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Abstract

In this paper, a novel multi-modal method for person
identification in indoor environments is presented. This ap-
proach relies on matching the skeletons detected by a Kinect
v2 device with wearable devices equipped with inertial sen-
sors. Movement features such as yaw and pitch changes
are employed to associate a particular Kinect skeleton to a
person using the wearable. The entire process of sensor cal-
ibration, feature extraction, synchronization and matching
is detailed in this work. Six detection scenarios were de-
fined to assess the proposed method. Experimental results
have shown a high accuracy in the association process.

1. Introduction
Formally, the person identification problem arises when

a target (object / person) must be tracked and matched with
a specific identity. This target can not be always monitored,
however, it must be identified whenever possible. This
problem is common in visual monitoring systems where the
goal is to individualize targets that can be lost due to oc-
clusions, lighting, etc. [3, 1]. In case the object is lost and
detected again (by the same camera or a different one), the
system must be able to determine that the new tracked ele-
ment is the same to the one previously tracked.

The general approach to deal with this problem relies
on the extraction of several features from the detected ob-
ject. Some examples include RGB-based features such as
color, shape, or texture [1, 8]; appearance features incorpo-
rate histogram, graph model, spatial occurrence model [3];
whereas biometric features comprise face patterns recogni-
tion and gait analysis [7, 10]. These features allow to de-
scribe a person and consequently match them with the one
with the most similar detected elements.

This problem has attracted the focus of the scientific
community due to its usefulness for a wide range of ap-
plications in which human activity recognition is required
[11]. However, there exist several scenarios where visual
features can not be directly employed due to privacy issues.
Therefore, an alternative to camera-based systems is needed
[5, 13, 2]. The use of depth sensors allows information anal-
ysis from infrared, skeletons, etc, which has opened a new
scope in this research topic [10, 12].

Furthermore, due to the emergence of the use of wire-
less sensing technologies, human activity and health status
can be easily monitored and analyzed [12, 2]. As a result,
such systems can provide useful information in real-time
not only to the user himself, but also to the user’s carer or
doctor, since these technologies have been also adopted in
health-related applications as well.

A widespread type of devices employed in such applica-
tions are sensor equipped Bracelets. The main use of these
devices is for sports and activity tracking, and are usually
equipped with IMU (Inertial Measurement Units) sensors
that provide 3D acceleration and 3D angular velocity (gy-
roscope) information of the person’s movement, and calcu-
late steps, distance, calories etc. However, some of them
are also equipped with health-related sensors that can ac-
quire heart beat rate, body temperature and galvanic skin
response.

The adoption of this technology in health tracking ap-
plications is very important and its contribution, especially
for patients with mobility problems, is twofold. First, this
technology can be employed by intelligent analysis systems
that can evaluate the patient’s movement and hence estimate
the evolution of it. Thus, the medical professional, based
on the movement analysis (time of the day, duration, fre-
quency), can modify the patient’s medication. Such analy-
sis will be more accurate, objective and complete compared
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to systematic records kept by the patient. Second, since the
system will be able to alert the patient’s caregiver in case of
emergency, patient autonomy will be extended.

In this paper, a method for person individualization us-
ing skeleton information from Kinect v2 devices along with
smart-wearables is described. This approach relies on the
matching of movement features extracted from both de-
vices. In section 2, the related work and main contributions
are provided. In section 3, the process of feature extraction
as well as the main components of the proposed system are
detailed. Section 4 shows the experiments performed and
the obtained results. Finally, section 5 contains the conclu-
sions and future work.

2. Related work
Several works have been proposed in the literature to

tackle the person re-identification problem using visual sen-
sors [1], and extracting RGB-related features such as color,
shape and texture [3].

Furthermore, proposals address this problem by using
multiple cameras to extract the main visual features to be
compared with the ones obtained by the other cameras [13].
Also, an important research effort has been dedicated to the
extraction of features using visual depth sensors [8, 10].

