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The widespread deployment of biometric systems has raised public concern about security and privacy
of personal data. In this paper, we present a novel framework for biometric template security in multimodal
biometric authentication systems based on error correcting codes. Biometric recognition is formulated as
a channel coding problem with noisy side information at the decoder based on distributed source coding
principles. It is shown that the proposed method binds the biometric template in a cryptographic key
which does not reveal any information about the original biometric data even if it is compromised by
an attacker. Furthermore, the advantages of the proposed method in terms of security and impact on
matching accuracy are discussed. We assess the performance of the proposed method in the context of
HUMABIO, an EU Specific Targeted Research Project, where face and gait biometrics are employed in
an unobtrusive application scenario for human authentication. Experimental evaluation on a multimodal
biometric database demonstrates the validity of the proposed method.
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1. Introduction

Human identification has always been a field of primary concern in applications
such as access control in secure infrastructures. In contrast to passwords or tokens
which can be easily lost, stolen, forgotten, or shared, biometrics offer a reliable solu-
tion to the problem of identity management. Especially, the development of systems
that integrate two or more biometric traits has received increased interest during the
last years as the advantages of multimodal biometric systems become more evident.
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Most of the limitations imposed by unimodal biometric systems can be overcome by
establishing identity based on multiple sources of information [15].

With the widespread deployment of biometric systems in various applications,
there are increasing concerns about the security and privacy principles of biometric
technology. Public acceptance of biometrics technology depends on the ability of
system designers to demonstrate that these systems are robust, have low error rate,
and are tamper proof. Biometric template security is an important issue because,
unlike passwords and tokens, compromised biometric templates cannot be revoked
and reissued. Protecting biometric templates is a challenging task due to intra-user
variability in the acquired biometric traits. A template protection scheme with prov-
able security and acceptable recognition performance has thus far remained elusive.
Development of such a scheme is crucial as biometric systems are beginning to pro-
liferate into the core physical and information infrastructure of our society.

In this paper, a novel authentication scheme for biometric template security in
multimodal systems based on distributed source coding principles is proposed and
emphasis is given on the secure storage of the biometric templates. The proposed
framework is employed in one of the application scenarios of the Human Moni-
toring and Authentication using Biodynamic Indicators and Behavioural Analysis
(HUMABIO) FP6 EU project [4], namely the airport pilot scenario, based on face
and gait modalities, for non-stop and unobtrusive authentication of employees in a
controlled area. Experimental results illustrate that the increased security of biomet-
ric templates comes at virtually no cost in the performance of the HUMABIO system
compared to state-of-the-art machine learning techniques.

1.1. Problem statement

In biometric authentication systems, the user claims an identity and the measured
biometric data (probe) are compared to the corresponding template(s) of the claimed
identity (gallery), which have been previously stored in the database, during the en-
rolment stage. The biometric classifier expert compares the extracted biometric fea-
tures (biometric signature) of the probe with the gallery signature and the system
must decide whether the user is a client (genuine transaction, class ω0) or an impos-
tor (unauthorized transaction, class ω1) based on a decision rule. Thus, the problem
of person authentication is a detection problem which can be analyzed by means of
a binary hypothesis test. The first hypothesis H = ω0 accepts a certain candidate
claim for a client identity and the second hypothesis H = ω1 rejects this claim.

Unimodal biometric systems have to contend with a variety of problems such as
noisy data, intra-class variations, restricted degrees of freedom, non-universality,
spoof attacks, and unacceptable error rates. Some of these limitations can be ad-
dressed by deploying multimodal biometric systems that integrate the evidence pre-
sented by multiple sources of information. A multimodal biometric system uses mul-
tiple applications to capture different types of biometrics. This allows the integration
of two or more types of biometric recognition and verification systems in order to
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meet stringent performance requirements. A multimodal system can combine any
number of independent biometrics and overcome some of the limitations arising
when using just one biometric as the verification tool. For instance, it is estimated
that approximately 3% of the population does not have legible fingerprints, a voice
could be altered by a cold and face recognition systems are susceptible to changes
in ambient light and the pose of the subject. A multimodal system, which combines
the conclusions made by a number of unrelated biometrics indicators, can overcome
many of these restrictions. Multimodal biometrics is generally much more resistant
to fraudulent technologies, because it is more difficult to forge multiple biometric
characteristics than to forge a single biometric characteristic. Thus, HUMABIO aims
at designing authentication systems that establish human identity based on multi-
biometric evidence.

Another important issue in the design of a biometric system is robustness to fraud-
ulent attacks. As described in [23], attacks in a biometric system can be perpetrated
at the sensor, at the communication channel between the sensor or the database and
the matcher, at the matcher itself, at the database of the system, and, finally, at the
output of the system. In this paper, we focus on the protection of the templates which
are stored in the database. A malicious user can steal a template both by intercept-
ing communication through the channel between the database and the authentication
system and by breaking into the databases. Although it was believed that it is not
possible to reconstruct the original biometric templates from the extracted feature
vectors, some counter examples have been developed for faces and fingerprints [29].

In password-based systems the corresponding problem of secure password stor-
age has been investigated in depth and sophisticated encryption methods have been
developed [27]. Specifically, prior to storage to the physical medium (e.g., hard disk,
USB token), cryptographic codes are applied to the passwords and a hash code is
generated with an one-to-one relationship to the original password. The irreversibil-
ity of the employed cryptographic codes renders the hash codes useless to the poten-
tial attackers of the system since the original data can not be recovered. It must be
noted that irreversibility only holds up to the assumptions of the underlying scheme.

