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Abstract

Active Contour Models have been widely used in com-
puter vision for segmentation purposes, while anatomically
constrained ACMs have offered a valuable solution on med-
ical image segmentation, specifically for structures with
weak boundaries. Efforts have been devoted on various
ways of modeling prior knowledge, in terms of the mor-
phology of the structures under investigation. This paper
focuses on how to efficiently incorporate prior knowledge,
into an ACM evolution framework, using the structures’
distribution map as a second feature image, and blending
the two images through a novel adaptive local weighting
scheme. For proof of concept the method is applied on
hippocampus segmentation in T1-MR brain images, a very
challenging task, due to its multivariate surrounding region
and the weak, even missing boundaries.

1 Introduction

Segmentation of anatomical structures in medical images
is a topic of both major importance and challenge. Au-
tomatic segmentation of structures, could leverage system-
atic and extensive morphological analysis and shape com-
parisons of healthy and diseased subjects. Such analysis
would indicate abnormal regions of a structure, thus lead
to possible biomarker identification, disease prognosis and
diagnosis, and optimum treatment identification. Research
on the hippocampus-amygdala complex has shown that its
morphology could indeed serve as a biomarker of mental
diseases, e.g. Alzheimer’s Disease (AD)[20, 9], even rec-
ognizing when Mild Cognitive Impairment could possibly
lead to AD [22]. However, manual segmentation lacks re-
producibility, while being time consuming and costly. On
the other hand, automatic segmentation requires overcom-
ing the inherent difficulties of medical imaging: noise and
limited resolution, resulting to weak boundaries between

Figure 1. A sagittal slice of a brain MRI. The
white box encloses the hippocampus and
amygdala complex, while the blue and red
contours depict the hippocampus and amyg-
dala boundaries respectively.

neighboring structures of identical depiction values. Such
a challenging example is the case of the hippocampus-
amygdala complex, as Fig.1 shows.

ACMs have been widely used in the field of image seg-
mentation; on an iterative evolution basis, specific energy
amounts are evaluated until convergence. Evolution ener-
gies account either for the amount of gradient information
on the contour, offering the edge-based ACMs, i.e. the
Geodesic Active Contour proposed by Caselles [4], or for
region homogeneity inside the contour contrary with the re-
gion outside the contour, offering the region-based ACMs,
proposed by Chan and Vese [5]. Although a combination
of both energies into a single hybrid framework is straight-
forward [23], the majority of recent medical imaging appli-
cations utilize the region-based technique, since it is more
robust against noise, weak boundaries and smooth gradi-
ent edges. Due to these highly attractive properties, a lot of
variations of the original region-based model have been pro-
posed in the literature, e.g. in [16] a new variational level
set formulation has been proposed that does not require re-
initialization, while [26] proposed a formulation that has se-
lective local to global behavior.



1.1 Incorporating Prior Knowledge

Pure ACMs solely depend on the image information and
neglect any prior information. In the case of medical im-
age segmentation though, prior information is critical, since
even a human would not be able to distinguish the struc-
tures in an image, unless (s)he has been trained to recognize
specific properties of the structures (e.g. shape). Thus, ef-
forts have been devoted on ways to model such knowledge,
since appropriate ways of modeling anatomical information
for the purpose of segmentation could further be used for
activation map extraction from fMRI analysis, as in [19].
Toward such modeling, statistical shape modeling was uti-
lized to learn the shape characteristics of a given structure
from a population. Cootes et al. [7] pioneered this field,
known as Active Shape Models (ASMs), and proposed to
learn a probability prior from a training set of shapes, by
estimating a joint probability distribution over a set of land-
marks on the shapes, using Principal Component Analy-
sis (PCA). The learned shape prior was then used during
the evolution of a deformable model, in order to constrain
it over allowable shape variations, given the shapes of the
population used in the training. The ASM concept of learn-
ing distribution of landmarks was extended to a more ro-
bust feature, the distance map. Distance maps constitute a
form of implicit shape representation, as the level sets, and
shape prior was firstly introduced to distance maps from
Leventon et al. in [15]. Yang et al. [24], extended Lev-
enton’s idea, and included within the shape prior a notion
of neighborhood prior, for segmenting multiple neighboring
structures, taking into account the shape inter-relationships
among the neighboring structures. Furthermore, they man-
aged to smoothly incorporate the prior information into the
contour evolution process. The disadvantage of the above
ASMs arises from the global character of PCA, that re-
stricts dramatically the shape prior, especially when a small
training set is employed, biasing the evolution towards the
mean shape, as figure 2 shows. To overcome this disadvan-
tage and have a less restrictive and local shape prior, Da-
vatzikos et al. [10] proposed the use of wavelets on the con-
tour and to divide it into spatiotemporal bands, on which
PCA was applied. Nain et al. [17] applied this concept on
the hippocampus, and extended it in 3D by using spherical
wavelets.

