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Abstract—The latest developments in 3D capturing, processing
and rendering provide means to unlock novel 3D application
pathways. The main elements of an integrated platform, which
target Tele-Immersion (TI) and future 3D applications, are de-
scribed in this paper, addressing the tasks of real-time capturing,
robust 3D human shape/appearance reconstruction and skeleton-
based motion tracking. More specifically, initially the details of
a multiple RGB-D capturing system are given, along with a
novel sensors’ calibration method. A robust, fast reconstruction
method from multiple RGB-D streams is then proposed, based
on an enhanced variation of the volumetric Fourier Transform-
based method, parallelized on the GPU, accompanied with
an appropriate texture mapping algorithm. On top of that,
given the lack of relevant objective evaluation methods, a novel
framework is proposed for the quantitative evaluation of real-
time 3D reconstruction systems. Finally, a generic, multiple depth
streams-based method for accurate real-time human skeleton
tracking is proposed. Detailed experimental results with multi-
Kinect2 datasets verify the validity of our arguments and the
effectiveness of the proposed system and methodologies.

Index Terms—3D reconstruction, depth sensors, Kinect, 3D
motion capture, skeleton tracking, evaluation, Tele-Immersion

I. INTRODUCTION

THREE-Dimensional reconstruction of dynamic scenes,
including human performers, and human motion tracking

are important tasks in the fields of multimedia, computer vi-
sion and graphics, with numerous applications, such as human
motion analysis and recognition, dynamic 4D media explo-
ration (e.g. in cultural heritage), mixed-reality and 3D Tele-
presence / Tele-Immersion. Tele-Immersion (TI) [1] refers to
an emerging technology that can support realistic interpersonal
communications, allowing geographically distributed users to
share an activity in a common virtual space, where users are
“immersed” via their real-time 3D “replicant” reconstructions.

Recent technological developments in the fields of real-
time 3D capturing (e.g. Kinect, Tango), 3D displays and
wearable 3D glasses (e.g. Oculus Rift, Microsoft Hololens), in
combination with novel approaches for 4D (3D+time) content
production, provide means to support novel applications, such
as the above-mentioned ones. For example, recent advances in
real-time capturing, full-3D reconstruction and its compression
[2] for transmission offer a technological basis to unlock novel
3D tele-immersive pathways.
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This paper describes the main elements of an integrated
platform, including capturing and fast 3D reconstruction of hu-
man 3D shape/appearance and skeleton-based motion tracking,
which targets TI and future 3D applications. The elements of
the continuously being developed platform has already allowed
the realization of a number of relevant applications, as in
http://vcl.iti.gr/3dTI/, i) ski competition among users
spread around Europe [3], ii) 3D hang-out communications
[4], iii) multi-player networked 3D games (“SpaceWars” and
“Castle in the Forest”), where users participate via their on-
the-fly reconstructed 3D “replicants”, and iv) athletes’ training
via professionals’ performance capturing and reconstruction
for “quick-post” 4D media. Additionally, the paper describes
a novel framework for the objective evaluation of the 3D
reconstruction process, where the 3D ground-truth model is
not available, as in real-time reconstruction applications.

The paper is organized as follows. In subsection I-A relevant
existing work is given, prior to a summary of our contributions
in subsection I-B. Section II describes the employed multi-
sensor 3D acquisition platform, its synchronization strategy
and a novel external calibration method. Sections III and IV
provide the details of the proposed methods for 3D reconstruc-
tion and skeleton-based human motion tracking, respectively.
The experimental results are presented in section V, while
conclusions and future work are finally given in section VI.

A. Previous relevant work

1) 3D capturing and reconstruction: Several passive RGB
cameras-based reconstruction methods can be found in the
literature [5], [6], [7]. With the exception of mainly Shape-
from-Silhouette (visual-hull) methods [5], which however lack
the ability to reconstruct concavities and require a large
number of cameras, unfortunately most methods are not ap-
plicable in our targeted real-time applications, due to their
slow performance. Other, sophisticated human template-based
reconstruction (“performance capture”) methods [8], [9], [10]
are capable to generate temporally-coherent 3D meshes using
less cameras, but still require a processing time of several
minutes per frame.

Regarding methods that use active direct-ranging sensors,
explicit fusion [11] or volumetric implicit fusion methods [12]
until recently had been applied only off-line to combine range
data from a single sensor. With the appearance of consumer-
grade RGB-D cameras, variations of the referenced approaches
have been employed for real-time Tele-presence applications,
e.g. [13], [14], [15]. In the category of volumetric reconstruc-
tion methods, the Poisson [16] and its ancestor Fourier Trans-
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form (FT)-based reconstruction method [17], which require as
input an oriented point-set, are worth mentioning, due to their
robustness against noise in the input point-normal data. These
methods, although fast, cannot perform in real-time.

