
Mobility services data models for open and inclusive MaaS 

infrastructures  

Athanasios I. Salamanis1a, Theodoros Ioakeimidisa, Maria Gkemoub, Dionysios 

Kehagiasa Dimitrios Tzovarasa 

aInformation Technologies Institute, Centre for Research & Technology Hellas, P.O Box 60361, GR 57001 Thermi-Thessaloniki, Greece 

bHellenic Institute of Transport, Centre for Research & Technology Hellas, P.O Box 60361, GR 57001, Thermi-Thessaloniki, Greece 

 

Abstract 

Over the recent years, the vast variety of widely accessible cloud computing services along with the need 

to combine transportation services either from public or private providers, have led to the rise of the 

Mobility as a Service (MaaS) concept.  The main feature of MaaS is that it gives users access to a set of 

heterogeneous transportation services from a single access point (i.e., an app). The ever-increasing 

adoption of MaaS by service providers introduces a variety of new business models and technologies that 

can successfully support the design and deployment of MaaS services. However, the outcome of this 

process depends on the definition of a data model for the transportation services, and its proper 

implementation that will ensure a seamless service provision within the MaaS platform. Towards this 

direction, this paper presents a definition of the transportation service data model suitable for a MaaS 

platform, as well as two different implementation approaches. In particular, a custom-design approach 

and an ontology-based approach are presented and compared with each other based on a set of key 

performance indicators (KPIs) such as code complexity, code maintainability, and performance. The two 

approaches were quantitatively compared using both artificially generated and real data derived from a 

                                                           
1 Corresponding author 



real-world MaaS platform, namely the one developed in the context of the H2020 European research 

project MyCorridor. The preliminary results present the advantages and disadvantages of the two 

approaches for the implementation of the defined transportation service data model in the context of a 

real-world MaaS platform. 

Keywords: MaaS, JSON schema, ontology, OWL, KPI, cyclomatic complexity, Halstead metrics, 

maintainability index, technical debt  

1. Introduction 

Nowadays, many people are concentrating in the big urban centers mainly in search of work. 

Consequently, a number of issues related to increased transport needs (e.g., traffic congestion) has 

emerged, leading to the need for a shift towards mobility solutions that provide sustainable and 

environmental friendly alternatives. Such an alternative is the shared mobility schemes. 

Shared mobility schemes include a variety of green mobility solutions (e.g., bike sharing, car sharing, and 

ride sharing) that decrease the need of vehicle ownership. For example, platforms like Motivate 

(“Motivate,” 2019) and Car2Go (“Car2Go,” 2019) offer access to bicycles and cars on-demand. A 

combination of such mobility options with the available public transport serves as a convenient option 

compared to using private vehicles. However, these mobility schemes require searching, booking and 

paying for each service separately. This is a time consuming process, which includes accessing many 

different applications and using different booking and payment methods. 

The idea of Mobility as a Service (MaaS) has emerged as a way of tackling the above difficulties. MaaS 

provides users the ability to access a set of heterogeneous transportation services, choose those that 

satisfy their needs, and book and pay for them from a single access point (i.e., an app). All the required 

processes (e.g., services search, booking, and payment) are handled by the MaaS platform without the 

need for user intervention. However, at a technical level, the seamless provision of these mobility 



solutions requires the integration of several different application programming interfaces (APIs) into the 

MaaS platform. This integration process depends on the definition of a data model for the transportation 

services and its proper implementation. 

To this end, this paper presents a definition of the transportation service data model suitable for MaaS 

platforms, as well as two different implementation approaches. In particular, a custom-design approach 

and a ontology-based approach are presented and compared with each other based on a set of key 

performance indicators (KPIs) such as code complexity, code maintainability, and performance. The two 

approaches were quantitatively compared using both artificially generated and real services derived from 

a real-world MaaS platform, namely the one developed in the context of the H2020 European research 

project MyCorridor. The experimental results present the pros and cons of each approach for the 

implementation of the defined data model. 

The rest of the paper is organized as follows. Section 2 reviews the current MaaS literature focusing mainly 

on real-world MaaS implementations. Section 3 presents the definition of the transportation service data 

model and describes the two different implementation approaches. Section 4 describes the KPIs used to 

compare the two implementations. Section 5 presents the results of the comparison and highlights the 

most important findings. Finally, Section 6 concludes the paper by reviewing its main contributions and 

proposes future research directions. 

2. Literature Review 

Although MaaS is a relatively new transport paradigm, there has been a great interest in the various 

aspects of its successful implementation and overall adoption. However, the vast majority of research 

studies focuses on theoretical rather than practical aspects of MaaS. For example, Kamargianni and 

Matyas (M Kamargianni & Matyas, 2017) provided a preliminary definition of MaaS and described the 

different levels, actors and roles that compose the MaaS business ecosystem. Following a similar 



approach, Jittrapirom et al. (Jittrapirom et al., 2017) provided a review of existing MaaS definitions and 

schemes and identified a set of MaaS unique characteristics.  Similarly, efficient business model design for 

mobility platforms was the subject of the research works presented by Aapaoja et al. (Aapaoja, Eckhardt, 

& Nykänen, 2017) and Eckhardt et al. (Eckhardt, Aapaoja, Nykänen, & Sochor, 2017). Additionally,  

Ebrahimi et al. (Ebrahimi, Sharmeen, & Meurs, 2017) presented a classification of MaaS business 

architectures based on the integration of mobility services, while Sarasini et al. (Sarasini, Sochor, & Arby, 

2017) identified the different ways in which MaaS business models can generate sustainable value for the 

several stakeholders.  

