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Abstract 

We describe four fundamental challenges that complex real-life Virtual Real-
ity (VR) productions are facing today (such as multi-camera management, 
quality control, automatic annotation with cinematography and 360˚ depth 
estimation) and describe an integrated solution, called Hyper 360, to address 
them. We demonstrate our solution and its evaluation in the context of prac-
tical productions and present related results.  
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1. Introduction 

Virtual Reality (360˚) video content recently got very popular in the media in-
dustry as it allows viewers to experience the content in an immersive and inter-
active way. Professional 360˚ video cameras capture the entire viewing sphere 
and create stitched video output typically in 4 K, 8 K monoscopic and 6 K ste-
reoscopic equirectangular format. A critical factor for the long term success of 
360˚ video content is the availability of convenient tools for producing and edit-
ing 360˚ video content for a multitude of platforms (e.g. mobile device, VR 
Headsets or conventional TV sets via HbbTV). Existing tool sets primarily fo-
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cusing on a) high quality video stitching, stabilization and optimal encoding 
with minimal loss of raw camera data and b) interactive annotation tools to 
place hot spots, embedded images and videos combined with visual links for in-
teraction and storytelling purposes. 

To date, most research consists of quantitative experiments that concentrate 
on audience perception of content [1], viewing habits [2] or technologically fo-
cused studies, e.g., on watching a video on different devices [3], while the power 
of actual storytelling for this new, innovative format is still being invented [4].  

In this paper we go beyond these elements and focus on four fundamental 
problems that real-life VR productions are facing today in particular as they re-
late to immersive story telling as a necessary element for narrative and technical 
immersion [5]. Our set of problems ranges from principles of 1) optimal camera 
placement & management [6] to 2) on-set quality control extended from me-
thods used in video quality assessment [7], 3) automatic annotation & cinema-
tography to convert panoramic videos into a normal field-of-view for optimal 
viewing experience [8], and 4) 360˚ depth estimation to be able to estimate 
structure and semantics in 360˚ scenes [9] and insert additional 3D elements as a 
post-production step.  

To address these challenges, we describe an integrated solution (Hyper 360) 
and available tools that we have developed and demonstrate their practical use 
with examples from Music, Fashion and Film industry applications. More expli-
citly, for camera placement and management we developed a multi-camera con-
trol architecture, called OMNICAP [10], capable of optimizing the placement 
and remote management of up to 64 mixed camera units. For on-set quality 
control we introduce a novel 360˚ video quality assessment pipeline (Vidicert), 
capable of on-the-fly assessment of camera setups and imaging conditions. Si-
milarly, for automatic annotation and cinematography, we have developed a 
deep learning-based object detector and a dense optical flow module operating 
at nearly 99% accuracy, and finally for 360˚ depth estimation we introduced a 
novel deep CNN solution to infer depth directly on the equirectangular domain. 
In the following sections we describe in detail each of these advances and their 
significant contributions to the production workflow.  

The paper is organized as follows. In Section 2 we briefly overview and assess 
related work and currently available tools in the market. Section 3 outlines sev-
eral key challenges facing VR productions today with our solutions to these 
challenges, followed by a presentation of our test results in Section 4. Finally, in 
Section 5, our Conclusion and Future work are presented. 

2. Related Work 

There is a vast number of currently available tools for VR content stitching, 
post-production and annotation. As a first step they primarily focus on high 
quality video stitching from an array of spherically arranged miniature cameras 
with wide angle lenses and overlapping imagery. As the nodal point of these 
camera lenses is the offset from their ideal central position, the stitching process 
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itself suffers from the inherent problems associated with parallax. Specifically, 
since the position or direction of objects appears to differ when viewed from two 
neighboring camera positions, there are artifacts appearing in the stitching line. 
Advanced professional stitching tools, such as Adobe CC Premier [11], Insta 360 
Pro [12] and SGO Mistika [13], apply complex optic flow distortions to make 
these image regions error free and seamless to the Viewer. The second group of 
solutions aims at stabilizing the spherical image by tracking a dense set of natu-
ral image features and deriving 3D camera tracks and rotating the spherical view 
frame-by-frame to correct unwanted motion and generate the desired output in 
the form of a stable equirectangular image (Syntheyes [14], Facebook [15]).  