Generalizing the ASM approach to include into the op-
timization framework the texture information, initially pro-
posed by Cootes et al. in [8], has led to developing the
Active Appearance Model (AAM), recently extended in [1]
to include a graph-based matching, improving the initializa-
tion stage of the algorithm. In [14], AAMs based on level
set evolution were proposed, in order to overcome the short-
comings of landmark based evolution. Readers are referred
to [13] for a more thorough analysis on ways for statistical

Figure 2. Two segmentation examples us-
ing PCA-based variational shape prior (red
contour), contrary to actual boundary (blue).
Long and thick hippocampus head is quite
unlikely, hence PCA fails to capture it.

shape modeling of prior knowledge.
Another set of approaches on brain segmentation is

based on atlas registration. In this framework, labels from
the atlas, set manually, are propagated to the test image after
a registration process between them is performed. Single
atlas-based methods, have further been extended to multi-
atlas, where each available labeled image is registered to
the target, and the deformed labels from all of them are ap-
propriately combined on the test image [12]. These meth-
ods are primarily differentiated by the registration’s nature;
affine [6], piecewise affine [6, 2], or non-linear, e.g. [11],
and the way of combining the multiple atlases.

1.2 Motivation

In this work, we present a different way of modeling
prior knowledge, and more importantly a novel framework
for embedding it into an ACM evolution process, by taking
advantage of it in two different ways. Labeled images are
used in a multi-atlas framework, to form the spatial distri-
bution of hippocampus’ labels, i.e. an empirical probabil-
ity map. This map is used in parallel with the target im-
age and a region-based ACM is evolved on both, simultane-
ously. Thus, the energy minimization criterion encloses the
image term (i.e. how well the contour fits the image) and
the prior term (i.e. how likely the enclosed voxels belong
to hippocampus). The second mean of prior knowledge’s
exploitation is on how the two terms are blended during
each evolution iteration. Previous solutions were merging
the two terms in a global way, neglecting the fact that a
given structure does have some more and some less trust-
worthy parts (i.e. parts were image information is sufficient
or not), which are always at given anatomical locations. The
hippocampus for example, has strong edge boundary on its
bottom part, but weak on the head while it lacks any bor-
der with the tangent amygdala, due to the partial-volume
effect at the resolution provided from a 1.5T MRI scan-
ner. A human rater knows the parts where (s)he has to
trust image information and where to trust his/her experi-
ence. Mimicking the humans segmentation concept, the au-
thors have proposed a local weighting map for blending the



two terms, based on Gradient Distribution on the hippocam-
pus’ Boundary (GDB) [25], which offered very promising
results. In this paper, this concept is further extended to
become Adaptive (AGDB), based on the evolving contour,
rather than based on a static local weighting map. This idea
was motivated by the fact that a static map could not serve in
full extend the variability of the hippocampus’ shape, while
on the other hand imitates even more the human understand-
ing.

In the following Section our contributions on how to
fully exploit prior knowledge are thoroughly explained. Ex-
perimental results in Section 3 verify the validity of the pro-
posed concept, since better segmentation performance is
achieved, compared to the existing variational shape prior
technique and the previous implementation of the static
GDB. Finally, conclusions are drawn in Section 4.