Assuming that a higher level of mobility integration is more appealing to travellers, Kamargianni et al. 

(Maria Kamargianni, Li, Matyas, & Schäfer, 2016) provided a comprehensive review of existing MaaS 

schemes and presented an index for evaluating the level of mobility service integration for each scheme. 

Furthermore, Li and Voege (Li & Voege, 2017) presented a summarization of the required conditions for 

MaaS operation and provided a checklist for potential MaaS developers to assess whether MaaS can be 

implemented in a city. The factors that determine a city’s readiness for MaaS implementation were also 

examined in the work of Goulding and Kamargianni (Goulding & Kamargianni, 2018).  Additionally, Matyas 

and Kamargianni (Matyas & Kamargianni, 2018b) investigated the potential of using subscription plans as 

a management tool towards the promotion of shared mobility solutions. Furthermore, Matyas and 

Kamargianni (Matyas & Kamargianni, 2018a) presented a survey that aimed to capture the decision-

making process of purchasing MaaS products. In a similar attempt to model the potential demand for 

MaaS packages, Ho et al. (Ho, Hensher, Mulley, & Wong, 2018) examined the potential uptake of mobility 

packages as well as the travellers’ willingness to pay for different MaaS plans. From a different 

perspective, Smith et al. (Smith, Sochor, & Karlsson, 2018) examined the potential development of MaaS 

scenarios (i.e., market-driven, public-controlled, and public-private) and portrayed their implications for 



public transport. Finally, Hensher (Hensher, 2017) examined the potential future contexts of bus services 

provision under the MaaS paradigm.  

One of the most important objectives of MaaS platforms is to integrate a variety of different 

transportation services seamlessly. Towards this direction, Melis et al. (Melis et al., 2018) introduced 

Smart Mobility for All (SMAll), a platform designed based on the microservices architectural style. The 

platform’s capability of integrating different services was demonstrated by a successful use case 

presented by Callegati et al. (Callegati et al., 2017). Regarding security within MaaS platforms, Callegati et 

al. (Callegati, Giallorenzo, Melis, & Prandini, 2018) proposed a gossip-based overlay network architecture 

in order to constrain the information a malicious user could potentially acquire from the users. Moreover, 

Thai et al. (Thai, Yuan, & Bayen, 2018) presented a framework for quantifying the vulnerability of MaaS 

systems to Denial-of-Service (DoS) attacks. Finally, it is important to mention that in addition to theoretical 

approaches to the MaaS concept, real-world MaaS applications have already been designed, developed, 

deployed, and used by thousands of users across different countries. Some examples of these applications 

are Whim (“Whim,” 2019), Ubigo (“Ubigo,” 2019), Moovit (“Moovit,” 2019), and SkedGo (“SkedGo,” 

2019). 

3. Transportation Service Data Model 

The term “transportation service”, within a MaaS ecosystem, is usually referred to the digital 

representation of a mobility product, which is defined as a real-world physical transportation service 

provided by a public, private or public-private transport company/authority. For example, a trip with a 

coach bus from one city to another can be considered as a mobility product, and when it is presented as 

an option to the traveller through a MaaS app, it can be referred to as transportation service. In the MaaS 

ecosystem designed and developed in the context of MyCorridor project, the transportation services are 



classified into clusters and subclusters. The definitions of these categories and subcategories are 

presented in deliverable D1.1 of MyCorridor (Gkemou, 2018). 

An important step towards the definition of a concrete transportation service data model is the 

identification of the minimum information required for describing a service. In MyCorridor MaaS platform, 

we identified the following attributes that can define a transportation service data model: 

 Name*: the name of the service 

 Cluster*: the cluster of the service  

 Subcluster*: the subcluster of the service 

 Mobility product*: the mobility product represented by the service 

 Operating areas*: a list of service areas (i.e., cities or countries) 

 Operating time periods*: a list of service time periods (i.e., days and/or hours within days) 

 Service provider*: the official name of the service provider 

 URL: the URL of the official site of the service provider 

 API*: a boolean variable denoting whether service operation information (e.g., itineraries 

information) are provided through an API 

 API URL*: the base URL of the service’s API 

 API response*: the format of the API’s responses (e.g., JSON) 

 Booking API*: a boolean variable denoting whether the booking and ticketing information of the 

service are provided through an API 

 Booking API URL*: the base URL of the service’s booking API 

 Booking API response*: the format of the booking API’s responses (e.g., JSON) 

 Business rules*: a list of rules describing the business policy of the service (e.g., special discounts 

for trips on weekends) 



 Mode: the transportation mode of the service (e.g., bus) 

 Paid*: a boolean variable denoting whether a service is paid or free of charge 

 Currency: the type of currency in which the service is paid (if the service is paid) 

 Cost: the cost per trip of the service (if the service is paid) 

 Registration Status: a tag denoting the status of the service within MyCorridor MaaS platform. 