Following the initial creation of 360˚ Virtual Reality camera footage, the next 
step is to turn it into immersive and interactive video via authoring tools that 
provide the standard functionalities like adding hot spots or overlays which refer 
to other resources like text, 2D images or another video. So far, this annotation 
process i.e. adding these interactive elements is a completely manual process, 
thus the user has to choose the object in the frame where the element is to be 
added (e.g. attached to a person) and has to change the hot spot location ma-
nually in each video frame if the object moves throughout the 360˚ space. As an 
example, in [16], a web-based annotation tool for 360˚ video is presented, based 
on the WebVR, Three. Js and Node. Js frameworks. It provides a variety of an-
notation types (marker, subtitles, arrow, vignette, etc.), each serving a different 
purpose. User tests were performed in order to measure the effect of the annota-
tions on the immersive viewing experience. A comparative review of commercial 
solutions for similar purpose (such as WondaVR, Liquid Cinema, Fader, Thin-
gLink, Viar 360, Sprawly, Viond, Omnivirt, and 3DVista Pro [17]-[25]) quickly 
reveals that so far none of these tools supports the automatic extraction of the 
objects (like persons, animals or cars) occurring in the scene, which is one of the 
key elements of the tool set our work is focusing on. Our integrated capturing 
and authoring system, called OMNICAP & OMNICONNECT respectively 
[10], goes beyond the capabilities of these individual authoring solutions by de-
livering an integrated multi-camera control pipeline with fully automated object 
detection and tracking module and an added on-set quality control to process 
the recordings.  

Automatic Cinematography from a 360˚ video is another field of active re-
search interest. The goal here is to generate a conventional 2D video from the 
360˚ video automatically, by determining a smooth camera path which captures 
the salient (most interesting) regions of the viewing sphere. These regions often 
correspond to persons performing specific actions, e.g. for a concert scene the 
salient regions will correspond to the members of the music band performing 
the act. The approach proposed in [26] first learns a discriminative model from 
conventional 2D videos collected from the web. It then uses this model to iden-
tify candidate viewpoints and events of interest to capture in the 360˚ video and 
determines an optimal camera trajectory using dynamic programming. A disad-
vantage of this approach is that the learned model is specific to a certain catego-
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ry of 360˚ video (e.g. soccer videos or hiking videos), as the conventional 2D 
videos have been collected on the web via domain-specific query keywords. The 
work [27] extends the algorithm proposed in [26] so that zoom shots (with a 
small field of view) and wide-angle shots are also supported. Furthermore, the 
run time of the algorithm is reduced via a coarse-to-fine strategy for camera tra-
jectory search. In [28], a method is presented for piloting through 360˚ sports 
videos. Their method learns an online policy to focus on foreground objects (like 
a skateboarder) and simultaneously minimizes both view angle loss from human 
annotated ground truth and smoothness loss between consecutive frames. A 
deep learning based object detector (Faster R-CNN) is employed for generating 
candidate hypotheses for objects of interest. As the online policy is learned from 
sport video only, this method is not able to handle other (non-sports) categories 
of 360˚ video. In [29], design guidelines for extracting conventional 2D video 
shots from a 360˚ video are given (e.g. subject should be centered, people should 
not be cropped), derived from user studies. Based on these guidelines, a method 
is presented for extracting a conventional 2D video shot, relying on face and 
pose detection. Our method advances the state-of-the-art by extending the cam-
era path generation algorithms to use intelligent automated object detection in 
combination with low-level image features and saliency and combine those with 
high-level artistic and compositional rules thus arriving at a stable shot framing 
structure and sequence. 