Moreover, there exist approaches for re-identification us-
ing information from wireless devices such as smart-phones
and wearables [5, 2]. Probably, the most similar work to
the one presented here is [12]. In that paper, acceleration
features are extracted from Bracelets and compared with
the values obtained from depth cameras. However, in our
method, orientation information is considered too, which
can provide a more comprehensive representation of the
performed actions, and therefore increase the accuracy of
the identification process. Furthermore, the work presented
is a particular case of the general re-identification problem,
as the main aim is to individualize and identify persons
wearing the bands and detected by the Kinect sensor.

The main contribution of this work is to provide a novel
approach for dealing with the person individualization prob-
lem in monitoring systems, by using information from mul-
tiple sensors.

3. Proposed method
In this work, an indoor environment is considered, where

a Kinect v2 sensor is deployed to detect and track people us-
ing only skeleton information extracted from depth images.
As aforementioned, visual features are not employed, as the
work presented is part of a project where privacy issues are
critical (further details in Acknowledgments).

The problem addressed in this paper is the individual-
ization and route extraction (tracking) of people in a room
by associating measurements gathered from diverse data

sources (Kinect depth and wearables). For this purpose,
several assumptions have been made:

• People will be identified and tracked within the cover-
age range of depth sensor.

• Association will be performed for up to 6 skeletons
(from 0 to 5) with the corresponding Bracelets (from 1
to N).

• People not wearing Bracelets (i.e. detected only by
Kinect) will not be associated. Analogously, data of
people wearing Bracelets but not detected by Kinect
will not be considered in the association process.

• It is assumed that a person is wearing a single Bracelet.

• All measurements are synchronized. A specific tool
that gathers and synchronizes data has been developed
for this purpose.

Let assume that there are P individuals in a room. Some
of them wear Bracelets, thus there are N < P Bracelets.
Also, D ≤ 6 skeletons are detected from Kinect, result-
ing in 2 · D wrist joints to consider; we are not aware if
the Bracelet is worn on the left or the right hand. Two ap-
proaches are proposed in this work for matching the sig-
nals from the two types of sensors. The first one matches
the wrist Pitch extracted from both hands of the detected
skeletons with the corresponding Pitch calculated from the
Bracelets. The second method employs the Yaw informa-
tion of the skeletons chest point and the estimated Yaw from
the Bracelet sensors. In the next subsections, details regard-
ing the calculation of these features (wrist Pitch and Yaw)
for both sensors, data analysis and matching are presented.

3.1. Bracelet

It is assumed that the Bracelets employed can provide
3D acceleration and 3D angular velocity information. How-
ever, two important issues regarding these values must be
taken into account:

• The coordinate system of the Bracelets is local, and
therefore continuously changing. (I1)

• The gravity vector (which always points towards the
earths center) is part of the returned acceleration values
(I2). Namely, the acceleration values provided by the
IMUs are equal to the vector sum of the acceleration
due to the person’s movement and the gravity force.

3.2. Kinect

In the case of the Kinect sensor, for each tracked per-
son (up to 6 per Kinect device), the (x, y, z) coordinates for
each of the 25 joints located on various parts of the detected



human body are provided. Initially, the skeleton joints are
filtered using the Tobit-Kalman filter [4]. This is quite an
important step, since the extracted skeleton often contains
small erratic movements that significantly affect further cal-
culations.

3.2.1 Calibration

According to I1, values extracted from the Bracelets and
the Kinect skeletons can not be directly compared. As
aforementioned, the coordinate system of the former is al-
ways changing according to the movement / orientation of
the Bracelet sensor, while the latter uses a fixed coordinate
system, which, however, also depends on the placement /
Yaw of the sensor. As a result, the measured acceleration
vectors differ between the Bracelet and the Kinect. Even
trying to compare the magnitude of the acceleration val-
ues (

√
a2x + a2y + a2z), which is more robust since magni-

tude does not depend on the sensor orientation, would not
be accurate due to I2. The reason is that the gravity force
influences the Bracelet acceleration values. The direct re-
moval (or addition) of the gravity force from the Bracelet (to
Kinect) would not be a solution, since these processes will
be performed in two different coordinate systems. Thus, in
order to be able to compare the sensor outputs, a common
coordinate system must be constructed as reference.