However, the representation of biometric traits is not fixed over time (intra-
variability) due to changes in the biometric pattern, the environmental conditions,
and the sensor. Thus, the existing cryptographic solutions used in password-based
applications to enhance security can not be applied. This is due to the fact that the
existing cryptographic solutions require the exact match of the prompted and the
original signatures to grant access. While it is possible to decrypt the template and
perform matching between the query and decrypted template, such an approach is
not secure because it leaves the template exposed during every authentication trans-
action. Moreover, an adversary could compromise the decrypted template if he has
access to the encryption algorithm. Thus, novel encryption methods need to be devel-
oped to take into account the noise introduced in the representation of the biometric
traits and account for their inherent variability [14,30].
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A biometric authentication scheme for secure biometric storage was proposed by
the authors in [2]. A novel gait authentication scheme from gait sequences based
on the extraction of a set of discriminative features was presented. Error correcting
codes were employed to transform the stored templates and ensure biometric tem-
plate privacy. Thus, a compromised biometric template reveals no information about
the original biometric data (or the extracted features) of the subjects. However, this
scheme can be employed only in unimodal systems. In this paper, we present how
this scheme can be extended to the multimodal biometric scenario and highlight how
the different modalities can interact and benefit from the other.

1.2. Related work

The biometric template protection schemes proposed in the literature can be
broadly classified into two categories: feature transformations and biometric cryp-
tosystems. In the feature transformation approach, a transformation function F is
applied to the biometric template T and only the transformed template F (T ; K) is
stored in the database, as depicted in Fig. 1. The parameters of the transformation
function are typically derived from a random key K or password. The same trans-
formation function is applied to the probe features P and the transformed query
F (P ; K) is directly matched against the transformed template F (T ; K).

Depending on the characteristics of the transformation function F , the feature
transform schemes can be further categorized as salting and non-invertible trans-
forms. In salting, F is invertible, that is, if an adversary gains access to the key and
the transformed template, the original biometric template can be recovered. Hence,
the security of the salting scheme is based on the secrecy of the key or password.
On the other hand, non-invertible transformation schemes typically apply a one-way
function on the template and it is computationally hard to invert a transformed tem-
plate even if the key is known. Again, it should be stressed that irreversibility only
holds for the assumptions of the specific scheme. The main drawback of this ap-
proach is the tradeoff between discriminability and non-invertibility of the transfor-
mation function.

Biometric cryptosystems aim at generating a cryptographic key from biometric
features. In a biometric cryptosystem, some public information about the biomet-
ric template is stored. This public information is usually referred to as helper data.

Fig. 1. Biometric template protection using feature transformation.
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Fig. 2. Biometric template protection using feature transformation.

While the helper data does not reveal any significant information about the original
biometric template, it is needed during matching to extract a cryptographic key from
the query biometric features. Matching is performed indirectly by verifying the va-
lidity of the extracted key, as depicted in Fig. 2. Error correction coding techniques
are typically used to handle intra-user variations. These systems perform typically
better than feature transformation approaches [14] and the method proposed in this
paper lies in this category.

The problem of secure biometric storage using cryptosystems was originally stud-
ied in [5]. Error correcting codes were employed to tackle the perturbations in the
representation of biometric signals and classification was based on the Hamming
distance between two biometric representations. This concept was extended in [16]
where a cryptographic framework, called fuzzy vault, was developed to protect data
in error-prone environments, such as biometric authentication systems, and Reed–
Solomon (RS) codes were employed. Also, a biometric cryptosystem scheme was
presented in [6] introducing the concept of secure sketch which was later used in
[28] to develop a practical scheme for the protection of face images.

Moreover, a methodology based on channel codes and the Slepian–Wolf theorem
[26] for secure biometric storage was presented in [19]. Specifically, Low-Density
Parity Check (LDPC) codes were utilized for the development of an iris authen-
tication system and security of the biometric templates was rigorously quantified.
Additionally, a fingerprint recognition system based on statistical modelling of the
enrolled and the measured data was presented in [7].

Furthermore, LDPC codes were also used for biometric authentication in [3]. Sim-
ilarly to the fuzzy vault concept, the fuzzy commitment concept was introduced and
the biometric authentication problem was considered as a wire-tap problem. A sim-
ilar approach, but not in the context of biometric recognition, was presented in [18].
The multimedia authentication problem in the presence of noise was investigated,
the theoretical limits of the system were identified, and the tradeoff among fidelity,
robustness, and security was discussed. This approach provides intuition for the pro-
posed method in this paper; the biometric recognition problem is considered as the
analogous of data transmission over a communication channel, which determines the
efficiency of the system. Interestingly, the problem of coding distributed correlated
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sources has also attracted much interest in the field of video coding recently. In the
seminal work of [22], the Distributed Source Coding Using Syndromes (DISCUS)
scheme was proposed. Based on this work, the field of distributed video coding [11]
has emerged as a new trend in video coding.

The main scope of this paper is to provide a framework for biometric template
protection in multimodal biometric authentication systems. The proposed biometric
cryptosystem is based on distributed source coding principles and formulates bio-
metric authentication as a channel coding problem with noisy side information at
the decoder. The main idea is that perturbations in the representation of the biomet-
ric features at different times can be modelled by a (virtual) noisy channel, which
corrupts the original signal. Thus, the enrolment and authentication procedures of
a biometric system are considered as the encoding and decoding stages of a com-
munication system, respectively. This formulation enables the exploitation of the
Slepian–Wolf theorem to identify the theoretical limits of the system and minimize
the size of the templates. Moreover, casting the problem of biometric authentication
as a communication problem allows the use of well known techniques in communi-
cation systems such as the exploitation of correlation (or noise) channel statistics by
integrating them in the soft decoding process of the channel decoder.