While Stereoscopic 3D makes the viewer more immersed in a 360˚ video, by 
simulating how humans perceive the world through their binocular vision and re-
sulting in the illusion of depth, it only allows for 3 degrees of freedom (3DOF), i.e. 
only rotations (pitch, yaw, roll). To make 360˚ videos more immersive, there is an 
increasing interest in research towards 3DOF + 360˚ videos, which apart from the 
viewpoint rotation, also allows for limited translation. To enable viewpoint trans-
lation the system must be able to render new views from the new translated view-
points, thus the 3D geometry of the scene is essential. One of the most important 
type of information regarding scene geometry is the scene’s depth, which gives the 
ability to generate (i.e. render) novel views from arbitrary viewpoints. 

Despite the recent popularity of 360˚ media, limited work addresses the prob-
lem of monocular 360˚ depth estimation. However, the existing approaches vary 
from standard methods used in 2D traditional imagery to novel ones tai-
lor-made for 360˚. In [30] the authors follow a Structure from Motion (SfM) 
approach to create an initial sparse reconstruction of the scene from the new 
viewpoint by two separate non sequential key frames, in order to later refine it 
by taking into account the frames in-between. Their method requires to first 
project each frame from equirectangular to cubemap projection, which in gener-
al is computationally costly. 

A machine learning approach is presented in [31] where a self-supervised 
deep Convolutional Neural Network (CNN) is utilized, in order to learn depth 
and camera pose from 360˚ videos. This method also projects each frame to cu-
bemap projection using cube padding to pad intermediate features from adja-
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cent faces, and uses view synthesis between consequent frames in order to esti-
mate the camera position and the depth of the depicted scene. Finally, in [32], a 
new 3D video representation is proposed, the Depth Augmented Stereo Pano-
rama (DASP), in which every 360˚ stereoscopic video frame is accompanied by 
its corresponding depth, thus allowing for novel viewpoint rendering and pro-
viding motion parallax in VR videos. 

Our solution goes beyond existing techniques by overcoming the costly 
processing of cubemap projection, and introducing a learning based method for 
360˚ depth estimation [33]. This method was trained on and operates directly on 
the equirectangular domain. To facilitate this training process we also intro-
duced a novel data set of 360˚ indoors scenes with their corresponding ground 
truth depth annotations.  

Having reviewed key research related to our work, we now turn our attention 
to the practical challenges professionals face, with a special emphasis on 360˚ 
Film and Television productions as well as the particular requirements our solu-
tion addresses.  

3. Four Key Challenges of 360˚ VR Film & TV Productions 

3.1. Camera Placement, Motion and Multi-Camera Management 

360˚ cameras are designed to deliver VR experiences aimed at placing the View-
ers right at the center of the action. However, due to the nature of the imaging 
process that employs multiple tiny camera units with fisheye lenses, the per-
ceived image in the VR headset appears to be further as in real life. Therefore, 
for a first person experience, the camera must be as close as possible to its prin-
cipal subject. On the other hand, the closer the camera is to an object, the 
stronger the parallax effect becomes, thus causing undesirable stitching errors. 
The optimal point for these two constraints is placing the camera within 1.5 - 2 
meters away from the principal subject, but that may cause real-life production 
challenges as demonstrated in Figure 1, where a total of 19 cameras work to-
gether creating multiple line of sight problems for musicians and camera crews 
alike. Moving 360˚ cameras is often not a preferred option as they need to be 
synchronized with special effects and other camera motion platforms (cable 
cams, Jimmy Jib, robotics), but more importantly the resulting imagery may 
cause dizziness in the Viewers. As a practical compromise a production may use 
multiple stationary 360˚ units—typically 3 to 9 on stage to cover all aspects of 
interest—that would have to be remotely managed. 

To address this need, we have developed a complex camera control and acqui-
sition tool, called OMNICAP [10] that integrates a number of modern 360˚ 
camera rigs (either multi camera arrays or tiny fisheye lenses devices) with regu-
lar HD cameras into a generic architecture that can support the remote man-
agement of up to 64 mixed camera units and configurations as demonstrated in 
Figure 2. It was designed with both multi-camera 360˚ as well as 3D captures to 
support Free Viewpoint Video suited for the broadcast sector. More specifically,  
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Figure 1. Example of a Live Music Production using a mixed set of 19 cameras including 
three 360˚ units on stage (see also https://youtu.be/wk-pbMF6RY0). 
 