Bracelet calibration The Bracelet calibration method
presented in [6] has been adopted, which estimates the ori-
entation of the Bracelet by employing the information gath-
ered by accelerometer and gyroscope. The output of this
method is the orientation of the Bracelet device in relation
to the starting point (initial location of the Bracelet). This
information allows the elimination of gravity from acceler-
ation measurements.

There are several parameters provided as a result of ap-
plying the calibration process. Some of these values in-
volve the declination and the gyroscope β, which depend
directly on the sensor technical specifications.

Kinect calibration Kinect has its own coordinate system.
Its origin is located at the center of the IR sensor while X
axis grows to the sensor’s left, Y axis grows upwards and Z
axis to the direction the sensor is facing. Thus, the Kinect
coordinate system depends on the custom device setup. In
order to calibrate the device, a Calibration tool has been
created (Figure 1). In this software, the user selects a set
of points (usually 6-10) and sets their coordinates in the de-
sired coordinate system. Thus, it is possible to set the Z
axis of the new coordinate system to be perpendicular to the
ground, and the XY plane to identify with the floor plane.
The Calibration tool can retrieve the coordinates of the se-
lected points on the Kinect coordinate system and then cal-

Figure 1. Kinect calibration tool
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Figure 2. Pitch calculation

culate a transformation between these two coordinate sys-
tems. In this tool, the coordinates in both systems are given
in centimeters, thus the required transformation is a transla-
tion and a rotation (no scaling is required). For the rotation
and translation matrices calculation, the Singular Value De-
composition (SVD) of the covariance matrix of the coordi-
nates of the two systems is employed.

3.3. Feature calculation

In this section, the aforementioned features will be cal-
culated from both Bracelet and Kinect devices. The fol-
lowing notation will be used for the vectors: mc

d,a where
m ∈ {p, v, a, g} denotes the measurement (p:position, v:
velocity, a: acceleration, g: angular acceleration), d ∈
{b, k(j)} the device (b: Bracelet, k: Kinect, j: joints in-
dex), a ∈ {x, y, z} the axis and c denotes that the vector is
on the calibrated space. Hence, the Bracelet provides the ac-
celeration ab,x, ab,y, ab,z and gyroscope gb,x, gb,y, gb,z vec-
tors from which the bracelet orientation is calculated (given
in quaternions Qi, i = 1, 2, 3, 4) that is used to extract the
linear acceleration ac

b,x, acb,y, acb,z in the calibrated space.
Similarly, Kinect provides the coordinates of the skele-
ton wrists and elbows that after the calibration result in
pc
k(i),x,p

c
k(i),y,p

c
k(i),z where i ∈ {5 (left elbow), 6 (left

wrist), 9 (right elbow), 10 (right wrist)}.
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Figure 3. Bipartite graph representing the association links of the
N Bracelets with the available skeletons

3.3.1 Wrist pitch

In Kinect case, the wrist pitch can be calculated from the
wrist and elbow coordinates. Assuming (Figure 2) that
the elbow is the point O and the wrist the point A, then
the pitch is the angle θ equals tan−1(AB/OB). Since
OB =

√
CB2 +BD2, θ = tan−1(AB/

√
CB2 +BD2).

Taking into account thatAB = pc
k(6|10),z−pc

k(5|9),z ,BC =
pc
k(6|10),y − pc

k(5|9),y and BD = pc
k(6|10),x− pc

k(5|9),x, then
the wrist pitch θl|r for the left and right wrist is given by:

θl|r = tan−1

 dl|r,z√
d2l|r,x + d2l|r,y

 (1)

where d is the distance between the wrist and elbow for each
axis, namely dl,a = pc

k(6),a − pc
k(5),a and dr,a = pc

k(11),a −
pc
k(10),i, a ∈ {x, y, z}.

The Bracelet based wrist pitch estimation can be per-
formed by employing the Bracelet orientation. By using
the orientation quaternions and following the same proce-
dure with the Kinect case, it is possible to apply a similar
equation with (1) namely

θ = tan−1

(
Q3√

Q2
1 +Q2

2

)
(2)

where Qi are the quaternion elements of the Bracelet orien-
tation.