2 Proposed method

2.1 Spatial Distribution Map

In order to construct the statistical model of spatial class
label distribution over the training set, the label images are
used, where a label l has been assigned to each voxel v,
manually by an expert. Each labelled image Ln, n =
1, . . . , N is a binary image, with Ln(v) = 1 for voxels
v that belong to the hippocampus and 0 otherwise. Each of
the N labeled images are non-rigidly registered on the test
image. Registration is performed utilizing the algorithms of
[21], and is based on the gradients of the test image and the
training image, while the registration similarity score is then
used as a weight. The weighted average of the registered
L

′

n, over the training population produces the Spatial Dis-
tribution Map L, which gives the empirical probability for
every voxel of the specific test image L(v) = p(lv) ∈ [0, 1]
to belong to hippocampus, based on its coordinates. Thus,
SDM can assign to each voxel the probability to belong to
the desired structure, based on its location. An ACM on L
would try to separate the highly likely hippocampus’ region
from the unlikely one.

2.2 Energy terms

The utilized ACM framework is the region based from
[5]: let Ω denote a bounded open subset of R2 , with ϑΩ
its boundary, and C(s) : [0, 1] → R3 is a parameterized
curve in Ω. The curve C can be also implicitly represented
via a Lipschitz function φ by C = {v|φ(v) = 0}. C par-
titions Ω into the inside C set Ω1 in which φ(v) < 0, and
the outside C set Ω2 in which φ(v) > 0. This region based
framework is applied simultaneously on the test MR image
I and on the SDM L, thus the same curve φ is evolved on
the two images, capturing at the first one the region of vox-
els with consistent texture characteristics, while imposing

at the second one to be voxels with high spatial likelihood
of belonging to hippocampus. For images I and L, both in
the Ω domain, the Chan-Vese model is formulated by mini-
mizing the following energy functionals:

EI(M) = λ1

∫
Ω1

M◦|I(v)−cI1|2dv+λ2

∫
Ω2

M◦|I(v)−cI2|2dv

(1)

EL(M) = v1

∫
Ω1

M◦|L(v)−cL1 |2dv+v2

∫
Ω2

M◦|L(v)−cL2 |2dv

where v ∈ Ω, cI1, cI2 and cL1 , cL2 are the average intensities
of I and L in Ω1 and Ω2 respectively, while λ1, λ2, v1 and
v2 are balancing factors between the properties of interior
and exterior regions. The operation ◦ notates the Hadamard
product, and the local weighting matrix M equals to the
identity matrix in the analysis of [5].

2.3 Adaptive local weighting scheme

In order to model the human expert’s segmentation
methodology, of where and at which extend to trust either
EI or EL, with respect to the hippocampus’ body, we de-
fine the local weighting matrix, produced by adapting to the
evolving contour the learned Gradient Distribution on the
Boundary of the desired structure. Mean AGDB defines the
density of the gradient values, on the mean shape of the hip-
pocampus, thus which parts of the boundary demonstrate
sufficient edge information, that one should trust. This dis-
tribution is adapted on every updated contour of the ACM
framework, by registering φt to it. Hence, the name Adap-
tive Gradient Distribution on Boundary. This way, AGDB
is aligned with the evolving contour, rather than with the
SDM, as GDB does. Utilizing AGDB, the segmentation en-
ergy becomes:

E = EI(AGDB) + EL(1−AGDB) (2)

whose update equation reads:

ϑφ

ϑt
= δε(φ)

[
µ div

(
∇φ
|∇φ|

)
− ν

−AGDBt ◦
(
λ1(I − c1)2 − λ2(I − c2)2

)
(3)

−(1−AGDBt) ◦
(
v1(L− d1)2 + v2(L− d2)2

)]
where the first two regularization terms control the smooth-
ness and the propagation speed, while the rest control the
evolution forces.

The motivation of becoming adaptive, given the static
GDB of [25] is illustrated in figures 3(a)-(c), where the lo-
cal weighting map is imaged with white color on the regions
where image information should be trusted1. As Figure 3(c)
shows, the static GDB cannot cover cases of hippocampuses

1For the sake of demonstration, figures 3(d)-(f) depict (1-AGDB), i.e.
dark values correspond to gradient-rich boundary parts, where image in-
formation should be trusted.