 
Figure 2. OMNICAP Multi-camera management solution for mixed-type 360 and regular 
cameras (see also https://youtu.be/ixlYZGN5Jl8). 
 
our solution is based on a generalized inverse fisheye lens transformation im-
plemented in real-time, whereas each individual camera view is first distorted in 
real-time using pixel- and vertex shader technology and subsequently combined 
into a single equirectangular view that can be viewed in Flat mode (seeing the 
entire scene in a distorted manner) or mapped onto a virtual sphere to be able to 
frame and look at elements within the scene. Each camera’s input is mapped 
onto a graphic element called “patch” and multiple patches are blended and dis-
torted to create seamless transitions in the overlapping areas. Since the purpose 
of our tool is on-set pre-visualization, control and quality check to find the best 
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camera setup, it also includes additional overlay elements such as the visualiza-
tion of safe-zones. The same software can also be used to manage Photogram-
metric 3D Capture and Free Viewpoint Video recordings as demonstrated in 
Figure 3. (For real-time capture and integration of 3D human characters or 
“Mentors” we have developed a dedicated solution described in Section 3.4 be-
low.) 

3.2. On-Set Quality Control 

The more objects and people are in a scene, the more stitching and other types 
of imaging errors become a problem. Furthermore, as most 360˚ cameras have 
small CCD image sensors and a limited 8 bit dynamic range, highlights and 
low-light performance all become important additional issues that yield reduced 
quality. Encoding and compression artifacts just further add to this mix and 
each subsequent post-production step (stitching, stabilization, editing) involves 
multiple rendering passes that lower quality even further. 

Therefore, it is vital for any 360˚ TV or Film production to capture informa-
tion with minimal loss of raw camera data and to ensure, while setting up a 
production or on-set, that the resulting imagery will meet the accepted high 
quality broadcast standards. This can be achieved by on-set tools that provide 
quick assessment and immediate feedback to camera crews in regards to what 
they need to adapt, change or do differently, by adapting standard video quality 
assurance processes meeting the special requirements of equirectangular video. 

The Quality Check (QC) component is able to detect a variety of defects 
commonly occurring in 360˚ video like blurriness, signal clipping, noise, flicker, 
macroblocking and several others. More specifically, signal clipping occurs when 
the automatic gain control of the 360˚ camera sets the camera gain too high, re-
sulting in blown-out highlight areas. Flicker can occur when the camera is out  
 

 
Figure 3. OMNICAP Multi-camera setup used for 3D capture and Free Viewpoint Video 
recordings (see also https://youtu.be/8qu4RDoYWyI). 
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of sync with artificial lights in the scene (fluorescent lights, etc.). The quality 
check component is able to detect these defects (and others) and report them to 
the user, so that he can take corrective actions on-site, e.g. by setting the camera 
parameters differently or modifying the setup of the scene. This QC module re-
ports of the detected defects to the user in a separate application named “Vidi-
Cert Summary” (see Figure 4), which opens automatically after the processing 
of the video has finished. It provides a comfortable tool for quickly inspecting 
the detected defects in the video, where each detected defect is shown in a sepa-
rate timeline either as bar or as graph. 

3.3. Automatic Annotation and Cinematography 

In order to create dense annotations with multiple tracked and tagged elements 
in the scene for extended virtual reality movie sequences, the currently available 
manual authoring tools (see Section 2) offer only a rather limited set of solu-
tions. This severe drawback comes from to the inherently manual nature of the 
work process they employ. Hot spot editing applies simple animation principles 
by inserting a sequence of key frames at given times, which the playback system 
can automatically interpolate for in-between moments. Visible hot spots appear 
in the scene and act as sources of information or as links to videos or other  
 

 
Figure 4. VIDICERT Summary application showing the detected defects in a multi-camera 360˚ video from the 2017 Eurovision 
Contest (see also https://youtu.be/w_Slr7Hy-WM). 
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scenes. Invisible hot spots, on the other hand, allow the playback system to 
detect what annotated elements Viewers are looking at in any moment. There-
fore this mechanism offers not-only advanced means to gain insight and statis-
tical analysis more refined than simple VR heat maps [34], but also it creates the 
foundation for on-the-fly fuzzy semantic inference [35] that can drive rec-
ommendation systems. 

