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Abstract. Past research has now provided compelling evidence pointing towards 

correlations among individual eating styles and the development of (un)healthy eating 

patterns, obesity and other medical conditions. In this setting, an automatic, non-

invasive food bite detection system can be a really useful tool in the hands of nutri-

tionists, dietary experts and medical doctors in order to explore real-life eating behav-

iors and dietary habits. Unfortunately, the automatic detection of food bites can be 

challenging due to occlusions between hands and mouth, use of different kitchen 

utensils and personalized eating habits. On the other hand, although accurate, manual 

bite detection is time-consuming for the annotator, making it infeasible for large scale 

experimental deployments or real-life settings. To this regard, we propose a novel 

deep learning methodology that relies solely on human body and face motion data 

extracted from videos depicting people eating meals. The purpose is to develop a 

system that can accurately, robustly and automatically identify food bite instances, 

with the long-term goal to complement or even replace manual bite-annotation proto-

cols currently in use. The experimental results on a large dataset reveal the superb 

classification performance of the proposed methodology on the task of bite detection 

and paves the way for additional research on automatic bite detection systems. 
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1 Introduction 

Food intake is the aggregate of a complex array of eating behaviors, such as bites, 

chews and inter-bite pauses [1]. In this work, we are primarily concerned with the 

identification of bite instances that occur when a person opens his mouth for food 

intake. Studies have shown that increased food intake rate is directly linked to obesity 

both in children and adults [2][3]. Thus, bite detection mechanisms that allow food 

bite quantification and meal analysis can be invaluable for nutritionists, dietary ex-

perts and food scientists in order to evaluate individuals and help them avoid health 

problems related to obesity [4]. 

Currently, the detection of bite instances is usually performed by human experts, 

who have to watch hours of videos in order to successfully annotate eating behaviors 

[1][5]. Although the annotation of human experts can be really accurate, the annota-

tion procedure is time-consuming and prone to introduce errors due to the repetitive 
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nature of the task. Thus, the need for the automation of the procedure has often been 

emphasized by experts in the field [1][6] in order to overcome these problems and 

speed up the bite detection procedure. In the past several methodologies have been 

proposed to achieve that, with their majority being based on weight, inertial, motion 

and visual sensors that facilitate the recognition of bite instances [7]. 

However, existing methodologies face various challenges that limit their use and 

potential for large scale evaluation deployments or real life settings. More specifical-

ly, the mediocre accuracy of existing weight scales can significantly affect bite detec-

tion results. Furthermore, a person can eat with both hands either simultaneously or 

interchangeably and therefore, wearable sensors should be placed on both hands or 

else they fail to detect all bite instances. Additionally, sensors without visual feedback 

are prone to errors as instances of wiping mouth with handkerchief or raising hand to 

scratch head can be erroneously recognized as bites. Moreover, sensors that monitor 

jaw movements can become obtrusive, while visual sensors, such as cameras can pose 

challenges to a bite detection method due to the variety in appearance of people and 

kitchen utensils used for food intake and the occlusions of body parts. Finally, alt-

hough the combination of multiple sensors can lead to more sophisticated solutions, it 

can also reduce the usability of the proposed systems in everyday life scenarios [8]. 

To overcome the aforementioned limitations of current automatic bite detection 

methodologies, we propose a novel non-obtrusive deep learning based approach that 

is capable of achieving highly accurate bite detection results. To this end, we initially 

employ a deep network [9][10] to extract human motion features from video sequenc-

es. Subsequently, we propose a novel two-steam deep network that processes body 

and face motion data and combines the extracted information, thus taking advantage 

of both types of features simultaneously. We evaluate the proposed method on a large 

bite detection dataset and validate its bite detection performance. The main contribu-

tions of this work are summarized below: 

 This is the first video-based deep learning approach that utilizes body and face 

features for the task of automatic bite detection. 

 We propose a sophisticated deep network that extracts and combines spatiotem-

poral information from its inputs using convolutional neural networks (CNNs) and 

Long Short-Term Memory (LSTMs) units. 

 We perform optimization of the hyper-parameters of the proposed deep network 

and explore data augmentation techniques to further improve its accuracy. 

The remainder of the paper is organized as follows. Section 2 reviews work related 

to ours with respect to automatic bite detection. Section 3 presents our proposed 

methodology, while Section 4 presents the experimental results from the evaluation of 

our method. Finally, Section 5 concludes the work. 