2. Biometric authentication using distributed source coding

The Slepian–Wolf theorem addresses the problem of coding distributed (not co-
located) sources and decoding them jointly, as depicted in Fig. 3(a). If we con-
sider two random sequences X and Y that are encoded using separate conven-
tional entropy encoders and decoders, the achievable rates are RX � H(X) and
RY � H(Y ), where H(X) and H(Y ) are the entropies of X and Y , respectively.
However, if the two sequences are jointly decoded the achievable rate region accord-
ing to the Slepian–Wolf theorem is defined by [26]:

RX � H(X|Y ), RY � H(Y |X), RX + RY � H(X , Y ), (1)

(a) (b)

Fig. 3. Conventional source coding of correlated sources.
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where H(X|Y ) and H(Y |X) are the conditional entropies and H(X , Y ) is the joint
entropy of X and Y .

The Slepian–Wolf theorem can be also applied in the problem of source coding
with decoder side information (Fig. 3(b)). Specifically, if the sequence X is corre-
lated with the sequence Y , which is available only at the decoder, but not at the en-
coder, the achievable rate for sequence X is RX � H(X|Y ). Thus, even though the
encoder does not have access to the correlated sequence Y , it can compress source
X as if Y were available at the encoder. However, the Slepian–Wolf theorem does
not provide a practical implementation of the described system.

Biometric authentication can be formulated as a problem of source coding with
decoder side information if we consider the gallery and the probe signals as the
random variables X and Y respectively. This representation is reasonable since the
probe and the gallery signals are correlated and the probe is only available at the
decoder (authentication) side. Let x1 be the original representation of the biometric
trait b at the enrolment stage at time t. In general, the probe and gallery data are not
identical even in the case of client transactions due to time-related modifications in
the biometric pattern, its presentation, and the sensor which captures the raw biomet-
ric data. The noise in the biometric signal b′ can be modelled by a (virtual) additive
noise (or correlation) channel which induces noise w. Thus, at the authentication
stage, which takes place at time t′, the biometric system needs to detect whether the
input signal y = x + w belongs to a genuine or an impostor user.

This model is analogous to data communication over noisy channels and is similar
to the notion that Slepian–Wolf coding protects X for “transmission” over the (vir-
tual) noisy channel. At the decoder, Y is regarded as if it were X after transmission
over the noisy channel and corrects it using error correcting codes. Intuitively, the
noise wg induced by the channel in case of genuine transactions is small whereas the
noise wi in impostor transactions is relatively large. Thus, the channel decoder can
decode the codeword only when the induced noise is small and the error is within
the correcting capabilities of the channel code. Otherwise, if the noise of the channel
corrupts the signal the resulting codeword can not be decoded and the transaction
is rejected as unauthorized. If the selected error correcting code is suitable for error
protection on this channel, the decoder will decode X errorlessly and the transaction
is authenticated.

In this paper, we extend the Slepian–Wolf theorem to the case of four correlated
sources X1, X2, X3 and X4 to handle multimodal biometric signals. Let Ri denote
the rate for Xi, i ∈ {1, 2, 3, 4}, then from the extension of the Slepian–Wolf theorem
to multiple sources the achievable rate region is:

R(S) > H(X(S)|X(Sc)), (2)

where S ⊆ {1, 2, 3, 4}, R(S) =
∑

l∈S and X(S) = {Xl: l ∈ {1, 2, 3, 4}}.

1Throughout this paper, capital symbols will denote stochastic sequences and small symbols will denote
their respective realizations.
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Fig. 4. Architecture of the proposed authentication system based on channel codes.

Figure 4 illustrates the architecture of the proposed biometric authentication
method. At the enrolment (encoding stage), the sequences X1, X2, which repre-
sent the feature vectors of the two biometric signals, are encoded using two separate
Slepian–Wolf encoders. The biometric signatures (or templates), which are stored
in the database of the system, consist of the generated codewords S1, S2. The au-
thentication stage (decoding) consists of two steps: first, X1 is decoded using the
corresponding decoder and X3, which is the biometric signature corresponding to
X1 provided during the authentication stage. Then, the estimated version X̂1 of X1
together with X4 are the input to the second decoder to estimate X2.

A critical parameter in the design of the system is the rate of the encoders. On
one hand, a high rate generates long codewords which increases the security of the
templates but also increases the risk of rejecting a legitimate user. On the other hand,
a low rate generates small codewords which reduces the strength of the templates
and increases the risk of accepting an impostor user. Thus, the design of an effec-
tive biometric system based on channel codes involves the careful selection of the
channel code rate to achieve the optimal tradeoff between performance and security.

The minimum rate for the representation of the encoded sequences is given by
Eq. (2). Since X3 and X4 are available at the decoder, X1 and X2 can be compressed
at rates R1 and R2 lower bounded by Eq. (2). Thus, the rate R1 of the first encoder
is lower bounded by R1 � H(X1 |X2) and the rate R2 of the second encoder is
bounded by R2 � H(X2 |X1, X3, X4). Thus, we can modify the rate of the encoders
to select the tradeoff between performance and security, as it will be analyzed in the
following sections.

3. Multimodal biometric authentication framework

This section presents the integration of the proposed multimodal authentication
framework in the HUMABIO system. Initially, the application scenario is briefly
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described to highlight the unobtrusiveness of the authentication process. Next, we
describe the feature extraction process of the gait and face modalities. Finally, we
present the multimodal biometric authentication framework based on the distributed
source coding principles, as described in Section 2, and quantify the security of the
system.

3.1. Application scenario

HUMABIO is a Specific Targeted Research Project (STREP) that focuses its re-
search on emerging and novel biometrics, aiming at enhanced unobtrusiveness of
biometrics-based access control systems. Thus, HUMABIO takes into account vary-
ing factors and allows flexibility in the system operation. As an example, the face
module is designed so that it can operate efficiently even with various facial expres-
sions. However, increased unobtrusiveness has its toll on authentication accuracy.
Even the more conventional HUMABIO biometrics (such as face) present lower ac-
curacy than the corresponding algorithms in the literature since the latter results refer
to strictly controlled conditions. In order to address this issue, multiple biometrics
within HUMABIO are combined with the objective to increase the authentication ac-
curacy of the multimodal system compared to the biometrics it comprises. Based on
criteria such as unobtrusiveness level, maturity of the technology, and biometric ca-
pacity, face and gait biometrics were selected to be included in the airport application
scenario of the HUMABIO system. The aim is to limit the cooperation of the user
as much as possible, increase unobtrusiveness and user convenience and maximize
user acceptance.