To support meaningful annotation of hundreds of tagged elements the tasks 
of scene object extraction deals with the automatic detection and tracking of all 
important objects (e.g. persons, animals, cars, furniture, etc.) that occur in the 
scene. Like many approaches nowadays, it relies heavily on recent advances in 
neural networks and deep learning. The key components being a deep learn-
ing-based object detector and a dense optical flow algorithm for tracking the de-
tected objects from one frame to the next one. For object detection, we employ 
the YoloV3 algorithm [36], which is able to detect 80 classes of objects com-
monly occurring in videos, like persons, various animals (dogs, cats) and ve-
hicles (motorbike, car, truck). Subsequently a high-quality variational optical 
flow algorithm (TV-L1 [37]) is used for calculating the dense motion field be-
tween two consecutive frames with both components running entirely on the 
GPU to achieve high speeds. 

For each frame, the workflow of the algorithm is as follows: Firstly, the mo-
tion field between the current and next frame is calculated via the optical flow 
algorithm. Additionally, the object detector is invoked for the next frame, which 
yields a list of detected objects. For each scene object, the motion field is em-
ployed to predict the position of the object in the next frame. A global matching 
between the detected objects and the predicted scene objects is done. All scene 
objects which could not matched are considered as lost (e.g. because they got oc-
cluded) and excluded from further processing. In contrast, all detected objects, 
which could not be matched are added to the scene object list. 

A typical result of the algorithm can be seen in Figure 5. One can see that the 
algorithm is able to detect the important objects in the scene (like the person or  
 

 
Figure 5. Result of the scene object extraction algorithm for one frame of a 360˚ video 
showing an office scene (above), and from an ongoing production of Kafka’s Metamor-
phosis (below). 
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the monitors), although a few false detections are also reported (like the bed in 
the office scene). However, these false detections can be easily filtered out with 
the help of domain-specific knowledge. In terms of performance, the equirec-
tangular projection of the image does not affect the algorithm negatively with 
the average run time being roughly 105 milliseconds for one Full HD resolution 
frame on a PC with a Geforce GTX 1070 GPU. 

This semantic information gathered from scene object extraction is also cru-
cial for the automatic cinematography algorithm. Its goal is to calculate a visual-
ly interesting camera path from a 360˚ video, in order to provide a traditional 
TV-like consumption experience. In contrast to interactive viewing, hard cuts 
between individual shots of the result video are allowed and even desired as they 
are a stylistic device commonly occurring in conventional 2D video content. In 
order to generate a pleasing and visually interesting camera path fully automati-
cally, a high-level semantic spatio-temporal description of the video is desired. 
For our current implementation for this we mainly rely on the output of the 
scene object extraction algorithm introduced above. 

The algorithm works in an iterative fashion, shot after shot (separated by a 
hard cut). The shot length is fluctuating randomly around a base value, which 
has to be set by the user. For generating a fast-paced video, the base value should 
be set to a small value (e.g. three seconds), whereas for slow-paced video it can 
be set to something like ten seconds. After setting the shot length, the scene ob-
ject extraction algorithm is invoked, which gives us a list of the objects occurring 
in their scene and how they move. In the next step, a global visited map is calcu-
lated, which steers the camera path for the current shot towards areas of the 360˚ 
video which have not been viewed in the previous shots. A saliency score is cal-
culated now for each scene object. The score gives an estimation of how inter-
esting the specific object is for a human viewer. E.g. persons in a scene are 
usually more interesting than e.g. animals or cars. Furthermore, persons which 
are moving around (e.g. because they are performing a specific action) are 
usually more interesting than persons which are static (like persons sitting in the 
audience). The saliency score of the object is therefore calculated from several 
cues like the object class, size, average motion magnitude and its isolatedness. 