2 Related Work 

So far, there is limited work in the literature about automatic bite detection as obsolete 

sensor technology put great challenges to automatic bite detection systems. However, 
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recent research works [2][3] revealed the strong correlation between food intake and 

obesity, thus intensifying the efforts towards the development of methods that study 

eating behaviors in order to prevent health related problems. Moreover, the develop-

ment of modern sensors and the advancements in the classification techniques has 

sparked interest towards automatic bite detection methodologies that overcome the 

tediousness of having experts manually annotate bite instances. 

In [11], the authors used a piezoelectric strain gauge sensor to detect the movement 

of the lower jaw that can characterize the eating behavior. On the other hand, in [5] 

and [12], the authors used high-precision food weight scales that can model the reduc-

tion of food from a subject’s plate, while in [13], the authors employ smart-glasses to 

detect bite instances. More recent studies employ inertial sensors, such as accelerome-

ter and gyroscope, located in wearable devices, in order to automatically extract bite 

instances [8][14]. Finally, numerous studies develop methodologies that rely on the 

combination of audio and motion sensors [15][16] or the combination of multiple 

motion and gesture sensors [17][18] in order to robustly monitor eating behavior. 

As far as classification techniques are concerned, early methods employ spectral 

segmentation and Random Forest classification [19] and Hidden Markov Models that 

are able to capture the temporal dependencies between hand gestures and bite instanc-

es [20]. Most recent bite detection systems take advantage of the success of deep 

learning on several classification tasks in order to propose more accurate and robust 

solutions. More specifically, the authors in [8] and [14], employ CNNs and recurrent 

neural networks in order to capture temporal dependencies between the outputs of 

inertial sensors and bite instances. 

Our proposed methodology attempts to overcome the challenges of current state-

of-the-art methods by proposing a video-based deep learning approach that extracts, 

processes and combines body and face motion data from video sequences. To our 

knowledge, our work comprises the first attempt to process videos and, more im-

portantly, combine or fuse information extracted from body and face motion data to 

achieve accurate and robust automatic bite detection results. 

3 Proposed Methodology 

In this section, we analyze the proposed automatic bite detection methodology. Initial-

ly, we employ OpenPose [9][10] that is able to process videos and extract body and 

face features from each video frame, along with the confidence of the algorithm on its 

predictions. Afterwards, we propose a deep network that takes as input only the most 

relevant features for the task of bite detection out of those computed in the first step. 

The proposed two-stream deep network is presented in Fig. 1 and gets as input 2 

types of features: a) upper body and b) face features. More specifically, we employ 

the nose and hand features’ x- and y-coordinates and the distances between the select-

ed numbered features, as shown in Fig. 2. For the face features, we employ only the 

x- and y-coordinates of the mouth features that we believe are the most relevant for 

the modelling of bite instances. We perform averaging between similar neighboring 

mouth features and end up with 3 features that describe the middle points of the upper 
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and lower lips and the point where the lips converge (i.e., corner of mouth). Due to 

the fact that the videos of our dataset depict people eating from a side view, we select 

only the mouth corner with the highest confidence (A or C in Fig. 2). Furthermore, we 

also compute the distances between the 3 mouth features that are shown either as the 

triangle ABD or BCD in Fig. 2, based on the selected mouth corner. These mouth 

features are adequate in describing the basic movements of mouth during eating. 

 

Fig. 1. Proposed deep network for automatic bite detection. 

The proposed deep network processes the input features and extracts new discrimi-

native ones that can better model the underlying spatiotemporal information. More 

specifically, the first two blocks of the proposed deep network employ stacked convo-

lutional layers to compute spatial features (i.e., interactions between neighboring fea-

tures both in time and space). The max-pooling layer between blocks 1 and 2 is re-

sponsible for down-sampling the feature space and improve the robustness of the 

network. Furthermore, the upper parts of blocks 1 and 2 are shortcut connections that 

tackle the vanishing gradient problem and improve the convergence of the network. 

The third block of the network employs a series of LSTM units that extract temporal 

features from the entire sequence of input features. A fusion of the two-streams of 

spatiotemporal features is performed in the end using a fully connected layer that 

combines the information from the hands, head and mouth and computes the probabil-

ity of an input video sequence to describe a bite instance. 

 

Fig. 2. Upper body (left) and mouth (right and down) human motion features that are used as 

input to the proposed deep network. 
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4 Experimental Evaluation 

In this section, we evaluate our proposed network in the task of bite detection. Initial-

ly, we describe the dataset used for the evaluation of the proposed automatic bite de-

tection method and then we present the preprocessing of features before their intro-

duction to the proposed deep network. Moreover, we present the experiments for the 

optimization of the hyper-parameters of the proposed network, prior to the evaluation 

of our bite detector in the task of continuous bite detection. 

