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Abstract—Although numerous research attempts can be found
in the related literature focusing on the ability of software-
related factors (e.g. software metrics) to indicate the existence
of vulnerabilities in software applications, none of them have
demonstrated perfect results. In addition, none of the existing
studies have focused on the popularity of software products,
which is an important characteristic of open-source software
applications and libraries. To this end, in this paper, the ability
of popularity (i.e. utilization) to indicate the existence of vulner-
abilities and, in turn, to highlight the internal security level of
software products is investigated. For this purpose, a relatively
large software repository based on well-known libraries retrieved
from the Maven Repository was constructed and its security was
analyzed using a widely-used open-source static code analyzer.
Correlation analysis was employed in order to examine whether
a statistically significant correlation exists between the security
and popularity of the selected software products. The preliminary
results of the analysis suggest that popularity may not constitute
a reliable indicator of the security level of software products. To
the best of our knowledge, this is the first study that examines
the relationship between the popularity of software products and
their security level.
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I. INTRODUCTION

Software security is a matter of major concern for software

development companies that wish to provide highly secure

services to their clients. The term secure software is commonly

used to describe software products that encompass as few

vulnerabilities as possible [1]. Most of the vulnerabilities are

introduced into software products due to insecure choices

made by their developers during the implementation phase

[2], [3]. Hence, appropriate mechanisms are required to assist

developers in avoiding the introduction of security issues,

as well as in mitigating vulnerabilities early enough in the

software development cycle.

Vulnerability prediction is considered an effective mecha-

nism for facilitating the production of more secure software

products [4]. In fact, vulnerability prediction is a relatively new

area of research, which focuses on predicting the existence

of vulnerabilities in software products (e.g. [5], [6]), or in

individual software modules (e.g. [7]–[11]). This information

can be leveraged by developers and project managers to aid

decision making regarding the product implementation. For

instance, it can be used for selecting between software artifacts

(products or modules) that provide the same functionality, or

for prioritizing testing and inspection efforts by allocating lim-

ited test resources to high-risk areas (i.e. potentially vulnerable

parts) of the overall software product. The research in the

field of vulnerability prediction focuses chiefly on examining

the ability of specific software-related factors (e.g. software

metrics) to indicate the existence of vulnerabilities in software,

as well as on building vulnerability prediction models (e.g.

[5]–[11]), based on these factors.

An important factor of software products (especially of

open-source software applications and libraries) is their popu-

larity (i.e. utilization). There is a common truism in software

engineering community stating that the more popular a soft-

ware product is, the more bug-free it is expected to be. This

belief is based on the fact that, since popular applications

are used by a multitude of users, they are expected to be

more well-developed and extensively tested [2], [3]. In fact,

popularity is commonly used in practice, for facilitating the

selection among third-party components that provide similar

functionalities [2], [12], [13].

However, although this belief seems to be intuitive and

has been evaluated by several empirical studies (e.g. [14]),

it is not clear if it also holds for the case of software

security. In other words, no empirical evidence exists in the

related literature supporting the belief that popular software

applications are also highly secure (i.e. vulnerability free).

On the contrary, numerous examples of well-known software

applications containing severe vulnerabilities exist (e.g. [15],

[16]), which render the empirical evaluation of this conviction

a topic of high interest.

Although several studies have extensively examined the

ability of common software metrics and other factors to

indicate the existence of vulnerabilities in software products

[5]–[11] (and, thus, their internal security level), no attempts

can be found specifically investigating the relationship

between the popularity of software applications and their

security. To this end, the present research aims to provide an

answer to the following research question:

RQ: Is the popularity of software products a reliable
indicator of their security level?

For this purpose, a relatively large software repository (com-

prising approximately 2 million lines of code) was constructed

based on well-known Java libraries retrieved from the Maven

Repository1 and analyzed using a popular static code analyzer

to determine their security level. Subsequently, statistical anal-

1https://mvnrepository.com/
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ysis was employed to investigate whether statistically signif-

icant positive correlation exists between their popularity and

their security level. To the best of our knowledge, the present

work, constitutes the first study that specifically investigates

the relationship between the popularity of software products

and their security level (i.e. existence of vulnerabilities), while

it uses a significantly larger repository compared to similar

attempts in the field of vulnerability prediction [5]–[11]. The

related work, experiment setup, results, and conclusions are

presented in the rest of the paper.