Having calculated the saliency score for each scene object, we determine the 
focus object as the object with the highest saliency score. The camera path for 
this shot is now generated simply by tracking the focus object throughout this 
shot. The result of the automatic cinematography for a 360˚ video showing a live 
music concert is shown in Figure 6. The base shot length has been chosen as 
three seconds, in order to account for the dynamic in the content. 

3.4. Towards 3DOF+ VR Video via 360˚ Omnidirectional Depth  
Estimation 

In order to be able to provide 3DOF+ VR videos through our system and allow 
for limited viewpoint translation, we developed a deep CNN for 360˚ depth es-
timation that infers depth directly on the equirectangular domain (i.e. without  
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Figure 6. Visualization of the result of the automatic cinematography for a music video 
(first row). Each row shows two frames from the generated shot (four consecutive shots 
in total). 
 
projecting to cube map faces), which is presented in [38].  

Machine learning models in general, require a lot of ground truth annotated 
data for training. Although, this is partly addressed for typical pinhole camera 
data sets by employing depth sensors or laser scanners, it would be very difficult 
to utilize such methods when using 360˚ cameras due to the larger variation in 
resolutions between 360˚ color cameras and laser scanners, and because the 
depth sensor would be in the field of view of the 360˚ camera. To circumvent 
these difficulties we leveraged existing efforts in creating publicly available 
large-scale 3D data sets [39] [40] [41] [42], by generating a dataset of 360˚ color 
images of indoors scenes along with their corresponding ground truth depth 
annotations via rendering, presented in [43]. 

For each 3D building of the data sets used, we rendered every room from an-
notated camera poses if any, or from random camera poses. Additional to the 
RGB image and the corresponding depth map we also generate a mask to ac-
count for missing information of the 3D model. An overview of the data set 
generation process is presented in Figure 7, while Figure 8 presents a subset of 
our data set. Table 1 presents results of our learned model on our data set’s 
test-split, using the metrics described in [42] which are established metrics for 
depth estimation. 
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Figure 7. 360˚ data set generation procedure overview. From left to right: 3D model of a 
building sample with the selected room for rendering outlined in light green, the ren-
dered 360˚ RGB image, a generated depth mask that accounts for missing information 
(holes) in the depth map, the rendered depth map (the lighter the color, the farther away 
that pixel is from the camera). 
 

 
Figure 8. Samples of our generated dataset. For each double row the rendered RGB 
(above) and its corresponding depth map (bellow). 
 

The average inferring time of our model 0.14 ms, therefore it can run in 
real-time. 

https://doi.org/10.4236/jsea.2019.125009


B. Takacs et al. 
 

 

DOI: 10.4236/jsea.2019.125009 139 Journal of Software Engineering and Applications 

 

Figure 9 presents qualitative results of our trained model on our data set’s 
test-split. Because our data set is composed of indoor scenes, our network’s ap-
plicability to outdoor scenes is limited. For this reason we can also refine the 
quality of the network’s prediction by also computing depth maps directly from 
the stereoscopic imagery captured by our 360˚ cameras. This is demonstrated in 
Figure 10. 
 
Table 1. Omnidirectional depth estimation results on our data set's test-split. (Downward 
arrow means lower is better, while upward arrow means that higher is better). 

NN model Abs. Rel↓ Sq. Rel↓ RMSE↓ RMSE (log)↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑ 

UResNet [33] 0.0946 0.0401 0.3084 0.1315 0.9133 0.9861 0.9962 

 

 
Figure 9. Qualitative results of our depth estimation method in our data set’s test-split. 
 

 
Figure 10. Omnidirectional depth estimation from stereoscopic 360˚ camera using algo-
rithms from [44]. 
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Having estimated the scene’s depth, we can synthesize new views and allow 
for limited translation w.r.t. the motion of the XR device (such as VR headsets, 
mobile and tablet devices), which offers a more immersive experience to the 
viewer. 

Having presented our results on Depth Estimation, we now turn our attention 
to the performance characteristics of our core automatic annotation procedure 
that employs ML-based object detection and tracking. 