(a) (b) (c)

(d) (e) (f)

Figure 3. (a) GDB as a red overlay on the
mean brain MR image and the mean hip-
pocampus shape as blue contour. Three in-
dividual hippocampuses, plotted (b) over the
mean MR image of the training dataset, and
(c) over the static GDB map, with reference of
the mean shape (blue). (d) Mean AGDB on 32
samples of the mean shape’s contour. Regis-
tered AGDB on the red contour of (c), before
(e) and after (f) the dilation and smoothing.

with normal shapes, but having considerable deviation from
the mean shape, as the upper left part in these cases falls on
very low GDB values, which falsely translates that the al-
gorithm should trust almost only prior information in those
contours’ parts, since indeed there is strong image informa-
tion.

2.4 Building AGDB

The adaptation procedure of the AGDB is illustrated in
figures 3(d)-(f). In more detail, in order to construct the
AGDB weighting map, the training set is used, and in ev-
ery image the manually contour is outlined. Secondly, the
canny edge detector [3] is applied and the binary intersec-
tion of the actual contour with the canny edge is extracted.
Thirdly, the boundary is sampled on a prespecified amount
of points along its contour. This process is repeated for
every image of the set. Sampled contours are then regis-
tered to each other. Pairwise registration of contours C1

and C2, is performed based on minimizing the differences
of the contour samples’ distances from their centers.

min
r
{Ĉ1(s)− Ĉ2(s+ r)}, where Ĉ = C − C̄ (4)

Registered sampled contours are then averaged, producing
the mean AGDB depicted in figure 3(d), which is the offline
outcome of the training procedure (along with SDM).

During active contour’s evolution, the mean AGDB is
adapted on it, as figure 3(e) shows. Adaptation is achieved
by registering the evolving contour and the mean AGDB,
and upsampling. The final form for that evolution iteration

5 10 15 20
0

2

4

6

8

10

12
Hausdorff Distance

Subject # − sorted by age

E
rr

o
r 

(p
ix

e
ls

)

 

 

AGDB
GDB
VSP

(a)

5 10 15 20
0

1

2

3

4
Undirected Average Distance

Subject # − sorted by age

E
rr

o
r 

(p
ix

e
ls

)

 

 

AGDB
GDB
VSP

(b)
Figure 5. Comparisons based on (a) the
Haussdorf distance, and (b) the undirected
average distance.

AGDBt, depicted in figure 3(f), is produced through suc-
cessive dilations and smoothing.

3 Experimental Results

3.1 Evaluation Dataset

The proposed methodology has been tested on 23 T-1
weighted MP-RAGE MR images, randomly chosen from
the OASIS database [18]. A professional radiologist man-
ually traced the hippocampus volume on those 23 images,
in order to build the training set. Apart from the OASIS
pre-processing, the selected MR images were further rigidly
registered on the hippocampus center of mass.

3.2 Comparisons

The proposed algorithm was evaluated in the context of
the leave-one-out procedure. For every excluded test image,
a new hippocampus spatial distribution map and AGDB
map were generated. For comparison purposes, results of
the previous GDB framework and of the combination of
the Chan-Vese model with variational shape prior (abbre-
viated as VSP) have been calculated. The seeding region
that initializes the evolutions was selected as the set of vox-
els with very high probability to belong to the hippocampus,
i.e. high valued voxels of L.

The following results refer to segmentations performed
on a central sagittal slice of each MRI. Performance and
accuracy of the three comparing methods are evaluated
through several metrics, i.e. the Hausdorff distance in figure
5(a), the undirected averaged distance in figure 5(b), preci-
sion vs recall in figure 6(a) and the F1 measure in figure
6(b). Regarding the visualization of the Precision vs Recall
diagram, the results of the proposed method are connected
through colored segments with the ones produced by the
static GDB and the VSP methods on the same MRI, show-
ing AGDB’s tendency towards the optimum upper-right cor-



F1 : 0.91− 0.86

AvD: 0.5− 0.8

StD: 0.51− 0.90

Ha: 1.4− 4.0

(a)

F1 : 0.88− 0.84

AvD: 0.6− 0.8

StD: 0.61− 0.94

Ha: 3.0− 5.0

(b)

F1 : 0.92− 0.86

AvD: 0.5− 0.9

StD: 0.60− 0.97

Ha: 2.2− 4.1

(c)