Unobtrusive authentication involves automatic authentication of authorized per-
sonnel that can move freely in restricted areas. The operational setup of the system,
which is installed in a controlled area in Euroairport in Basel, Switzerland, is de-
picted in Fig. 5(a). The subject walks along a narrow corridor. When the subject
enters the corridor the (claimed) identity is transmitted wirelessly to the system via
radio frequency identification (RFID) tag. The aim of HUMABIO is to authenticate
the claimed identity by the time the subject reaches the end of the corridor. As the
subject walks through the corridor, the gait sequence is captured and the subject’s
height is estimated. Height information is used to calibrate the position of the cam-
era, as depicted in Fig. 5(b). Face recognition take place at the end of the corridor.
By the time the subject reaches the camera its position is already calibrated allowing
the unobtrusive face recognition without the need of specific procedures for the col-
lection of the biometric data as it is usually the case with current biometric solutions.

3.2. Face feature extraction

Face feature extraction is carried out in three steps: face detection, face normaliza-
tion and subspace projection. These steps are described individually in the following
sections. A diagram of the whole process carried out for face feature extraction is
given in Fig. 6.
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(a)

(b)

Fig. 5. The HUMABIO airport application scenario: (a) and (b) camera positioning based on height esti-
mation.

(1) Face detection: The first step for facial feature extraction is the accurate lo-
calization of the area in an input image containing a face. The method applied is a
component based approach using detectors similar to these proposed by Viola and
Jones [33]. The eye and mouth regions are detected individually and their geometric
constellation is verified [35] to eliminate false detections on the component level and
geometrically normalize the face. The advantage of the component-based face detec-
tion approach over a full-face detection approach is its increased robustness to small
in-plane and out-of-plane rotations of the detected face. Furthermore, faces can be
localized more accurately and geometric normalization can be performed based on
the positions of the components. An accurate localization with small variations in
translation and rotation is crucial for further feature extraction.

(2) Face normalization: The detected face is normalized geometrically and pho-
tometrically before the final feature extraction step. An overview of normalization
methods is given in [17]. Geometry normalization assures the detected faces all have
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Fig. 6. Diagram of face feature extraction.

the same size and are upright irrespective of the original rotation and size in the
image. The normalization is performed by applying a similarity transform (rotation,
translation and scaling) to the image region containing the face. Normalization of im-
age intensities corrects variations caused by imperfectly set camera parameters such
as exposure time as well as changes in global illumination. Two methods are applied
at this point to deal with these variations: first histogram equalization stretches the
grey value spectrum and second effects caused by directional light are compensated
by fitting and subtracting an illumination plane from the face image.

(3) Feature extraction: In the final stage of feature extraction the input is re-
garded as a N dimensional pixel vector containing the concatenated rows of the
normalized face image. In our case the width w and height h of the face images are
w = h = 64 – thus the dimensionality of a input face is 64 × 64 = 4096. The fea-
ture space for representing faces is then computed by performing bayesian subspace
analysis approach presented in [20]. The subspace dimensionalities are determined
using the optimization approach presented in [34]. The dimensionalities for the sub-
spaces were determined beforehand on a large training database containing faces
of different individuals exhibiting various facial variations. The linear subspace for
representing faces is computed in two steps described below.

In a first step, the dimensionality of the face vector is reduced by applying Princi-
pal Component Analysis (PCA) to the Covariance matrix C (see Eq. (3)) of all face
vectors �xi. The first 140 eigenvectors corresponding to the largest eigenvalues of the
data covariance matrix C are retained. Thus, the dimension of the face vectors are
reduced from 64 × 64 = 4096 to ∼140.

The subspace dimensionalities are determined using an optimization approach
similar to the approach presented in [22]. This optimization approach searches the
space of subspace dimensionalities for these values yielding optimal recognition per-
formance. The optimization was carried out on a separate dataset containing approx-
imately 50 different individuals to prevent fitting these parameters to the test dataset
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used in the evaluation below. The optimal values for the subspace dimensions were
found to be 140 for the PCA subpace and 100 for the IPS subspace.

C =
M∑
i=1

(�xi − �m)(�xi − �m)T. (3)

In a second step the dimensionality is further reduced by projecting onto the in-
trapersonal subspace (IPS). The IPS is the linear subspace capturing the intrapersonal
variations from all the individuals present in a large training dataset. It is created by
computing the eigenvectors of the covariance matrix Ci of face difference vectors of
the same individuals (see Eq. (4)) – formally by taking the difference vectors of all
faces with same class labels l(�xi) = l( �xj). Given a training set containing rich facial
variations the faces captured during the online phase should be represented well in
this subspace. The dimensionality reduction in the second step is ∼ 40 dimensions.
Thus, after this final step the face is represented by an ∼100 dimensional feature
vector.

For classification in the IPS an individual can be modelled as an anisotropic
Gaussian distribution. A maximum likelihood measure [20] can be employed to com-
pute the probability a face vector belongs to a specific class. This maximum likeli-
hood measure can be evaluated computing a Mahalanobis distance for the gaussian
case. Practically, as face vectors can be preprocessed by a whitening transform be-
forehand the distribution transforms to an isotropic Gaussian and distances become
simply Euclidean.