4. Performance Results 

In order to evaluate the performance characteristics of our automated scene ob-
ject extraction solutions that detect and track all important elements we used 
360˚ VR fashion videos in a special “5Catwalks” format as demonstrated in Fig-
ure 11. We collected original frontal camera footage from 5 fashion shows to-
taling 55 show minutes and folded them into five 360˚ VR pieces with an aver-
age length of 2:11 minutes each. This transformation turned them into a short 
and compelling format catering to New Generation Media consumption habits. 
The resulting test videos represented increasing difficulties and challenges such 
as noise/fog (for artistic reasons), extreme low view angles resulting in distor-
tions, and crowded scenes with a moving principal camera, etc. 

Next, we created ground truth data by manually tracking all persons in a to-
tal number of 14,339 video frames with the help of our production-level anno-
tation tool, called OMNICONNECT [10]. This step took approximately 6 weeks 
to complete. Figure 12 demonstrates the output of this manual process for Vid-
eo #2 (in Figure 11 above) which had total 15 persons tracked and “labeled”. 
Specifically, Figure 12(Left) shows a plot of these Labels vs. their Area. As it is 
demonstrated, people appear at the end of the catwalk and become larger as they 
approach the camera before disappearing. In addition, Figure 12(Right) plots 
Labels vs Yaw, showing the actors appearing on stage in a sequence from each of 
the 5 distinct directions. 

Next, we ran our Automatic Object Detection and Tracking algorithms on the 
entire data set, totaling a mere 34 minutes to process the same 14,339 frames 
and detected 10,200 objects. Table 2 shows each of those objects with their 
Class ID Strings and the number of detections (Count), respectively, for all 5 videos. 
 

 
Figure 11. 360VR fashion videos in “5CatWalks” format used to evaluate automatic an-
notation accuracy. From Top Left Video#1 Standard, Video#2 Noisy, Video#3 Complex, 
Video#4 Extreme conditions, respectively. 
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Figure 12. Example of manual ground truth and tracking output (refer to text for detail). 

 
The raw detection performance of our solution (demonstrated in Figure 13) 

produced excellent results. While it did generate a minimal number of false ob-
ject detections, those were subsequently filtered out using domain-specific 
knowledge. More concretely, the detection results for the five videos yielded an 
average 98.66% accuracy over the more than 10K objects successfully detected 
(avg. 1.34% error rate). 

More specifically, to create a cleaned up output and eliminate redundancies 
we grouped the detected labels (or Class Ids) based on their real-life meaning 
and mapped them onto 3 additional output categories, such as “Face” (Class ID 
Str = “face”, “Human face”, “Human head”, “Human hair”, etc.), “Person” 
(Class ID Str = “Person”, “Man”, “Woman”, “Girl”, “Human body”, “Human 
arm”, “Human leg”, etc.), “Clothing” (Class ID Str = “Clothing”, “Dress”, 
“Footwear’, “Trousers”, “Skirt”, “Jacket”, etc.), and finally “False Detections”  
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Table 2. Automatic detection results on 5 fashion videos (see text). 

FashionVideo 1 FashionVideo 2 FashionVideo 3 FashionVideo 1 FashionVideo 1 

Class_id_str Count Class_id_str Count Class_id_str Count Class_id_str Count Class_id_str Count 

face 1379 Building 5 Person 81 Person 259 Clothing 777 

Clothing 2088 Animal 5 Man 19 face 365 Dress 89 

Person 910 Vehicle 44 Clothing 85 Clothing 211 face 397 

Building 78 Person 652 face 109 Woman 19 Person 245 

Human face 225 face 593 Human face 12 Man 8 Human face 95 

Dress 83 Clothing 865 Human arm 1 Human face 3 Swimming pool 1 

Man 5 Land vehicle 8 Footwear 1 Dress 12 Woman 53 

Woman 73 Train 1 Jacket 1 Human body 5 Human body 25 

Footwear 4 Human face 52 Vehicle 1 Sculpture 1 Footwear 15 

Trousers 2 Billboard 1     Girl 36 

Girl 3 Television 2     Fountain 5 

Human body 2 Woman 44     Human leg 1 

Sculpture 1 Man 25     Human arm 3 

Furniture 1 Dress 40     Human hair 6 

  Girl 11     Skirt 4 

  Fountain 4     Building 8 

  Human body 14     Man 1 

  Food 10     Human head 1 

  Footwear 4     Furniture 1 

  Plant 10       

 
(Class ID Str = labels that can not appear in a fashion show or out of non-context, 
like buildings, outside the region of interest, like faces in the audience, etc.). 