F1 : 0.80− 0.82

AvD: 1.0− 1.0

StD: 0.93− 0.97

Ha: 4.0− 3.6

(d)

F1 : 0.80− 0.60

AvD: 0.7− 1.0

StD: 0.74− 0.73

Ha: 2.8− 3.0

(e)

F1 : 0.90− 0.83

AvD: 0.6− 0.9

StD: 0.61− 0.78

Ha: 2.2− 2.8

(f)
Figure 4. Segmentation results on images with age-sorted indexes 2, 3, 8, 12, 14 and 23, accompa-
nied with the evaluation metrics (first value for AGDB and second for GDB). The thin black contour
depicts the ground truth, while the blue one is the outcome of the proposed method and the green
one of the static GDB method.

ner. F1 equals the Dice coefficient, which measures set
agreement: let H be the actual volume of the hippocampus,
and Ĥ the segmentation result, then F1 equals:

F1 =
2|Ĥ ∩H|
|Ĥ|+ |H|

=
2 · Pr ·Re
Pr +Re

, F1 ∈ [0, 1] (5)

where Pr ad Re refer to Precision and Recall, showing that
F1 actually offers a combined metric for both precision and
recall. A value of F1 = 0 indicates no overlap between
the actual and estimated volume, while a value of F1 = 1
indicates perfect agreement.

Table 1 shows averaged results for each of the evaluation
metrics on the whole dataset, where the optimum value for
each metric is written in bold; higher values for F1, Preci-
sion and Recall, while lower values for the undirected av-
erage distance error (AvD), its standard deviation (StD) and
Haussdorf (Ha). The evaluation metrics verify the supe-
riority of the proposed concept. While F1 is widely used
as a prime metric for segmentation performance, attention
should be paid on the significant decrease of the distance er-
rors, with very constrained standard deviation, showing that
the proposed technique is more stable and robust.

Table 1. Averaged Comparison Results
F1 Pr Re AvD StD Ha

AGDB 0.86 0.85 0.88 0.70 0.70 2.65
GDB 0.82 0.82 0.84 0.84 0.82 3.29
VSP 0.79 0.83 0.78 1.18 1.20 4.59

Figure 4 shows examples of segmentation outputs on six
cases, spanning on the complete aging axis. Figures 4 (a),
(b), and (c) refer to the images whose contours are in figure
3(c). Note the difference in segmentation quality between
the proposed method in (c) and (d) and the VSP method
in figure 2 which are on the same MR images. These re-
sults verify the improvements on hippocampuses that have

large deviations from the mean shape, i.e. long and thick
head and tail. The proposed method shows that is invariant
on such cases. Example (d) is noteworthy, since the met-
rics for the two cases are quite close to each other, but do
not seem to actually capture the very improved performance
of AGDB contrary to static GDB, which has captured the
long shape on both the head and the tail of the hippocam-
pus. This is a nice example showing how the metrics assess
the segmentation performance in a different way from the
humans. A very challenging case is depicted in example
(e), where the hippocampus is divided into two blobs. The
AGDB result though fails to get separated, still shows bet-
ter performance, neglecting many of the dark voxels that
are in between them that GDB took into account. This fig-
ure by being very bright, contrary to the rest, further shows
the invariance of the method on the different image intensity
distributions.

4 Conclusions
The proposed method utilizes two terms in the evolu-

tion process; the regional intensity based on the Chan-Vese
model and a prior knowledge term, a multi-atlas based em-
pirical distribution of labels. The contribution of this paper
is not only on how to model prior knowledge, but on how
to combine it with the test image. A local weighting map,
balancing on a voxel level the contribution of the two terms,
has shown segmentation improvements. Adjusting it to the
evolving contour throughout the segmentation process re-
moves its static nature, utilizing the humans’ adaptive un-
derstanding of which parts of the contour at hand represent
the head or the tail of the hippocampus. Thus, AGDB imi-
tates even more the way humans perform the segmentation
procedure in general. The framework is not restricted nor
fine-tuned on the hippocampus making it generic to other
similar applications, where specific anatomical information
is used during the segmentation.
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