4.1 Dataset 

The evaluation dataset consists of 85 videos that depict people eating from a side 

view and it is part of the one used in [5]. It is a challenging dataset as there are occlu-

sions of hands and mouth and features a variety of eating patterns and different sub-

jects, types of meals (i.e., soup, breakfast and dinner) and kitchen utensils. 

The dataset is manually annotated by human experts (i.e., nutritionists) and ground 

truth annotations of bite instances are provided. To train and validate our proposed 

network, we cropped a total of 12121 video clips with a duration of 2 seconds or 50 

frames each and formed an isolated dataset. In this dataset, there are 4149 positive 

samples (i.e., annotated bite instances) and 7972 negative samples (i.e., randomly 

cropped non-bite instances). Additionally, this dataset is randomly split in a training 

set that contains 90% of samples and is used for training the proposed deep network 

and a validation set that contains the remaining 10% of the samples and is used for the 

optimization of the hyper-parameters of the proposed network. 

4.2 Data preprocessing and augmentation 

There are 25 body and 70 face features extracted from each video frame. We select 

only the 8 most relevant body (i.e., nose, neck, left and right hands) features and the 8 

most relevant face (i.e., mouth) features as shown in Fig. 2. Furthermore, due to body 

parts’ occlusions, there are features that are not detected or have abnormal values (i.e., 

outliers) and even frames with no detected features at all. To overcome this problem 

we apply two preprocessing stages to the extracted features. The first stage fills the 

empty values with values from the previous temporal instance (i.e., frame), while the 

second stage performs spline interpolation to the temporal sequences of features in 

order to remove outliers and smooth feature values across time. Moreover, in order to 

diminish the influence of the location of people in the videos, we perform normaliza-

tion by transforming the coordinates of the selected features to a local coordinate 

system. More specifically, we assume as local origins the neck and nose for the upper 

body and mouth features respectively. 

Although the size of the isolated bite detection dataset may seem quite large, it is 

not sufficient to properly train a deep network, like the one proposed in this work. To 

overcome this problem, we propose a data augmentation technique that is based on 

the manipulation of the temporal sequences of features in a way that adds variation to 
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the input of the network and assists it in identifying the real difference between bite 

and non-bite instances and achieving higher accuracy in the task of bite detection. 

More specifically, we propose two augmentation operations to the input temporal 

sequences of features. The first operation concerns the addition of a small displace-

ment in the input, thus affecting the global location of features in the videos, while the 

second operation concerns the circular wrapping of the input by a certain small value 

in order to add variation to the temporal order of the feature values.  

4.3 Hyper-parameter optimization 

The optimization of the hyper-parameters of the proposed deep network is performed 

based on the performance of the network on the validation set. In our case, the param-

eters that are optimized are the number of CNN and LSTM layers since all the other 

parameters (i.e., number and size of kernels and filters and dropout percentages) are 

kept fixed to optimal values chosen based on our knowledge on the task and after 

initial experimentation. 

The optimization of the number of layers is performed using the following ap-

proach. We consider a maximum number of 3 stacked layers and start by introducing 

one-by-one the recurrent layers (LSTMs) of block 3 and then add convolutional layers 

for blocks 1 and 2 as long as the performance of the network is increased. Finally, we 

add the shortcut connections of blocks 1 and 2. The experiments are performed on the 

initial isolated dataset (i.e., no data augmentation) as the experiments with data aug-

mentation are performed on the optimized network. The performance of the proposed 

deep network on the validation set for different number of convolutional (Conv) and 

LSTM layers is presented in Table 1. 

Table 1. Experiments with respect to the proposed network architecture. 

Proposed network architecture Performance on 

validation set Block 1 Block 2 Block 3 

- - 1 LSTM 0.81 

- - 2 LSTMs 0.807 

- - 3 LSTMs 0.847 

1 Conv - 3 LSTMs 0.857 

2 Conv - 3 LSTMs 0.864 

3 Conv - 3 LSTMs 0.875 

3 Conv 1 Conv 3 LSTMs 0.882 

3 Conv 2 Conv 3 LSTMs 0.894 

3 Conv 3 Conv 3 LSTMs 0.922 

3 Conv + shortcut 3 Conv + shortcut 3 LSTMs 0.927 

 

From Table 1, we conclude that deeper networks with more parameters and thus 

processing capabilities and with the ability to extract both spatial and temporal infor-

mation from their inputs achieve higher performance in the task of bite detection. 
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Furthermore, the shortcut connections are beneficial to the proposed network by 

slightly improving both its robustness and its classification accuracy. 