Figure 14 & Figure 15 show the error rates of this cleaned up detection per-
formance in a graphical form. In Figure 14(Left), the total number of detected 
objects (good and false results) are shown for each video, while on the right, the 
overall false detection error rates are plotted. Figure 15, on the other hand, 
summarizes the global performance characteristics for all videos when mapped 
onto the selected four main label categories. The concentric doughnut charts re-
fer to Videos #1 through #5 starting with the first one in the center.  

As a final step, the manual ground truth data (which contained only the 
bounding boxes of the models as they walk in front of the camera) was com-
pared to the automatic output of the “Persons” detected by the automatic me-
thods frame-by-frame. This confirmed 100% practical agreement for the envi-
sioned usage of this annotation data, specifically to be able to detect where and 
what the Viewer is looking at in any moment during an interactive VR section, 
as well as to guide the underlying automatic camera path generation mechan-
isms. 
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Figure 13. Example of detection output (all 5 videos https://youtu.be/8-0JkLvmDAE). 

 

 
 

 
Figure 14. Performance metrics reaching 98.66% average accuracy over 10 K plus detected objects. 

https://doi.org/10.4236/jsea.2019.125009
https://youtu.be/8-0JkLvmDAE


B. Takacs et al. 
 

 

DOI: 10.4236/jsea.2019.125009 144 Journal of Software Engineering and Applications 

 

 
Figure 15. Summary of overall detection performance and results. 

5. Conclusions and Future Work 

In this paper we have presented four novel challenges that complex VR produc-
tions are facing today and offered an integrated solution to address each of these 
elements via innovative technical solutions. We demonstrated important ad-
vances over the state-of-the-art in multiple areas while testing our solution on 
live productions. Preliminary evaluation of our key annotation, post-processing 
and 360 scene integration modules using these collected data sets offers a direc-
tion for future research. 

Specifically, although the initial prototype of the algorithm for automated ci-
nematography works well, there is definitely room for improvements in several 
directions. Firstly, more semantic information should be extracted from the 
scene with deep learning methods, in order to understand the video better, 
which in turn should allow the algorithm to generate a more interesting camera 
path. More cinematographic techniques (e.g. close-ups) and visual grammar 
rules for editing/framing should be added, in order to make the generated video 
more diverse from an artistic point and consequently more interesting to watch. 
Furthermore, the current prototype of the algorithm relies heavily on the pres-
ence of salient objects (especially persons) in the 360˚ video. If no such objects 
exist in the video (e.g. for a 360˚ video showing a nature scene like an empty 
beach), an alternative mode should be developed which relies on complementary 
information. 

In addition, we developed a method for omnidirectional depth estimation in 
order to provide limited viewpoint translating (3DOF+) to the viewer. We over-
came data set unavailability by rendering existing 3D datasets, both synthetic 
and realistic (from large scale 3D scans). Because of the fact that our data set is 
composed of indoors scenes only, and in the case of 3D scanned data, contains 
baked light information, our model’s performance is limited when testing on 
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real outdoors scenes as well as real captured indoors ones. For this reason we’d 
like to explore self-supervised methods that use view-synthesis as the supervi-
sory signal, which gives the ability to train neural networks without ground truth 
data and thus we can circumvent the lack of 360˚ annotated datasets by training 
with 360˚ video sequences captured using real 360˚ cameras. 

We have successfully evaluated the performance of our automatic annotation 
solution on a complex set of fashion videos demonstrating 98.66% detection and 
labeling accuracy, proving the practical applicability of our approach while 
yielding significant time-savings in post-production.  
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