

predicted values. Estimating nitrate across the Landsat sensors, was through an SWLR 

equation that explained the variation of nitrate concentration with a R
2
=0.89 in a +/-7 day 

timeframe. This equation included the combination of the blue, red, NIR and SWIR-1 and 

SWIR-2 bands. Its capacity in predicting each value in the +/- 7 day timeframe, through the 

leave-one-out cross validation achieved a PA = 61.8%, while using it to assess the accuracy 

between the measured and predicted in situ values in dates where ETM+ and OLI/TIRS don’t 

overlap, resulted in an accuracy MDA = 6.2%. Studying these nutrients in literature has been 

avoided and primarily focused on trend analysis rather than estimation and modeling [37].  

 

4.  CONCLUSIONS 

Remote sensing can support the monitoring and policy implementation of water quality 

measures in lakes, especially for the development of protection measures and management 

practices. The results of this research show that Landsat imagery (ETM+ and OLI/TIRS) data 

can be used to perform water quality features’ estimation in Kerkini Lake. Temperature, pH 

and electric conductivity empirical models can be used across sensors (Landsat ETM+ or 

OLI/TIRS), even if the calibration for these models (in situ measurements) is carried out at +/- 

3 days away from image acquisition. For these variables, moderate to high accuracies are 

registered. The low volume of samples available for this study, hindered the estimation of 

SDD. On the other hand, the estimation of DO and nutrients has not been sufficiently 

accurate, which is something that has also been observed in the literature. In general, a higher 

number of in situ measurements and sampling sites would be required to reach to statistically 

reliable results.  
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