II. RELATED WORK

A. Existence of Vulnerabilities in Popular Software Products

As already mentioned, popular software applications are

usually expected to be more well-developed, and therefore

considerably free from important bugs, including security vul-

nerabilities [2], [3]. However, as can be seen by the National

Vulnerability Database (NVD)2, a large number of its entries

correspond to severe vulnerabilities that belong to popular

software applications. Additionally, as discussed in the rest of

this section, several real-world examples and empirical studies

have highlighted the existence of important security issues

even in well-known software products.

HeartBleed [15] and Equifax Breach [16], constitute two of

the most representative real-world examples of security issues

caused by vulnerabilities located in well-known software prod-

ucts. In particular, HeartBleed [15], is a serious vulnerability

found in OpenSSL, which is an open-source library that

allows secure communication between two peers based on

the well-known SSL/TLS protocol. This vulnerability, which

was caused by improper input validation, led to information

leakage, allowing malicious individuals to retrieve sensitive

information. Similarly, Equifax Breach [16], allowed criminals

to expose the data of more than 145 million Equifax customers,

and was caused by a vulnerability located in Apache Struts 2,

a popular framework for building large-scale web applications.

In particular, this vulnerability allowed adversaries to perform

remote code execution attack to Apache Servers and steal

confidential information. Both Heartbleed and Equifax Breach

are registered in the Common Vulnerabilities and Exposure3

(CVE) database as CVE-2014-0160 and CVE-2017-5638 re-

spectively.

Several empirical studies have highlighted the existence of

important vulnerabilities in popular reusable software artifacts,

and especially in software libraries. For instance, in [17]

Lisvits et al., by evaluating their custom context-sensitive

static code analyzer on 9 open-source software applications,

identified 29 unreported vulnerabilities, two of which were

found in widely-used Java libraries. In addition, an extensive

analysis of the Java libraries located at Maven Repository

[18] revealed that malicious code issues are highly prevalent

in these software artifacts, whereas important security issues,

such as lack of input sanitization/validation are also common.

2https://nvd.nist.gov/
3http://cve.mitre.org/cve/

The existence of security issues in well-known reusable third-

party components is important, since their vulnerabilities are

actually vulnerabilities of the products using them [13], [19].

Although several studies have extensively investigated the

potential existence of vulnerabilities in popular software ap-

plications, none of them examined the relationship between

their popularity and the volume of their security issues. To
this end, the present study attempts to determine whether the
popularity of software applications is closely related to their
security level (i.e. vulnerability density).

B. Vulnerability Prediction

Several research endeavors have been conducted focusing

on the ability of common software metrics to indicate the

existence of vulnerabilities in software products, in an attempt

to provide a mechanism able to highlight the internal security

of software products [6]–[11]. However, existing attempts are

hindered by a set of shortcomings that the present study tries to

tackle. Firstly, the majority of existing research works focused

chiefly on coupling, cohesion and complexity (CCC) metrics

[7]–[9], as well as on metrics related to the developers’ activity

and code churn [10]. Nevertheless, since none of the previous

attempts led to perfect results, there is a strong need for

incorporating factors that have not been examined before [7],

[20]. Towards this end, our work extends previous studies by
including the popularity (i.e. utilizability) of software libraries,
which is a previously uninvestigated factor.

Another issue is the relatively small size of the repositories

that were used for the conduction of the previous studies. In

fact, the vast majority of the previous empirical studies (e.g.

[6]–[11]) were based on a highly limited number of software

products (often one or two software products), with the only

exception of [11], in which 14 open-source web applications

were used for the needs of the analysis. Our study is based on

a repository of 20 open-source software libraries, comprising

approximately 2 million lines of code. Hence, the present
analysis constitutes one of the largest studies in terms of code
base size that can be found in the related literature.