This tag can take one of the following values: 

o Submitted: The status tag the service receives when it is first submitted to the MyCorridor 

MaaS platform 

o Registered: The status tag of the service after it was successfully evaluated. This status 

means that the service is provided to the travellers through the MaaS app. 

o Under Evaluation: The status tag of the service during the period evaluated for its 

suitability for the MyCorridor MaaS platform 

o Under Update: The status tag of the service, if the provider agrees to proceed with the 

proposed changes to the service in order to successfully register it to the MyCorridor 

MaaS platform 

o Rejected: The status tag of the service when it has not passed the evaluation process 

 Weight: a value assigned to the service by the MaaS operator indicating its importance for the 

overall MaaS ecosystem 

 Average Rating: the average rating value of the service based on feedback provided by the 

travellers 

 Comments: miscellaneous information of the service not described by the other attributes 

Attributes denoted by the (*) symbol are mandatory for the complete description of a service, and hence 

for integration to the MyCorridor MaaS platform; the rest of them are not required (but nice to have) for 



successfully registering a service into MyCorridor MaaS platform and take predefined values in case no 

user input is provided. 

The above transportation service data model is implemented in two ways; (a) a custom-design approach 

and (b) an ontology-based approach, which are described in the following subsections. The actual 

instances of services derived by both approaches are accessible through an appropriate API. In particular, 

in the context of MyCorridor MaaS platform a RESTful API was designed and implemented, through which 

(among other functions) the service instances are accessed. This API was developed using the EVE RESTful 

API framework (“Python Eve,” 2019), which is an open source Python framework that allows effortlessly 

building and deploying highly customizable, fully featured RESTful Web Services (RWS). It is powered by 

Flask (“Flask,” 2019) and Cerberus (“Cerberus,” 2019), and offers native support for MongoDB data stores, 

as well as rapid prototyping in both development and production level. 

Custom-design approach 

The first approach followed for the implementation of the above transportation service data model was 

the custom-design approach. In this, a JSON schema that includes all the attributes of the transportation 

service data model was defined (i.e., Service JSON schema), and based on this schema JSON documents 

representing different transportation services were generated and stored in a NoSQL database for JSON-

like documents, namely MongoDB. In the rest of this subsection, all the key concepts of this approach are 

briefly described. 

JavaScript Object Notation (JSON) is a human-readable data exchange format, which represents data in 

the form of key-value pairs for the most part (i.e., it also utilizes several other serializable data types, such 

as arrays). Although JSON was initially derived from JavaScript, it is a language-independent data format 

and many modern programming languages include code to generate and parse JSON documents. JSON is 

mostly used for exchanging data in the context of web applications, and it can be considered as an 



alternative to XML data format. The main advantages of the JSON format is the comprehensibility of the 

data representation, its flexibility in representing the data entity in multiple ways, and its lightweight 

structure. The JSON format has been standardized by both ECMA (“RFC 8259,” 2017) and ISO (“ISO/IEC 

21778:2017,” 2017). 

To design a specific data structure in JSON format, a JSON schema should be defined. A JSON schema 

defines the structure of specific JSON data for validation, documentation, and interaction control. It is 

essentially a data structure declaration, which is written as a JSON itself. The JSON schema provides a 

specification for the data required by an application, and how that data can be modified. The JSON schema 

is a specification similar to the XML schema (i.e., the XSD). 

As mentioned above, the instances of the Service JSON schema (i.e., JSON documents) are stored in a 

document-oriented database called MongoDB (“MongoDB,” 2019). MongoDB is a free open-source cross-

platform database that belongs to the category of the NoSQL databases, and it stores data in the form of 

JSON-like documents, using a format called binary JSON (BSON) (“BSON,” 2019). MongoDB is the most 

popular document-oriented NoSQL database as of November 2019 according to DB-Engines Ranking (“DB-

Engines Ranking,” 2019). MongoDB has very big and active developer community, it contains lots of 

supporting tools, and it yields better performance, scalability, consistency and data integrity compared to 

other document-oriented NoSQL databases (e.g. Apache CouchDB (“Apache CouchDB,” 2019) and 

Amazon DynamoDB (“Amazon DynamoDB,” 2019)). 

The defined Service JSON schema is presented in Figure 1 and Figure 2. Figure 1 presents the Service JSON 

schema as it was extracted from the Eve framework. Figure 2 presents the Service JSON schema as 

extracted from Swagger (“Swagger,” 2019), which is the documentation tool of the MyCorridor RESTful 

API. The fields of the Service JSON schema are the attributes of the defined transportation service data 



model presented above. These fields are described in detail in deliverable D3.1 of MyCorridor (Salamanis, 

2019). 

 

Figure 1: Service JSON schema as extracted from the Eve framework 



 

Figure 2: Service JSON schema as extracted from the Swagger API documentation tool 

Ontology-based approach 

The second approach for the implementation of the defined transportation service data model is based 

on ontologies. An ontology is a representation of concepts, data and entities within a domain, along with 

the relationships between them, using formal semantics. In essence, an ontology is a formal way to define 

all key aspects of a concept (e.g. attributes, categories/subcategories, and relationships with other 

concepts), and provides a common language for all stakeholders working with this concept. For example, 

in the context of movie recommendation systems, an ontology can be defined to represent the concept 



of a movie. This ontology will include the formal definition of the movie (i.e., the attibutes of a movie), 

the several subcategories (e.g., action movies, or comedy movies), as well as its relationships with other 

concepts (e.g., actors, film producers, and audience). An ontology may also be considered similar to the 

concept of a class, in the context of object-oriented programming. 

An ontology is implemented using a formal ontology language. There are several formal ontology 

languages, both proprietary and standards-based. For the implementation of the ontology that represents 

the transportation service data model, we utilized the OWL ontology language. OWL is a family of 

knowledge representation languages for authoring ontologies, which are built upon the World Wide Web 

Consortium's (W3C) XML standard for objects in the Resource Description Framework (RDF) (Group, 

2012). In OWL, a class is the main representation of the ontology, and it represents a real-life concept. 