CI =
∑

l( �xi)=l( �xj )

(�xi − �xj)(�xi − �xj)T. (4)

Once the basis vectors of the IPS are determined, feature extraction is a linear
projection of the original face vector onto the IPS basis.

3.3. Gait feature extraction

The first step in human movement analysis is the extraction of the walking sub-
ject’s silhouette from the input image sequence. In the proposed framework, 2.5D
information is available since the gait sequence is captured by a stereoscopic cam-
era. Using Delaunay triangulation on the 2.5D data, a 3D triangulated hull of the
silhouette is generated and is further processed using the 3D Geodesic Transform
[12], thus generating the final normalized silhouettes S̃G(x, y) and all the transfor-
mations are applied to them.

The Generalized Radon transforms are used due to their aptitude to represent
meaningful shape characteristics [25]. In particular, the RIT transform of a func-
tion f (·, ·) is defined as the integral of f (·, ·) along a line starting from the center of



S. Argyropoulos et al. / Biometric template protection 173

(a) (b)

Fig. 7. Application of (a) the Radial Integration Transform and (b) the Circular Integration Transform on
a silhouette image.

the silhouette (x0, y0) which forms angle θ with the horizontal axis (Fig. 7(a)). In
our feature extraction method, the discrete form of the RIT transform is used, which
computes the transform in steps of Δθ and is given by:

RIT(tΔθ) =
1
J

J∑
j=1

S̃G(x0 + jΔu · cos(tΔθ), y0 + jΔu · sin(tΔθ)), (5)

where t = 1, . . . , T , Δu and Δθ are the constant step sizes of the distance u and
angle θ, J is the number of silhouette pixels that coincides with the line that has
orientation θ and are positioned between the center of the silhouette and the end of
the silhouette in that direction, and T = 360◦/Δθ.

In a similar manner, the Circular Integration Transform (CIT) is defined as the
integral of a function f (x, y) along a circle curve h(ρ) with center (x0, y0) and ra-
dius ρ. Similar to the RIT transform, the discrete form of the CIT transform is used,
as illustrated in Fig. 7(b), which is given by:

CIT(kΔρ) =
1
T

T∑
t=1

S̃G(x0 + kΔρ · cos(tΔθ), y0 + kΔρ · sin(tΔθ)), (6)

where k = 1, . . . , K, Δρ and Δθ are the constant step sizes of the radius and angle
variables, kΔρ is the radius of the smallest circle that encloses the binary silhouette
image S̃G, and T = 360◦/Δθ.

Besides the generalized Radon transforms, the use of a novel set of orthogonal
moments is also proposed based on the discrete classical weighted Krawtchouk
polynomials [36]. These moments assure minimal information redundancy due to
their orthogonality and are used to extract local shape characteristics of images.
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The weighted Krawtchouk moments Qnm of order (n + m) are estimated using
the Krawtchouk polynomials for a silhouette image with intensity function S̃G(x, y)
as follows:

Qnm =
N −1∑
x=0

M −1∑
y=0

K̄n(x; p1, N − 1) × K̄m(y; p2, M − 1) · S̃G(x, y), (7)

K̄n(x; p, N ) = Kn(x; p, N )

√
w(x; p, N )
ρ(n; p, N )

, (8)

where K̄n, K̄m are the weighted Krawtchouk polynomials, and N , M represent the
width and the height of the silhouette image respectively.

Although the study of kinesiological parameters that define human gait can form
a basis for identification, there are apparent limitations in gait capturing that make it
extremely difficult to identify and record all parameters that affect gait. Instead, gait
recognition has to rely on a video sequence taken in controlled or uncontrolled envi-
ronments. Even if the accuracy with which we are able to measure certain gait para-
meters improves, we still do not know if the knowledge of these parameters provides
adequate discrimination power to enable largescale deployment of gait recognition
technologies. Moreover, studies report both that gait changes over time and that it is
affected by clothes, footwear, walking surface, walking speed, and emotional con-
dition. As seen, all these parameters can reduce the performance of state-of-the-art
gait recognition algorithms up to a level of 15%.

4. Multimodal biometric fusion

The architecture of the multimodal biometric authentication system is depicted
in Fig. 8. At the enrolment stage, the face and gait feature vectors X1 and X2 are
initially extracted as described in the previous section. The extracted feature vectors
are encoded using a channel encoder. It must be stressed that the rate of the LDPC
encoders in Fig. 8 is different for each modality according to Eq. (2). The resulting
codewords S1 and S2 comprise the biometric templates of the modalities and are
stored to the database of the system. Thus, if the database of the biometric system
is attacked, the attacker can not access the original raw biometric data or their cor-
responding features but only S1 and S2, which can not reveal any information as it
will be explained in the following.

At the authentication stage, the face and gait feature vectors X3 and X4 are ex-
tracted. Subsequently, the syndromes S1 and S2 which correspond to the claimed
identity are retrieved from the database and are fed to the LDPC decoders. These
processes are analytically described below.

It must be noted that two unimodal protection systems based on the proposed
scheme could be used to protect the biometric templates independently. However, the
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Fig. 8. Block diagram of the proposed multimodal authentication system.

main difference of the proposed scheme with the unimodal case is that the extension
of Slepian–Wolf theorem to multiple sources (Eq. (2)) is employed which limits
the rate required to represent the templates. Otherwise, if the unimodal protection
scheme had been used for every biometric modality independently the rate required
to code each feature vector. This in turn would affect the size of the templates and
the performance of the system.

Even if liveness detection is out of the scope of the paper, the multimodal frame-
work provides tools to guarantee that even if the user is wearing a mask, in order
to fake the system, he/she should also mimic the gait modality. Thus, we are not
proposing a solution that will support liveness detection at the sensor level, how-
ever, we can support security at the signal level due to the multimodal nature of the
proposed framework.