3.3.2 Orientation extraction and comparison

As previously mentioned, tools implemented in [6] allow
to extract the Yaw, Pitch and Roll features from IMU sen-
sors. According to Madgwick filter, the Yaw is calculated
as follows:

Y aw = arctan
(
2(Q2 ·Q3 +Q1 ·Q4), (3)

Q2
1 +Q2

2 −Q2
3 −Q2

4

)2
where Q denotes the quaternion parameters as previously
described in section 3.2.1. The outcome of this filter is the

route in terms of orientation (Yaw), which indicates how
much the person has turned around over the detected time.

However, Yaw values are relative to the initial orienta-
tion of the device; in this case the Bracelets. Therefore, the
result of this filter is the angle between the current and the
initial position around the yaw (z) axis, and not between the
current position and the magnetic north.

For the Kinect orientation calculation, a central skele-
ton joint is selected (i.e. the 20-th that corresponds to the
chest). The orientation of the line segment defined by the
consecutive chest joint coordinates (P c,t

k(20),x, P
c,t
k(20),y) and

(P c,t+1
k(20),x, P

c,t+1
k(20),y) at times t and t + 1 respectively, cor-

responds to the Yaw of the person (Figure 2) in the Kinect
fixed coordinate system.

As a consequence, the association process consists in
searching for similar orientation routes among the Bracelets
and Kinect skeletons.

Let Yb(t) and Yk(t) be the extracted Yaw sequences from
Bracelet and Kinect device respectively. If both are extract
from the same person, we expect Yb(t) ' Yk(t) + s, where
s represents the angle difference between the two coordi-
nate systems (Kinect coordinate system and Bracelet initial
Yaw). In order to eliminate s, instead of comparing the ex-
tracted Yaw sequences, we compare their first order deriva-
tives, namely the dyb(t)/dt and dyk(t)/dt. As a result, if
both Yaw sequences are extracted from the same person,
dyb(t)/dt ' dyk(t)/dt.

Data association Process The association process is per-
formed using the Hungarian algorithm [9]. It computes a
complete matching of the bipartite graph (Figure 3), such
that the total error of the matched elements is minimized.

The link weights are a combination of the MSEs ob-
tained for every feature. Therefore:

cij =
√
epitch(ij) + eY aw(ij) (4)

The cost for each link is given by the Mean Square Er-
ror (MSE) for both pitch and orientation. As a result, the
combination of Bracelets with the skeletons is obtained. A
modification of the standard algorithm was performed, in
order to avoid multiple choices for a particular skeleton.

The proposed modified Hungarian algorithm contains
the following two additional rules:

Condition 1 If in any step a Bracelet has the minimum cost
for more than one Kinect skeleton, the algorithm will asso-
ciate the one with the lesser error and remove it. Similarly,
in case of having a Kinect skeleton with a minimum cost
for several bands, the algorithm will chose the one with the
lesser error and will remove it from the list.

Condition 2 If the error values are above a certain thresh-
old, the Bracelet and skeleton will not be associated.
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Figure 4. Example of Yaw variation over time for both sensors. This case corresponds to the episode 3 described in section 4. On the left,
the MSBand (blue) matches with the cyan skeleton. On the right hand, the other MSBand in the experiment matches with the red Skeleton.
Notice that the green and cyan lines correspond to the same person whose skeleton was lost and recovered again.

The former condition is put in place to avoid multiple se-
lections of a single skeleton for a Bracelet candidate. The
latter, aims to avoid associating a skeleton with a Bracelet,
even if algorithm yields this result, because the error is
large. The threshold is empirically obtained and depends
on the time-window chosen. For the experiments consid-
ered in this work, the time-window was 1 minute and the
threshold was set to 2500.