Then, an instance is a realization of a class.  A class may contain many instances, and an instance may 

belong to none, one or more classes. Moreover, a class may have subclasses, which inherit attibutes from 

their parent superclass. In OWL, a class is represented by a noun. Additionally, the classes have 

characteristics, i.e. directed binary relations that specify some attributes which are true for instances of 

the classes. These characteristics are called properties, and they are represented as verbs. 

In the field of transportation, there have been some efforts for creating ontologies that represent 

transport related data (Sobral, Galvão, & Borges, 2017)(Corsar, Markovic, Edwards, & Nelson, 

2015)(Berdier, 2011)(Gunay, Akcay, & Altan, 2014)(Koç, Lantow, & Sandkuhl, 2014), but in most cases the 

generated ontologies were application-specific and could not be easily generalized and extended to other 

related applications. Additionally, in the context of the MobiVoc (“MobiVoc,” 2019) and the Oasis 

(“OASIS,” 2017) projects, there has been an effort to design a generic ontology that could potentially 

support the operation of MaaS platforms. In particular, the objective of the MobiVoc project was to 

improve the data transferability between all stakeholders involved in the transport industry, by providing 

a standardized vocabulary, i.e. the Open Mobility Vocabulary. Similarly, the Oasis project aimed to 



increase the accessibility of public transport through linked open data, utilizing ontology-based 

architecture. 

Following the work of the aforementioned projects, we implemented the Service OWL ontology that 

represents the transportation service data model. In particular, the following classes were implemented: 

 Service: it represents the concept of a service 

 Mobility: it represents the concept of a mobility service 

 Infomobility: it represents the concept of an infomobility service  

 Traffic Management: it represents the concept of a traffic management service 

 Added Value: it represents the concept of an added value service  

 Operation: it represents the working hours of a service 

 Bbox: it represents an operating area of a service, in the form of a bounding box 

The Mobility, Infomobility, Traffic Management and Added Value classes are subclasses of the Service 

class. The instances of the Service class are related with the instances of the Operation class via the 

hasOperation property and with the instances of the Bbox class via the hasBbox property. 

The Service class has the following datatype properties: 

 hasName (string): it represents the name of a service  

 hasMobilityProduct (string): it represents the mobility product of a service 

 hasProvider (string): it represents the service provider of a service 

 hasUrl (string): it represents the URL of the official website of a service 

 hasApi (boolean): it represents the existence of an API for a service 

 hasApiUrl (string): it represents the base URL of the API of a service 



 hasApiResponse (string): it represents the data format (e.g., JSON) of the responses from the API 

of a service 

 hasBusinessRules (string): it represents the business rules of a service 

 hasCurrency (string): it represents the currency used to make payments for the purchase of a 

service 

 hasRegistrationStatus (string): it represents the registration status of a service 

 hasWeight (float): it represents the weight of a service 

 hasAvgRating (float): it represents the average rating of a service  

Additionally, the Service class has the following object properties: 

 hasOperation: it represents a specific time period of operation of an instance of the Service class 

 hasBbox: it represents an operating area of an instance of the Service class 

The Mobility, Infomobility, Traffic Management and Added Value classes inherit all the datatype 

properties of the Service superclass. Moreover, the Mobility class has the following additional datatype 

properties: 

 hasBookingUrl (string): it represents the base URL of the booking API of a mobility service 

 hasBookingResponse (string): it represents the data format (e.g., JSON) of the responses from the 

booking API of a mobility service 

 hasMode (string): it represents the transportation mode (e.g., bus) of a mobility service 

It should be noted that by default we assume that a mobility service has a booking API, and therefore no 

hasBookingApi property is required. The Operation class has the following datatype properties: 

 hasDay (string): it represents the day of the operation period of a service 

 hasTime (string): it represents a specific time period within a day for the operation period of a 

service 



Finally, the Bbox class has the following datatype properties: 

 hasBboxName (string): it represents the name of the operating area of a service 

 hasMinLat (float): it represents the latitude of the down left point of the bounding box that 

corresponds to an operating area of a service 

 hasMinLon (float): it represents the longitude of the down left point of the bounding box that 

corresponds to an operating area of a service 

 hasMaxLat (float): it represents the latitude of the upper right point of the bounding box that 

corresponds to an operating area of a service 

 hasMaxLon (float): it represents the longitude of the upper right point of the bounding box that 

corresponds to an operating area of a service 

Figure 3 depicts the classes, along with their properties, that belong to the Service OWL ontology. The 

Service OWL ontology was created using the semantic editor Protégé (“Protégé,” 2019). Moreover, the 

Owlready2 (“Owlready2,” 2019) library has been used for parsing and updating the ontology. Owlready2 

is a package for ontology-oriented programming in Python that allows for loading, modifying and saving 

ontologies as Python objects. 



 

Figure 3: The Service OWL ontology 

4. Key Performance Indicators 

In order to quantitatively compare the two implementation approaches, we had to select some specific 

KPIs. Several aspects of a MaaS platform’s functionality are affected by the appropriate definition and 

implementation of the data model representing a transportation service, and hence the selected KPIs 

should reflect as many of these aspects as possible. It should also be noted that most of the selected KPIs 

are evaluated indirectly on the two service data model implementations, through the corresponding 

software components that are responsible for handling them (e.g., generating new instances of the data 

models, and parsing the instances). This means that when the name of a KPI starts with the term “code” 

it refers to the software components responsible for handling the two service data model 

implementations. Based on these clarifications, the following KPIs were selected: code complexity, code 



explainability and speed of code development, code maintainability, performance, and size. The “code” 

KPIs were calculated using two static code analysis tools, namely Radon (“Radon,” 2019) and SonarQube 

(“SonarQube,” 2019). In particular, all the utilized code metrics were calculated using Radon, except of 

the technical-debt-related metrics that were calculated using SonarQube. Finally, the performance and 

size KPIs were calculated through experimental processes defined by the authors. In the rest of this 

section, the selected KPIs are described. 