4.1. Enrolment stage

Initially, at the enrolment stage, the biometric signatures of an individual for
gait and face modalities are obtained. The extracted features form the vector xi =
[xi

1, . . . , xi
ki

], i ∈ {1, 2}, thus xi ∈ R
ki . The feature vector xi must be transformed

from the continuous to the discrete domain so that it can be further processed by the
channel encoder. This mapping can be represented by a uniform quantizer with 2Li

levels. Each component of xi is then mapped to an index in the set Q, through the
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function u : R
ki → Qki , where Q = {0, 1, . . . , Li − 1}. Each one of the resulting

vectors qi = u(xi) is fed to the Slepian–Wolf encoder, which performs the mapping
e : Qki → Cni , where C = {0, 1} and outputs the codeword ci = e(qi), ci ∈ Cni .

In this work, the Slepian–Wolf encoder is implemented by a systematic LDPC en-
coder [10]. LDPC codes were selected due to their excellent error detecting and cor-
recting capabilities. They also provide near-capacity performance over a large range
of channels while simultaneously admitting implementable decoders. An LDPC code
(n, k) is a linear block code of codeword length n and information block length k
which is defined by a sparse (n − k) × n parity matrix H , where n − k denotes the
parity bits produced by the encoder. The code rate is defined as r = k/n. A code is
a systematic code if every codeword consists of the original k-bit information vector
followed by n − k parity-bits. In the proposed system, the joint bit-plane encod-
ing scheme of [31] was employed to avoid encoding and storing the Li bit-planes
of the vector qi separately. Alternatively, LDPC codes in a high-order Galois-field
could be employed, but binary LDPC codes (GF(2)) were selected due to ease of
implementation.

Subsequently, the ki systematic bits of the codeword ci are discarded and only
the syndrome si, that is the ni − ki parity bits of the codeword ci, is stored to the
biometric database. Thus, the biometric templates of an enrolled user consist of the
syndromes si = [cki+1 · · · cni ], si ∈ C (ni −ki), and their size is ni − ki. It must be
stressed that the rate of the two LDPC encoders is different because the statistical
properties of the two modalities are different. Thus, the security of each modality is
different, as explained in Section 4.3.

4.2. Authentication stage

At the authentication stage, a user claims an identity I , a new signature is ex-
tracted from the biometric features, and the vector xi = [xi

1, . . . , xi
ki

], i ∈ {3, 4},

xi ∈ R
ki , is constructed. The vectors x3 and x4, which form the side information

corresponding to x1 and x2 respectively, are fed to the LDPC decoder. The decoding
function d : C (ni −ki) × R

ki → Qki combines xi, i ∈ {3, 4}, with the corresponding
syndromes which are retrieved from the biometric database and correspond to the
claimed identity I . The decoder employs belief-propagation [24,37] to decode the
received codewords.

If the errors introduced in the side information with regard to the originally en-
coded signal are within the error correcting capabilities of the channel decoder then
the correct codeword is output after a number of iterations and the transaction is con-
sidered as a client transaction. More specifically, the gait feature vector x3 is initially
fed to the LDPC decoder. The output of the LDPC decoder is the quantized vector
q̂1 = d(s1, x3). In general, besides the code rate, the error correcting capabilities of
the channel decoder also depend on the information of the noisy channel and the
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relationship between the noise induced by the channel and the side information. Ac-
curate modelling of the distribution of the noisy channel can improve the knowledge
of the channel decoder by exploiting a priori information, as described in [2] for the
gait sequences.

Subsequently, the decoded codeword q1 is fed to the face LDPC decoder. Then, the
decoding function combines x4, x̂1, and s2 to decode the original codeword x2, thus
q̂2 = d(x4, s2, x̂1). The correlation between x1 and x2 can be modelled by a binary
symmetric channel (BSC) with crossover probability p which is unique for each user
and stored in the database as part of its template. To detect whether a codeword is
correctly decoded we add 16 Cyclic Redundancy Check (CRC) bits at the beginning
of the feature vector. By examining these bits the integrity of the original data is
detected. If the codeword is correctly decoded, then the transaction is considered as
genuine. Otherwise, if the decoder can not decode the codeword (which is indicated
if the number of iterations increases over a specific number Niter) a special symbol Ø
is output and the transaction is considered as an impostor transaction.

4.3. Biometric template security

Currently, most biometric systems store biometric templates in the form of raw
data, e.g., photographs of faces, raw speech signals, etc. If these templates are com-
promised by attackers they can be used to impersonate legitimate users and gain
access to facilities of the protected system. Other systems store features extracted
from the raw biometric data. Again, an attacker who access the stored data by fraud-
ulent means can reconstruct the original raw biometric data, especially if the feature
extraction algorithm is known.

In general, security refers to how difficult it is for an adversary to gain access to
the stored biometric data x of the users of the system and there are two quantities
associated with it. The first is the “strength” of the key s which is stored to the
database and refers to how difficult it is for an attacker to gain access to it. In [6], the
min-entropy was suggested as a measure of this quantity. The min-entropy H∞(A)
of a random variable A is defined as [6]:

H∞(A) = − log2

(
max

a
Pr(A = a)

)
. (9)

In the proposed scheme, a ∈ {0, 1} since the possible states of the binary random
variables are 0 and 1. Also, since min-entropy can be viewed as the worst-case en-
tropy the strength of the key is actually larger in real applications. Otherwise stated,
min-entropy provides a worst-case estimate of the predictability of the random vari-
able A. Moreover, the average min-entropy of A given B is defined as:

H̃∞(A|B) = − log2

(
E

(
2−H∞ (A|B))). (10)
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The second quantity refers to how difficult it is to guess the original biometric
data x once the stored biometric template s is compromised2 and can be measured
by the entropy loss. The entropy loss L is defined as:

L = H∞(A) − H̃∞(A|B). (11)

In [6], it is proven that the entropy loss can be conveniently bounded by the size of the
biometric template, that is L � |s|. This result is in accordance with the information
theoretic framework for security quantification presented in [8] where the size of the
stored biometric template was used to quantify the security of the system.