The relationship between the popularity and quality of

software components has extensively been studied in the

related literature. In [21] the popularity of a wide range of

software libraries retrieved from the Maven Repository (i.e.

their utilization by open-source Sourcerer [22] applications)

was compared to their quality (i.e. defect density). However,

only negligible positive correlations were observed between

the two factors, indicating that popular software libraries are

not necessarily of better quality. Similarly, in a recent study

[23], a highly sophisticated hierarchical software quality model

was employed to assess the quality of a set of Java libraries

retrieved from the Maven Repository. A comparison between

their quality score and their reputation (i.e. total number of

downloads) revealed that no statistically significant positive

correlation exists between their quality and popularity. Finally,

in [14], an analysis conducted on a large number of Android

applications using static code analysis revealed that a strong

relationship exists between specific bug categories and the
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user-defined ratings of the applications, which are sufficient

indicators of their reputation. Hence, although significant con-

tributions have been made regarding the relationship between

the popularity and quality of software products, no similar

attempts exist focusing on software security. To the best of
our knowledge, this is the first study that investigates the re-
lationship between the popularity and the security of software
products. This constitutes the main novelty of the present study
compared to the aforementioned research attempts.

III. EXPERIMENT SETUP AND METHODOLOGY

A. Benchmark Repository

The first step of the experiment was the construction of the

appropriate repository of software products. For this purpose,

the top 20 Java libraries (that could be analyzed by the selected

tools) were retrieved from the Maven Repository, which is the

largest online source of Java libraries, leading to a repository

of approximately 2 million lines of code. These libraries are

widely used by millions of developers around the world,

and therefore they constitute sufficient representatives of real-

world software products. In fact, the reasoning behind the

selection of the Maven Repository was that it has been widely

used in the related literature for similar research purposes (e.g.

[18], [21], [23]).

It should be noted that the purpose of the present study is to

investigate whether the popularity (i.e. utilization) of software

products in general, can be used as an indicator of their internal

security. Software libraries were selected as the basis of the

present analysis, since they constitute representative examples

of popular applications, in which popularity is used as a

criterion for their selection [2], [12], [13]. Therefore, software

libraries were used only as a proof-of-concept, and, thus, no

library-specific conclusions are expected to be reached by the

present study.

Modern software development is based on the reusability

of third-party components (i.e. software libraries and reusable

source code fragments), while their popularity is often used as

a criterion for selecting between components that provide sim-

ilar functionality. This reusability-based engineering approach

is commonly adopted for the development of software appli-

cations, regardless of their type or their adopted programing

language. Hence, the results of the analysis are expected to be

independent of the benchmark context, and, thus, generalizable

to different types of software applications. In other words,

although the present analysis is based on software libraries, its

results are expected to be of high interest for software applica-

tions in general. Finally, similar observations are expected to

be made, if different types of software products (e.g. reusable

open-source software artifacts) were used for the construction

of the benchmark upon which the present analysis is based.

B. Indicators of Software Security and Popularity

The next step of the experiment was the selection of

appropriate indicators for software security and popularity. As

an indicator of popularity, the total number of the downloads

of each library as reported by the Maven Repository was used.

Hence, the popularity of software products corresponds to their

utilization, an approach commonly used in the related literature

for quantifying product popularity (e.g. [18], [21], [23]).

As an indicator of software security, the Static Analysis

Vulnerability Density (SAVD) [11] was selected. The SAVD

is the Vulnerability Density metric [24] (i.e. the total number

of vulnerabilities that a software product contains per thousand

lines of code) calculated based on the security-related results

produced by static analysis. The Vulnerability Density is a

widely-accepted measurement for quantifying the internal se-

curity level of software products. Using static analysis results

to quantify the Vulnerability Density is a common approach

in the related literature. For instance, in [11] and [6] the

authors used the SAVD of software products as an indicator

of their security and calculated the correlation between a set

of product-level software metrics in an attempt to investigate

their ability to indicate the existence of vulnerabilities. In

[25], the authors constructed a dataset of software products

and measured their security status using the SAVD, which

was quantified through a commercial static code analyzer.