Code Complexity 

The term code complexity in software engineering reflects the interconnections between the number of 

various software entities. As this number tends to grow, measuring the overall complexity is important 

for assuring a high code quality. In order to quantify the complexity of the software modules responsible 

for handling the two service data model implementations, we mainly utilized the Cyclomatic Complexity 

(CC) metric, which is a measure of the number of linearly independent paths through the code. 

Additionally, we utilized the following raw metrics: 

 LOC: the total number of lines of code 

 LLOC: the number of logical lines of code 

 SLOC: the number of source lines of code (not necessarily corresponding to the LLOC) 

 Comments: the number of comment lines 

 Multi: the number of lines, which represent multi-line strings 

 Blanks: the number of blank lines (or whitespace-only ones) 

The following equation should always hold: 

 𝑆𝐿𝑂𝐶 + 𝑀𝑢𝑙𝑡𝑖 + 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠 + 𝐵𝑙𝑎𝑛𝑘 = 𝐿𝑂𝐶 (1) 

 



Code Explainability/Speed of Code Development 

In order to enhance the identification of the measurable properties of software and their relations, 

Maurice Howard Halstead introduced a set of metrics known as the Halstead complexity measures 

(Halstead, 1977). More specifically, the following numbers can be computed by statically analyzing source 

code: 

 𝑛1: number of distinct operators 

 𝑛2: number of distinct operands 

 𝑁1: the total number of operators 

 𝑁2: the total number of operands 

Based on these numbers, the following measures can be calculated: 

 Program Vocabulary: 𝑛 = 𝑛1 + 𝑛2 

 Program Length: 𝑁 = 𝑁1 + 𝑁2 

 Calculated Estimated Program Length: �̂� = 𝑛1 log2 𝑛1 + 𝑛2 log2 𝑛2 

 Volume: 𝑉 = 𝑁 × log2 𝑛 

 Difficulty: 𝐷 =
𝑛1

2
×

𝑁2

𝑛2
 

 Effort: 𝐸 = 𝐷 × 𝑉 

 Time Required To Program: 𝑇 =
𝐸

12
 (sec.) 

 Number of delivered bugs: 𝐵 =
𝐸

2
3

3000
 

In order to quantify the explainability of the software components responsible for handling the two 

service data model implementations, we employed the Halstead Difficulty metric, as it is connected with 

someone’s ability to understand a piece of code. Additionally, in order to measure the speed of 

development we utilized the Halstead Time Required To Program (𝑡𝑡𝑝) metric. 



Code Maintainability 

The concept of code maintainability in software engineering refers to the ease of software maintenance 

in terms of source code support and modification. In this paper, the comparison of the two service data 

model implementations in terms of maintainability was based on the Maintainability Index (MI) and the 

Technical Debt (TD) metrics. More specifically, the MI is defined by the following equation: 

 
𝑀𝐼 = max [0, 100 

171 − 5.2 ln 𝑉 − 0.23𝐺 − 16.2 ln 𝐿 + 50 sin(√2.4𝐶)

171
] 

(2) 

where 𝑉 is the Halstead Volume, 𝐺 is the total Cyclomatic Complexity, 𝐿 is SLOC and 𝐶 is the percent of 

comment lines converted to radians. Additionally, the TD reflects the effort required for addressing the 

several maintainability issues (i.e., fixing all code smells), and it is measured in time units (e.g., minutes, 

hours, and 8-hour days). 

Performance 

Another KPI that we wanted to estimate regarding the two service data model implementations was the 

performance of the platform (i.e., of the MyCorridor RESTful API) against multiple requests. This 

performance is affected by the way the transportation service is represented, or in other words, by the 

service data model implementation used. In order to measure this performance, we set up the following 

process. Given 𝑁𝑠 services registered (i.e., stored) in the platform, we made 𝑁𝑐 calls to the API using an 

external client. The calls were performed sequentially, and we measured the overall cumulative response 

time (𝑐𝑟𝑡 - in seconds). The process was executed for both the custom-design approach and the ontology-

based approach. Additionally, the process was performed for different values of 𝑁𝑠 and 𝑁𝑐, it was 

repeated five times for each set of (𝑁𝑠, 𝑁𝑐) values (in order to have stable results), and the average 

cumulative response time (𝑎𝑐𝑟𝑡) was calculated for each case. Finally, it should be noted that both real 

(from the MyCorridor platform) and artificially generated services were utilized in the above process. 



Size 

Finally, we compared the two service data model implementations in terms of size requirements for data 

storage. For this purpose, we utilized 𝑁𝑠 instances of transportation services (both real and artificially 

generated), and we measured the size (in kilobytes -KB) of the required space for their storage, using both 

the custom-design and the ontology-based approaches. This process was performed for different values 

of 𝑁𝑠. The size of the required space for data storage was extracted from MongoDB statistics. 