Following the conclusions of [6] and [8], in the proposed system, security is quan-
tified by the number of bits that comprise the biometric template, which is equal to
the number of the parity bits that comprise the syndrome. Since the rate of the en-
coders for the face and gait modalities are different, the biometric template security
of each template is also different. Moreover, if a template is compromised, it can
be easily revoked and use another LDPC code to issue a new one. However, it must
be noted that the proposed scheme does not provide a means to detect whether a
template is compromised. It is worth noting that we are not trying to develop an au-
thentication scheme with the lowest error rates possible. Instead, we study a scheme
with reasonable performance in a controlled environment and focus on the tradeoff
between the security of the biometric templates and the recognition performance.

The main scope of the proposed system is to protect biometric templates in multi-
modal biometric authentication systems. Instead of storing the original extracted bio-
metric features a new template is produced which reveals limited information about
the original template. In such systems, security is measured by how difficult it is for
an attacker to gain access to (or guess) the original biometric data if the biometric
template is compromised, which is given by the entropy loss. Bounding the entropy
loss by the size of template |s| means that an attacker needs to try 2|s| different com-
binations to identify the original biometric data. Thus, the security guarantees of the
system is directly related to the entropy loss.

It is also important to note that security of biometric templates comes from the
fact that the stored template consists of the parity bits produced by encoding the
original biometric features with the LDPC encoder. Thus, even if the stored template
is compromised the attacker does not have direct access to the original biometric
features. Given that the entropy loss is usually more than 100 bytes, an attacker
would need more than 2100 attempts to guess the original biometric feature (which is
computationally impossible). In other words, the information that is revealed about
the original biometric features from the stored template is virtually zero.

2Note that we refer to the feature vector x instead of the raw biometric data b. This is because the
biometric template protection scheme is usually applied after the feature extraction algorithm has been
determined. Thus, the difficulty in reconstructing raw data from the feature vector is not a design parame-
ter of the security system.
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5. Results

Experiments were carried out to demonstrate the validity of the proposed method-
ology. The multimodal database was created by aggregating two unimodal databases
for face and gait, as suggested in [21].

The test database contains 29 different individuals recorded under five different
conditions giving 145 sequences in total. While the number of subjects might seem
small at first one must consider that these individuals were recorded under varying
conditions such as different facial expressions and different illumination conditions.
As whole image sequences are available for each individual multiple feature vectors
are extracted from one sequence. This number varies between 50 and 300 depend-
ing on the number of successful extractions per sequence. From the whole corpus a
subset was selected to prove the effectiveness of the fusion approach. While match-
ing feature vectors extracted within the same sequence produces low error rates in
general, inter-sequence matches are a more challenging task especially when the
variances present in the enrollment sequence differ much from these present in the
matching sequence (see [1]). A moderately challenging combination of enrollment
and matching conditions was chosen for the evaluation: subjects with neutral facial
expression were matched against talking subjects.

The gait database was captured in an indoor environment and consists of 75 people
walking in a predefined path in a front-parallel view from the camera. The main
course of walking is around six meters and the distance from the camera varies from
four meters to six meters. In addition, for each sequence, the 3D depth map was
captured using a stereo camera. This is the first database that has depth data for
assisted gait recognition. For each subject, two different conditions were captured:
(a) the “normal” condition, and (b) the “hat” condition in which the users wear a
hat (e.g., there is a slight change in appearance apart from different clothing). The
“normal” set was used as the gallery set and the other set was considered as the probe
set.

For the creation of the multimodal database, the maximum number of virtual sub-
jects is determined by the size of the smallest unimodal database, thus its population
is 29 subjects. The virtual subjects were obtained with natural ordering within each
unimodal database. In other words, the N th virtual user was created using the N th
user trait from each database. Thus, the multimodal database consists of 29 subjects
and two recordings. The evaluation was performed using the first half of the subjects
(all recordings) for training and the other half of the subjects for testing. Thus, the
test set contains subjects that have not been used for training. The sets slide for each
run by one subject and in that way the training-testing dataset combinations that are
created are equal to the number of subjects. In particular, for each run, 15 subjects
were used for training and the remaining 14 were used for testing. Thus, the total
number of genuine and impostor transactions in the training set is 15 × 29 = 435
and 15 × 14 × 29 = 6090, respectively. The test set contains 14 × 29 = 406 genuine
and 14 × 13 × 29 = 5278 impostor transactions.
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In an authentication scenario (or verification), the biometric system is used to grant
access to individuals. Initially a subject claims his/her identity and the gait system
compares the signature with the stored one in the database. Then, based on the au-
thentication procedure, the system establishes whether the identity of the user is the
claimed one. In this respect, authentication results in an one-to-one comparison and
is quite different from the identification scenario, in which the system has to deter-
mine the identity of users by comparing the measured data with all the enrolled data
in the database (one-to-many database). The performance of the biometric system
is evaluated in terms of the False Acceptance Rate (FAR), the False Rejection Rate
(FRR) and the Equal Error Rate (EER), which corresponds to the point where the
FAR is equal to FRR. FAR measures the ratio of impostors who are incorrectly ac-
cepted into the system as legitimate users and FRR measures the ratio of genuine
users who are rejects as impostors. Also, results are presented using Rate Operating
Characteristic (ROC) curves, which present the verification rate (or genuine accep-
tance rate, GAR) versus the FAR. The FRR can then be computed as 1-GAR.