The steps for the implementation of the proposed algo-
rithm are described as follows:

Calibration process of sensors
1: Calibration of Bracelets as shown in 3.2.1
2: Calibration of Kinect Sensor as shown in 3.2.1

Feature Extraction
3: Orientation calculation from Kinect as presented in sec-

tion 3.3.2
4: Orientation calculation from Bracelets as described in

section 3.3.2
5: Association of Bracelet-skeleton as described in section

3.3.2

4. Experimental results

In this section, the results of the experiments with the
proposed algorithms are detailed. A commercial band de-
veloped by Microsoft was employed as wrist device. Ac-
cording to the technical specifications, this band is able to
provide 8, 31 or 62 measurements per second. This device
is denoted as MSband.

Furthermore, a Kinect sensor was deployed in the moni-
tored room at a height of 250cm. The experiment was per-
formed under two lighting conditions in order to force the

Kinect device into both available frame rates (15 and 30
fps).

Regarding device synchronization, differences between
the unsynchronized sensor timestamps varied up to 500ms
and the obtained MSE from the synchronized and unsyn-
chronized data were up to a 10% higher. These observations
demonstrate that device synchronization is essential for ac-
curate results.

To test the feasibility of the proposed algorithms, the fol-
lowing episodes were proposed:

• Epi1: A person is detected by the Kinect sensor (skele-
ton), the person walks for a while and afterwards
leaves the room.

• Epi2: A person is detected by the Kinect sensor (skele-
ton), suddenly the tracker loses the person, and after a
while it re-detects the person.

• Epi3: Two people are detected by the Kinect sensor
(skeleton), and both wear Bracelets. They walk for a
while fully detected by Kinect, and then they go out of
the scene.

• Epi4: Two individuals are detected by the Kinect sen-
sor (skeleton), but only one of them is wearing a
Bracelet.

• Epi5: Two people are detected by the Kinect sensor
(skeleton), both wearing Bracelets. Suddenly, one of
them is lost by Kinect and after a while the person is
re-detected.

• Epi6: Three persons are detected by the Kinect sensor
(skeleton), with two of them wearing Bracelets. Kinect
loses and re-detects them as they walk in front of each
other.



Table 1. Information about the recorded sessions (in parenthesis
the number of people wearing Bracelet)

id Duration # of people / skeletons Pitch Yaw
1 60 1 (1) / 1 1 1
2 60 2 (0) / 3 3 3
3 45 2 (2) / 4 3 4
4 35 2 (1) / 3 2 3
5 90 3 (2) / 7 6 6
6 35 3 (2) / 5 1 3

The Kinect sensor was calibrated so that the XY plane
matches the room floor. Sessions of various durations have
been recorded in which (2-3) people were present on each
one. In Table 1 information about the recorded sessions is
presented. More specifically, the episode id, the duration in
seconds and the number of people / unique skeleton tracks
that Kinect was able to detect are shown. In some sessions,
the number of skeleton tracks is higher than the number of
people, since some people have been re-detected due to oc-
clusions. Finally, the last two columns on the right 1 contain
the successful detections for the two methods. It can be ob-
served that both of these methods achieve a high matching
accuracy.

An example matching using the (Yaw) orientation for
two individuals is shown in Figure 4. The vertical axis rep-
resents the Yaw and the horizontal axis the time. This par-
ticular graphic represents the Epi3 recording. On the left
side, after the green skeleton is lost and re-detected as cyan,
it can be seen that the Bracelet time-series (blue) follows
closely the cyan skeleton, which is the correct match. Sim-
ilarly, on the right side, the time-series of the other Bracelet
(blue) closely follows the red skeleton, which is again the
correct match. The entire dataset with the information of the
sensors, calibration and results shown in this paper is avail-
able at http://www.gatv.ssr.upm.es/˜abh/

5. Conclusions
In this paper, two approaches that identify a person in an

indoor environment using movement features from multiple
sensors have been presented. The methods rely on the ex-
traction and association of Pitch and Yaw orientation from
Bracelets and Kinect. Experimental results have shown the
validity of both approaches. As a future work, it will be in-
teresting to evaluate the scalability of the system in crowded
and large-scale scenarios, as well as to explore the inclusion
of sensors such as WSN (Wireless Sensor Network) track-
ing systems, which can significantly increase the accuracy
and range of the presented algorithms.
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