5. Results and Discussion 

In this section, we present the results of the implementation of the KPIs on the two proposed service data 

model implementations and their corresponding software components. Based on these results, we try to 

highlight some of the advantages and disadvantages of both approaches. The results of the 

implementation of the code complexity KPI are presented in Table 1. 

Table 1: Code Complexity results 

 Service JSON schema Service OWL ontology 

CC B (8.0) B (10.0) 

LOC 248 319 

LLOC 50 179 

SLOC 227 255 

Comments 16 62 

Multi 0 0 

Blank 6 10 

 

As shown in the table, the code complexity metrics values derived by the implementation of the metrics 

on the software component responsible for handling the Service OWL ontology are, in all cases, higher 

than the corresponding metrics derived by the implementation of the metrics on the software component 

responsible for handling the Service JSON schema. This means that the Service OWL ontology is a much 



more complex representation compared to the Service JSON schema, and thus it requires more and more 

complicated code in order to be handled. 

The results of the implementation of the code explainability and the speed of code development KPIs are 

presented in Table 2 and  

Table 3, respectively. As shown in the tables, the two proposed approaches have the same value on the 

Halstead Difficulty (3.3), but they have considerably different values on the Halstead 𝑡𝑡𝑝 (i.e., 65.6 seconds 

for the Service OWL ontology versus 29.3 seconds for the Service JSON schema). These results may seem 

contradictory at first glance, but they can be explained if they are combined with the results of the code 

complexity metrics. In particular, as already mentioned, the code complexity of the Service OWL ontology 

implementation is very much higher than the complexity of the Service JSON schema. This means that the 

time required for a developer to write the code of a software component that will handle the Service OWL 

ontology, should be much higher than the corresponding time for the Service JSON schema. This is verified 

by the 𝑡𝑡𝑝 results. However, this does not necessarily mean that the code of the Service OWL ontology’s 

software component would be much more difficult to understand compared to the one of the Service 

JSON schema. For example, the code of the Service OWL ontology’s software component may include lots 

of if-else statements that, on one hand, increase the program vocabulary and length and consequently 

the volume and 𝑡𝑡𝑝, but on the other, they do not (always) result in a code that is much more difficult to 

understand.  

Table 2: Code Explainability results 

 Service JSON schema Service OWL ontology 

Halstead Difficulty 3.3 3.3 

 

Table 3: Speed of Code Development results 

𝒕𝒕𝒑 Service JSON schema Service OWL ontology 



 29.3 sec. 65.6 sec. 

 

The results of the implementation of the code maintainability KPI are presented in Table 4. As shown in 

the table, both implementations present very high maintainability (i.e., MI 70.11 for the Service JSON 

schema and 54.12 for the Service OWL ontology), which can be considered as an indication that both 

implementations can be utilized for maintaining a large repository of transportation services in a MaaS 

platform. On the contrary, the TD metric indicates that the Service OWL ontology may require much more 

effort for fixing possible code smells compared to the Service JSON schema. However, this result is directly 

connected with the code complexity of the Service OWL ontology’s software components as presented 

above. 

Table 4: Code Maintainability results 

 Service JSON schema Service OWL ontology 

MI A (70.11) A (54.12) 

TD 10 min. 1 h. 53 min. 

 

The results of the implementation of the performance KPI are presented in Table 5, Table 6, and Table 7. 

As shown in the tables, in all cases, the performance of the MaaS platform (or of the MyCorridor RESTful 

API that orchestrates the operation of the platform) in terms of serving multiple external requests is 

approximately the same for both of the proposed implementation approaches. 

Table 5: Performance results for 𝑁𝑠 = 30 

Service JSON schema 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.092935 0.060275 0.060431 0.058606 0.059404 0.066330 

100 0.810309 0.833953 0.857855 0.831901 0.838257 0.834455 

1000 8.756840 8.518682 8.475384 8.399318 8.548431 8.539731 



Service OWL ontology 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.074939 0.058827 0.097976 0.058725 0.057742 0.069642 

100 0.896580 0.879611 0.879010 0.869142 0.851595 0.875188 

1000 8.448229 8.784771 8.326078 8.513504 8.504259 8.515368 

 

Table 6: Performance results for 𝑁𝑠 = 100 

Service JSON schema 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.073349 0.070097 0.089286 0.070832 0.060039 0.072721 

100 0.887065 0.882068 0.828549 0.793458 0.875982 0.853424 

1000 8.612768 8.538605 8.677484 8.511654 8.398195 8.547741 

Service OWL ontology 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.097689 0.063266 0.076968 0.069008 0.072439 0.075874 

100 0.828521 0.800629 0.821406 0.797074 0.856451 0.820816 

1000 8.463793 8.414838 8.507498 8.711283 8.667731 8.553028 

 

Table 7: Performance results for 𝑁𝑠 = 1000 

Service JSON schema 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.071040 0.071846 0.074694 0.080554 0.085402 0.076707 

100 0.967715 0.987158 0.975828 1.000964 0.966392 0.979610 

1000 9.802965 9.841989 9.596794 9.873627 10.013564 9.825787 

Service OWL ontology 

𝑵𝒄 𝒄𝒓𝒕𝟏 𝒄𝒓𝒕𝟐 𝒄𝒓𝒕𝟑 𝒄𝒓𝒕𝟒 𝒄𝒓𝒕𝟓 𝒂𝒄𝒓𝒕 

10 0.088310 0.103115 0.091013 0.088604 0.126367 0.099481 

100 1.215834 1.185732 1.123688 1.260968 1.213071 1.199858 

1000 11.892021 10.431661 11.378388 11.466034 11.348439 11.303308 

 



Finally, the results of the implementation of the size KPI are presented in Table 8. As shown in the table, 

the Service OWL ontology results in instances that require much more space for storage than the instances 

of the Service JSON schema. 