Figure 9(a) reports the performance results of the gait authentication system as
a function of the security bits using the proposed scheme for the protection of the
templates. Thus, the horizontal axis represents the numbers of the syndrome bits,
while the vertical axis represents the FAR and FRR. The more bits used for the
syndrome the more secure is the template since it is more difficult to be broken.
On the other hand, increasing the size of the syndrome increases the sensitivity of
the system, which results in more authentication failures of legitimate users. Thus,
the recognition accuracy of the proposed system can be determined by specifying
the code rate r. This is similar to the conventional approach that determines the
operating points of the ROC curve by varying the threshold that determines which
subjects are granted access. The reported results are also compared with the method
presented in [13] using ROC curves, as depicted in Fig. 9(b). It can be seen that

(a) (b)

Fig. 9. (a) ROC curve of the gait authentication system and (b) FAR and FRR as a function of the security
in bits.
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(a) (b)

Fig. 10. (a) ROC curve of the face authentication system and (b) FAR and FRR as a function of the security
in bits.

the proposed scheme achieves slightly better performance while at the same time it
provides security to the stored templates.

Furthermore, the performance of the face authentication system is illustrated in
Fig. 10. Specifically, Fig. 10(a) shows the ROC curve of the face module. It must
be stressed that if the authentication was based on estimating the Euclidean dis-
tances between the gallery and probe feature vectors (rather than using the proposed
methodology) the performance of the face classifier would be exactly the same. Thus,
it is obvious that the proposed scheme provided template security at no cost in the
performance of the face classifier. Moreover, Fig. 10(b) depicts the FAR and FRR
rates as a function of the size of the face template. Similar to the gait module, as the
size of the templates increases the FRR increases and FAR decreases.

While matching feature vectors extracted within the same sequence produces low
error rates in general, inter-sequence matches are a more challenging task espe-
cially when the variances present in the enrollment sequence differ much from these
present in the matching sequence. Face recognition algorithms are known to be sen-
sitive to data outliers in terms of incorrectly normalized samples and severe intrap-
ersonal variations such as extreme facial expressions and occlusions caused by e.g.
glasses and beards. Algorithms are only robust to a certain degree of intrapersonal
variations. It is a difficult problem to guarantee proper input to a recognition algo-
rithm, quality measures e.g. ensuring proper localization of the eyes have proven
to be an feasible approach to ensure proper input for autonomous recognition sys-
tems [17]. A moderately challenging combination of enrollment and matching con-
ditions was chosen for the evaluation: subjects with neutral facial expression were
matched against talking subjects.

It must be also noted that throughout all the experiments, the same global thresh-
olds and set of parameters were used. Thus, we may conclude that the performance
of the system will not change if more users are enrolled or removed from the system.
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Table 1

Equal error rate of the multimodal authentication scheme

Classification method EER (%) Security (in bits)

Proposed 3.05 200 (Face)

260 (Gait)

SVM 2.54 0

Finally, Table 1 presents the results of the multimodal classification scheme us-
ing the methodology presented in Section 4. The results are compared (in terms of
EER) with a system which performs classification using Support Vector Machines
(SVM), a state-of-the-art machine learning algorithm which has been proven to be
very satisfactory in multimodal biometric fusion [9,32]. As it can be observed, the
increased protection of the stored templates using the proposed scheme comes at
virtually no cost in the performance of the authentication system. Specifically, the
system achieves more than 200 bits of security by trading approximately 0.5% in
performance which is considered negligible.

6. Compliance with privacy legislation

Biometric technology raises privacy concerns primarily because of the personal
nature of biometric information. This holds true in particular for covert biometrics
and behavioural biometrics. Within the EU, several Directives on data privacy have
been adopted, the first and most important of which is Directive 95/46/EC on the
Protection of Individuals with regard to the processing of personal data and on the
free movement of such data. This instrument is binding on EU member states. It
is also binding on non-member states (Norway, Iceland and Liechtenstein) that are
party to the 1992 Agreement on the European Economic Area (EEA). Also, biomet-
ric systems should comply with Directive 58/2002/EC of the European Parliament
and of the Council of 12 July 2002 concerning the processing of personal data and
the protection of privacy, and The European Charter of Fundamental Human Rights.
Privacy provisions are having a great impact on development of biometric technolo-
gies EU Directive shaped most privacy laws of EU 27. Nevertheless, it is important
to note that each country has still its own unique mix of rules; concomitantly, a good
deal of variation exists in the way to which each country deals with biometrics and
privacy.

The proposed methodology for biometric template protection in multimodal bio-
metric authentication systems guarantees that HUMABIO fully complies with the
aforementioned privacy legislation. Specifically:

• All data associated with the subjects are held private. The inherent encryption of
the proposed scheme ensures that even if the biometric templates are compromised
they can not be used to circumvent the system.
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• The irreversibility of the stored templates prevents and adversary from recon-
structing the original biometric data and use them to produce counterfeit biometric
surrogates.

• Multimodality makes the system more robust to spoof attacks. Since multibiomet-
ric evidence is required for granting access to the system it is more difficult for an
impostor to attack and spoof the system.

7. Discussion

In this paper, we presented a novel multimodal biometric authentication scheme to
enhance protection of stored biometric data. Biometric recognition was formulated
as a channel coding problem with noisy side information at the decoder. A virtual
dependency channel was assumed to model the correlation between the biometric
data at the enrolment and the authentication stage. Based on the extension of the
Slepian–Wolf theorem to many sources, distributed source coding principles were
applied to design a multimodal authentication system for the unobtrusive application
scenario of the HUMABIO project. The extraction of the face and gait templates was
briefly discussed and their integration into the proposed framework was detailed. The
experimental results validated the proposed method and demonstrate that the security
of the stored templates can be increased only at a negligible penalty in performance
compared to unsecure machine learning techniques. Future work should concentrate
on more accurate models for the virtual dependency channel to enhance the error
correcting performance of the employed decoders.
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