They subsequently used this dataset to produce vulnerability

predictors based on text mining. Finally, in a recent attempt

[26], a subset of this dataset was used in order to investigate

the ability of text mining-based Deep Neural Networks to

indicate the existence of vulnerabilities in software products.

Static analysis is a testing technique that searches for

potential software bugs (including vulnerabilities) in software

products by analyzing their source code without requiring

its execution [1]. Automatic static analysis (ASA) is consid-

ered an important technique for adding security during the

software development process. This belief is expressed by

several experts in the field of software security (e.g. [27],

[28]), while almost all the well-established secure software

development lifecycles (SDLCs), including the well-known

Microsoft’s SDL [29], [30], OWASP’s OpenSAAM4, and Cig-

ital’s Touchpoints [1], propose the adoption of static analysis

as the main mechanism for adding security during the coding

(i.e. implementation phase) of the SDLC. In addition, ASA is

a security activity commonly adopted by major technological

firms like Google, Microsoft, Adobe and Intel, as reported by

the BSIMM5 initiative. In fact, ASA has been found effective

in detecting security bugs that can lead to severe vulnerabilities

like cross-site scripting and SQL Injection, early enough in the

SDLC [27], [28]. These vulnerability types are included in

the lists of the top most dangerous vulnerabilities maintained

by OWASP6 and CWE. Although the major drawback of

ASA is the generation of a large number of false positives,

the security-related static analysis results have been found

effective in indicating the existence of actual vulnerabilities

(e.g. [31], [32]). All the information presented above justifies

the quantification of the Vulnerability Density metric using

static analysis results.

4http://www.opensamm.org/
5https://www.bsimm.com/
6https://www.owasp.org/index.php/Main Page
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In the present work, we decided to quantify SAVD using

the security-related bug patterns provided by FindBugs [33],

which is an open-source static code analyzer, widely utilized

in the related literature for security auditing purposes. In fact,

FindBugs has extensively been used both in academia (e.g.

[34]) and in the industry (e.g. Google [35]), for detecting

software bugs and security issues, as well as for quantifying

both the defect and the vulnerability density of software

products. For the purposes of the present study, the tool

was properly configured in order to detect and report only

software bugs that belong to the security-related bug categories

provided by FindBugs, which are: Performance, Malicious

Code, Multithreaded Correctness, and Security. The latter bug

category is provided by FindSecurityBugs7, which is a popular

FindBugs plugin.

C. Statistical Analysis

Finally, two individual rankings of the selected libraries

were exported, one based on their popularity and another based

on their security (i.e. SAVD). The two rankings were compared

using the Spearman’s rank correlation coefficient (ρ) [36],

which is a non-parametric and non-sensitive to outliers test,

commonly used in the related literature for comparing different

rankings (e.g. [7], [11], [20], [23]). The thresholds proposed

by Cohen et al. [37] were used in order to characterize the

strength of the calculated correlation. According to Cohen

et al. [37], a correlation value higher than 0.5 is considered

strong, between 0.3 and 0.5 is considered moderate, and below

0.3 is considered low. The statistical significance of the results

was tested at 95% level of confidence.

IV. RESULTS AND DISCUSSION

The selected software libraries along with their final

rankings are presented in Table I. As stated previously,

the Spearman’s rank correlation coefficient between the

two rankings was initially calculated, to get an idea of

the relationship between their popularity and security.

Subsequently, in order to reach safer conclusions regarding

the RQ of the present study, the following hypothesis (and

its corresponding null hypothesis) was formulated and tested

with confidence level 95% (p = 0.05):

H1: A statistically significant correlation exists between
the two rankings.

H0: No statistically significant correlation exists between
the two rankings.

For the popularity of the libraries to be a reliable indicator of

their security level, the null hypothesis has to be rejected.

The calculated Spearman’s rank correlation coefficient be-

tween the two rankings was found to be ρ = −0.17. The nega-

tive correlation value indicates that more popular libraries (that

belong to the studied repository) tend to be more vulnerable

7https://find-sec-bugs.github.io/

and thus less secure. However, this relationship was found to

be weak, according to the thresholds proposed by Cohen et

al. [37]. This contradicts the belief that widely-used software
products are more likely to be secure, and, in turn, the ability
of popularity to indicate security.