Table 8: Size results 

𝑵𝒔 Service JSON schema Service OWL ontology 

30 21 KB 104 KB 

100 70 KB 267.8 KB 

1000 707 KB 2000 KB 

 

6. Conclusions 

In this paper, we provided a definition for the concept of the transportation service in a MaaS ecosystem, 

and we proposed two different approaches for the implementation of this definition, namely the custom-

design approach and the ontology-based approach. Then, we defined a set of KPIs in order to 

quantitatively compare the two proposed approaches. We run several experiments based on these KPIs 

and we acquired preliminary results. Based on these results, we identified that the proposed Service JSON 

schema (i.e., the software component that handles it) presents less code complexity, higher 

maintainability, it requires less time to program, and its instances require less space to be stored 

compared to the Service OWL ontology. In the terms of code explainability and performance, the two 

approaches yield similar behavior. We want to stress out here that these results are not enough to be 

able to draw a safe conclusion about which approach is most appropriate for the implementation of the 

proposed service data model. For this reason, our future work includes the extension of the comparisons 

on other KPIs such as extensibility, ability to create hierarchies of services, and transferability from one 

MaaS platform to another, in order to be able to safely (i.e., based on concrete quantitative results) 

propose one of the two approaches for the implementation of the defined transportation service data 

model in a generic MaaS ecosystem. 



Abbreviations 

MaaS: Mobility as a Service; KPI: Key Performance Indicator, API: Application Programming Interface, SMAll: Smart Mobility For 

All, DoS: Denial of Service, URL: Uniform Resource Locator, RWS: RESTful Web Services, JSON: JavaScript Object Notation, XML:  

Extensible Markup Language, XSD: XML Schema Definition, ECMA: European Computer Manufacturers Association, ISO: 

International Organization for Standardization, OWL: Web Ontology Language, W3C: World Wide Web Consortium, RDF: 

Resource Description Framework, CC: Cyclomatic Complexity, LOC: Lines of Code, LLOC: Logical Lines of Code, SLOC: Source Lines 

of Code, MI: Maintainability Index, TD: Technical Debt 

Acknowledgements 

This work was supported by the European Union’s Research and Innovation Collaborative Project “MyCorridor: Mobility as a 

Service in a multimodal European cross-border corridor” under Grant Agreement No. 723384. 

References 

Aapaoja, A., Eckhardt, J., & Nykänen, L. (2017). Business models for MaaS. 1st International Conference 

on Mobility as a Service. 

Amazon DynamoDB. (2019). Retrieved October 10, 2019, from https://aws.amazon.com/dynamodb/ 

Apache CouchDB. (2019). Retrieved October 10, 2019, from https://couchdb.apache.org/ 

Berdier, C. (2011). An ontology for urban mobility. In Advanced Information and Knowledge Processing. 

https://doi.org/10.1007/978-0-85729-724-2_14 

BSON. (2019). Retrieved October 17, 2019, from http://bsonspec.org/ 

Callegati, F., Delnevo, G., Melis, A., Mirri, S., Prandini, M., & Salomoni, P. (2017). I want to ride my 

bicycle: A microservice-based use case for a MaaS architecture. IEEE Symposium on Computers and 

Communications. https://doi.org/10.1109/ISCC.2017.8024498 

Callegati, F., Giallorenzo, S., Melis, A., & Prandini, M. (2018). Cloud-of-Things meets Mobility-as-a-

Service: An insider threat perspective. Computers and Security, 74, 277–295. 

https://doi.org/10.1016/j.cose.2017.10.006 

Car2Go. (2019). Retrieved September 24, 2019, from https://www.car2go.com/US/en/ 



Cerberus. (2019). Retrieved October 18, 2019, from https://docs.python-cerberus.org/en/stable/ 

Corsar, D., Markovic, M., Edwards, P., & Nelson, J. D. (2015). The transport disruption ontology. Lecture 

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-25010-6_22 

DB-Engines Ranking. (2019). Retrieved October 12, 2019, from https://db-engines.com/en/ranking 

Ebrahimi, S., Sharmeen, F., & Meurs, H. (2017). Innovative Business Architectures ( BAs ) for Mobility as 

a Service (MaaS ) – exploration, assessment, and categorization using operational MaaS cases. 

Transportation Research Board 97th Annual Meeting. 

Eckhardt, J., Aapaoja, A., Nykänen, L., & Sochor, J. (2017). Mobility as a Service business and operator 

models. 12th ITS European Congress. Strasbourg. 

Flask. (2019). Retrieved October 18, 2019, from https://palletsprojects.com/p/flask/ 

Gkemou, M. (2018). MyCorridor Use Cases, Deliverable 1.1 MyCorridor (Mobility as a Service in a 

multimodal European cross-border Corridor) project (G.A.: 723384), http://mycorridor.eu/. 

Goulding, R., & Kamargianni, M. (2018). The Mobility as a Service Maturity Index: Preparing the Cities for 

the Mobility as a Service Era. https://doi.org/10.5281/ZENODO.1485002 

Group, W. O. W. (2012). OWL 2 Web Ontology Language Document Overview (Second Edition). 