As far as data augmentation is concerned, we test both data augmentation opera-

tions (i.e., displacement and circular wrapping). For the displacement operation, we 

compute a random displacement in the range [0, 0.1] for both x and y coordinates and 

add it to all features across time, thus not affecting their relative position. On the other 

hand, for the circular wrapping operation, we consider either 1 value (i.e., original 

sequence of features) or 3 values, namely {–5, 0, 5}, where 0 corresponds to the orig-

inal sequence, while -5 and 5 corresponds to a circular wrapping of the temporal se-

quence by 5 positions (i.e., frames) to the left and right respectively. Table 2 presents 

the results of the experimentation with the data augmentation operations, where we 

can see that augmenting data with the displacement operation improves the perfor-

mance of the proposed network. However, there is a threshold over which further 

increase of the displacement augmentation factor leads to a drop in the performance 

of the proposed network. This can be attributed to the fact that additional samples do 

not improve the requested variation of the input and the network has already learned 

the differentiation between bites and non-bites. On the other hand, the combination of 

the displacement and circular wrapping augmentation operations leads to a significant 

increase in the performance of the proposed network in the task of bite detection. 

Table 2. Experiments with respect to the data augmentation operations. 

Data augmentation operations 
Performance on 

the validation set 
Displacement 

factor 

Circular wrapping 

factor 
Combined factor 

1 1 1 0.927 

3 1 3 0.939 

5 1 5 0.937 

3 3 9 0.947 

4.4 Results on continuous bite detection 

To evaluate the ability of the proposed methodology to identify bite instances in a 

continuous fashion, we test our deep network on the 85 continuous videos of the pro-

vided dataset [5]. To achieve this, we employ an overlapping sliding window of 60 

frames, which is slightly larger than the clips of 50 frames used for training and as we 

want smoother output probabilities from our network. Additionally, we employ a step 

of 1 frame, meaning that a bite detection probability is computed for each frame, tak-

ing also into account its neighboring frames. 

Since the output of the proposed network is a continuous signal of bite detection 

probabilities, post-processing should be applied to detect exact locations of bite in-

stances and remove false alarms. Initially a 𝑛𝑡ℎ -order median filter is applied to 

smooth signal and remove small and abrupt changes (i.e., sawtooth effect and outli-

ers). Afterwards, the mean 𝑚 and standard deviation 𝑠 of the signal are computed and 

all predictions below the threshold of 𝑚 + 𝑠 are zeroed. Then, all local maxima (i.e., 

peaks) of the signal are detected and all peaks with width below a threshold 𝑇𝑊 are 
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removed. Finally, the distance between peaks is computed and for peaks having dis-

tance smaller than a threshold 𝑇𝐷 , we preserve only the peak with the highest proba-

bility to belong to the bite instance. We set the order of the media filter 𝑛 to 40 so as 

to achieve heavy smoothing and the distance threshold 𝑇𝐷 to 50 frames as we believe 

that under normal circumstances a person cannot receive two bites in less than 2 sec-

onds time difference. Finally, after experimentation, we set the width threshold 𝑇𝑊 of 

the peaks to 22 frames, which describes the duration of a clear bite instance and cor-

responds to almost 1 second. 

Table 3 presents the overall performance of the proposed method in the task of 

continuous bite detection. We can observe that our method achieves a bite detection 

rate (i.e., recall) of 91.71% with a false alarm rate of 8.25%, which means that our 

method is a very accurate and robust bite detector. Furthermore, Fig. 3 shows a histo-

gram of the distribution of F1-scores (i.e., harmonic averages of recall and precision) 

for the tested videos. This figure shows that our proposed method achieves superb 

results on most videos, while there are only a few videos, in which our method 

achieves mediocre results. Finally, two examples of the predicted bite detection prob-

abilities that our method outputs overlaid on the ground truth are presented in Fig. 4. 

Table 3. Experimentation with continuous automatic bite detection. 

Recall Precision F1-score 

0.9171 0.9175 0.9173 

 

Fig. 3. Distribution of videos based on their F1-score. Total number of videos: 85 

5 Conclusions 

In conclusion, we present in this work a methodology for accurate bite detection re-

sults. Our method is the first one that extracts human body and face motion features 

from videos and uses them as input to a deep network. Experiments on both isolated 

and continuous datasets show the superb performance of the proposed bite detector 

and paves the way for research on additional features and other deep network archi-

tectures for the task of bite detection. 
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Fig. 4. Bite prediction results (blue signal) overlaid on ground truth (red signal) for two videos 

of the dataset.  
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