Nevertheless, in order to reach safer conclusions, the null

hypothesis was tested. Due to the large p-value (i.e. p =
0.45 > 0.05), the null hypothesis cannot be rejected. Since

we cannot reject the null hypothesis, we cannot conclude that

“there is a statistically significant correlation between the two

rankings”. Hence, the present study does not provide empirical

evidence supporting the belief that the popularity of software

products is an indicator of their security. Therefore, popularity
may not be used as a reliable indicator of software security.

It should be noted that failing to reject the null hypothesis

does not necessarily mean that we should accept it. However,

in this case, similarly to other related research attempts (e.g.

[7]–[9]), failing to reject the null hypothesis puts under ques-

tion the reliability of the studied factor (here the popularity

of software products) in indicating software security (i.e.

vulnerabilities).

V. CONCLUSION

The purpose of the present study was to investigate whether

the popularity (i.e. utilization) of software products, can also

indicate the existence of vulnerabilities, and therefore highlight

their internal security level. For this purpose, a relatively large

repository of software products was constructed (comprising

approximately 2 million lines of code), based on software

libraries retrieved from the Maven Central Repository. The

total number of their downloads was used as a measure of their

popularity, while their Static Analysis Vulnerability Density

(SAVD) [11], calculated based on the security-related static

analysis results produced by FindBugs [33], as a measure of

their security level. Two individual rankings were produced,

one based on the popularity of the studied libraries and another

one based on their security level, and were compared using

the Spearman’s rank correlation coefficient [36]. Hypothesis

testing was also applied in order to reach safer conclusions.

The preliminary results of the analysis suggest that the pop-

ularity of software products may not be used as a reliable
indicator of their security. To the best of our knowledge, the

present work constitutes the first study that investigates the

relationship between the popularity of software products and

their security level.

Although the present study contributes to the validation

of the non-reliability of popularity in indicating software

security, in order to reach safer conclusions and investigate

the generalizability of the results, further work is required.

More specifically, similarly to relevant studies [10], [38], the

analysis should be replicated by also considering additional

types of software products (along with software libraries).

This is expected to enhance the reliability of the produced

results, since more application types (for which popularity

is an important characteristic) will be examined. Moreover,

the results of the present study led to the identification of
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TABLE I: THE RANKINGS OF THE SELECTED SOFTWARE LIBRARIES BASED ON THEIR POPULARITY AND SECURITY (I.E. SAVD).

Software Product Version SAVD Popularity
Ranking

Security
Ranking

JUnit 4.12 0.963507 1 7
SLF4j 1.7.25 14.77713 2 20
Clojure 1.9.0 0.097005 3 1
Logback Classic 1.2.3 1.976059 4 13
Javax Servlet 4.0.0 5.798502 5 19
Jackson Databind 2.9.3 0.347916 6 2
Commons Logging 1.2 3.644431 7 16
Apache HttpClient 4.5.4 3.854823 8 17
Commons Codec 1.11 0.753417 9 5
Osgi Core 6.0.0 1.855288 10 12
Jackson Core 2.9.3 0.795044 11 6
Hamcrest 1.3 1.023734 12 9
Log4j Core 2.10 2.127574 13 14
Google Guice 4.1.0 1.087039 14 10
Maven Project 3.0 2.544228 15 15
Maven Core 3.5.2 1.506344 16 11
Apache Http Core 4.4.8 0.548506 17 3
Commons Http Client 3.1 3.897551 18 18
Hyper SQL 2.4.0 0.613571 19 4
Javax Mail 1.5.0.b01 1.020057 20 8

an interesting direction for future research, i.e., on whether

it is reasonable to use popularity as a criterion for selecting

between software libraries that provide similar functionality.

Although the present analysis was based on software libraries,

no library-specific conclusions can be reached, since this

would require more elaborate and finer-grained experiments.

For example, this would require the re-execution of the same

analysis for different repositories, each one of them containing

libraries of the same functionality. Hence, the present work

raises the awareness of the aforementioned issue, which is

part of our planned future research activities.
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