Retrieved from https://www.w3.org/TR/owl2-overview/ 

Gunay, A., Akcay, O., & Altan, M. O. (2014). Building a semantic based public transportation geoportal 

compliant with the INSPIRE transport network data theme. Earth Science Informatics. 

https://doi.org/10.1007/s12145-013-0129-z 

Halstead, M. H. (1977). Elements of Software Science (Operating and Programming Systems Series). New 



York, NY, USA: Elsevier Science Inc. 

Hensher, D. A. (2017). Future bus transport contracts under a mobility as a service (MaaS) regime in the 

digital age: Are they likely to change? Transportation Research Part A: Policy and Practice, 98, 86–

96. https://doi.org/10.1016/j.tra.2017.02.006 

Ho, C. Q., Hensher, D. A., Mulley, C., & Wong, Y. Z. (2018). Potential uptake and willingness-to-pay for 

Mobility as a Service (MaaS): A stated choice study. Transportation Research Part A: Policy and 

Practice, 117, 302–318. https://doi.org/10.1016/j.tra.2018.08.025 

ISO/IEC 21778:2017. (2017). Retrieved October 15, 2019, from 

https://www.iso.org/standard/71616.html 

Jittrapirom, P., Caiati, V., Feneri, A.-M., Ebrahimigharehbaghi, S., González, M. J. A., & Narayan, J. (2017). 

Mobility as a Service: A Critical Review of Definitions, Assessments of Schemes, and Key 

Challenges. Urban Planning. https://doi.org/10.17645/up.v2i2.931 

Kamargianni, M, & Matyas, M. (2017). The Business Ecosystem of Mobility-as-a-Service. 96th 

Transportation Research Board (TRB) Annual Meeting. Washington. 

Kamargianni, Maria, Li, W., Matyas, M., & Schäfer, A. (2016). A Critical Review of New Mobility Services 

for Urban Transport. Transportation Research Procedia. 

https://doi.org/10.1016/j.trpro.2016.05.277 

Koç, H., Lantow, B., & Sandkuhl, K. (2014). Ontology development for intelligent information logistics in 

transportation. CEUR Workshop Proceedings. 

Li, Y., & Voege, T. (2017). Mobility as a Service (MaaS): Challenges of Implementation and Policy 

Required. Journal of Transportation Technologies, 07, 95–106. 

https://doi.org/10.4236/jtts.2017.72007 



Matyas, M., & Kamargianni, M. (2018a). Survey design for exploring demand for Mobility as a Service 

plans. Transportation. 

Matyas, M., & Kamargianni, M. (2018b). The potential of mobility as a service bundles as a mobility 

management tool. Transportation. https://doi.org/10.1007/s11116-018-9913-4 

Melis, A., Mirri, S., Prandi, C., Prandini, M., Salomoni, P., & Callegati, F. (2018). Integrating Personalized 

and Accessible Itineraries in MaaS Ecosystems Through Microservices. Mobile Networks and 

Applications, 23, 167–176. https://doi.org/10.1007/s11036-017-0831-z 

MobiVoc. (2019). Retrieved October 19, 2019, from https://www.mobivoc.org/ 

MongoDB. (2019). Retrieved October 10, 2019, from https://www.mongodb.com/ 

Moovit. (2019). Retrieved September 25, 2019, from https://moovitapp.com/ 

Motivate. (2019). Retrieved September 24, 2019, from https://www.motivateco.com/ 

OASIS. (2017). Retrieved October 19, 2019, from https://oasis.team/ 

Owlready2. (2019). Retrieved October 22, 2019, from https://pypi.org/project/Owlready2/ 

Protégé. (2019). Retrieved October 20, 2019, from https://protege.stanford.edu/ 

Python Eve. (2019). Retrieved October 16, 2019, from http://docs.python-eve.org/en/stable/ 

Radon. (2019). Retrieved November 5, 2019, from https://radon.readthedocs.io/en/latest/ 

RFC 8259. (2017). Retrieved October 15, 2019, from https://tools.ietf.org/html/rfc8259 

Salamanis, A. (2019). MyCorridor cloud service delivery platform, service gateway, big data management 

module and business rules implementer module, Deliverable 3.1 MyCorridor (Mobility as a Service 

in a multimodal European cross-border Corridor) project (G.A.: 723384), http:/. 



Sarasini, S., Sochor, J., & Arby, H. (2017). What characterises a sustainable MaaS business model? 1st 

International Conference on Mobility as a Service (ICOMaaS). 

SkedGo. (2019). Retrieved September 25, 2019, from https://skedgo.com/ 

Smith, G., Sochor, J., & Karlsson, M. (2018). Mobility as a Service: Development scenarios and 

implications for public transport. Research in Transportation Economics, 69, 592–599. 

https://doi.org/10.1016/j.retrec.2018.04.001 

Sobral, T., Galvão, T., & Borges, J. (2017). Semantic integration of urban mobility data for supporting 

visualization. Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2017.05.106 

SonarQube. (2019). Retrieved October 10, 2019, from https://www.sonarqube.org/ 

Swagger. (2019). Retrieved October 15, 2019, from https://swagger.io/ 

Thai, J., Yuan, C., & Bayen, A. M. (2018). Resiliency of Mobility-as-a-Service Systems to Denial-of-Service 

Attacks. IEEE Transactions on Control of Network Systems, 5, 370–382. 

https://doi.org/10.1109/TCNS.2016.2612828 

Ubigo. (2019). Retrieved September 25, 2019, from https://www.ubigo.me/ 

Whim. (2019). Retrieved September 25, 2019, from https://whimapp.com/ 

 