Real-time, full 3D (i.e. full-body and 360o) reconstruction in
this paper is achieved by capturing with multiple RGB-Depth
(RGB-D) sensors. An efficient multi-sensor Tele-presence/TI
framework has been described in [18], [19], which however
compared to our approach (that reconstructs a single 360o

full-3D mesh), combines multiple RGB-D data only at the
rendering stage to produce intermediate views, in a multi-
view depth image-based rendering framework. A single 3D
mesh is reconstructed in [15] using a Signed-Distance-based
volumetric method [12]. A similar reconstruction approach is
described in [14]. Our proposed platform utilizes a volumetric
approach, an enhanced variation of the FT-reconstruction
method [17], which is parallelized on the GPU to achieve
real-time reconstruction rates. Finally, the very recent and
promising “Dynamic Fusion” work [20] has to be mentioned,
which constitutes an extension of the known “Kinect Fusion”
system [21] and can reconstruct slowly deforming objects in a
real-time SLAM framework. Nevertheless, it has been applied
with a single hand-held RGB-D sensor at close distances and
does not address the texture mapping problem.

Although the 3D processing methods, proposed in this
paper, apply also with Kinect v1 data, the increased quality
offered by the new Kinect generation v2 [22] naturally led to
its adoption in our platform, which currently supports both
versions. A few works, regarding capturing with multiple
Kinects v2, can be found in the literature [23], [24]. In
a work [23] slightly relevant to ours, Kinects are used to
capture a static room-sized scene into a virtual 3D model,
for safe testing of robot control programs. In that paper
however, neither the automatic calibration of the sensors,
nor the real-time capturing and reconstruction of dynamic
scenes is addressed. In a very recent, more relevant work
[24], a multi-Kinect2 capturing platform and its calibration
are described. A server-client distributed capturing system is
proposed, where the clients capture and on-the-fly generate
and filter the raw 3D point-clouds, which are either locally
stored or transmitted to server, uncompressed in both cases.
The software of a similar system can be found in the Brekel
toolset (http://brekel.com/multikinectv2/). In contrast, in
our system, the multiple Kinect RGB-D data are compressed
(before locally stored or on-the-fly transmitted) increasing the
data rates, and more importantly the data are fused to generate
a single, watertight and manifold textured mesh.

2) 3D reconstruction evaluation: Early studies on 3D re-
construction systems focused on reconstructing the surface of
static objects, in which case the availability of the ground-truth
3D model is possible. Consequently, the reconstruction evalua-
tion can be performed based on a 3D closest-points framework
or 3D Hausdorff distance, comparing against the ground-truth
model. However, recent 3D reconstruction systems perform
fast 3D reconstruction of dynamic scenes captured from a sin-
gle or from multiple RGB-D cameras [13], [15]. In such a case,
the ground-truth model is not available and the reconstruction
evaluation is performed mainly subjectively. In this paper, we

propose the first, to the best of our knowledge, framework for
objective evaluation of real-time 3D reconstruction systems.

3) 3D motion capturing: The most accurate solutions for
human motion tracking are marker-based ones, which how-
ever are intrusive and require special and expensive equip-
ment, making them prohibitive in many practical applications.
Marker-less solutions using a depth sensor are mainly based
on human motion databases and machine learning algorithms,
enabling reliable human motion tracking by constraining the
body configuration space [25], [26]. Kinect user-tracking is
based on [26], but due to the one-side field-of-view, it is often
problematic in challenging cases, due to self-occlusions.

On the other hand, the proposed platform offers a generic
method for accurate, real-time skeleton extraction based on a
volumetric human representation (fully exploiting the informa-
tion offered from the 3D reconstruction), thus overriding the
problems in self-occlusion cases. Relevant approaches that try
to extract the skeleton from volume data, use mainly multiple
RGB cameras and Shape-from-Silhouette (SfS) algorithms
[27]. Nevertheless, such approaches require robust silhouette
extraction, which is not always an easy task, especially when
the background is not static and uniform, introducing errors
in the motion capturing method. Another similar method is
proposed in [28], where the normalized gradient vector flow
is extracted, based on partial differential equations. Likewise,
in [29] Laplacian contraction is applied to skeletonize the
volume. Although both methods offer a reliable skeleton,
the identification and position estimation of the joints are
not addressed, while the latter is prohibitive for real-time
applications. Finally, Straka et al in [30] utilize again a SfS
algorithm and, similarly to the proposed method, uses graph-
based techniques to detect and extract skeleton in real-time.
However, the experimental results provide only a coarse view
of the method’s accuracy. In particular, the experimental results
present the success-rate in joint position estimation, where
as “successful” estimation is defined the case in which the
extracted position is within a 100mm radius from the ground-
truth. Contrary to that, the reliability and accuracy of our
method are demonstrated by comparing the anthropometric
angle of the knee and elbow joints (flexion/extension) with
state-of-art marker-based motion capturing systems, in chal-
lenging performances of Traditional sport “skills”.

B. Summary of contributions

The major contributions of this paper are listed below:
• A multi-Kinect2 system, with distributed capturing and cen-

tralized processing nature. To the authors’ best knowledge,
this is among the first works in the literature regarding
capturing with multiple Kinect sensors of version 2.

• A novel and fast sensors’ calibration method.
• A real-time reconstruction method from multiple RGB-D

streams, which includes an enhanced variation of the vol-
umetric FT-reconstruction method [17], parallelized on the
GPU and accompanied with appropriate texture mapping.

• A novel framework for the quantitative evaluation of real-
time 3D reconstruction systems from multiple RGB-D
streams. To the authors’ knowledge, this is the first work in
the literature towards the specific objective.

http://brekel.com/multikinectv2/
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• A generic method for robust real-time skeleton extraction
and tracking from multiple depth streams.

• Finally, a large dataset of multiple synchronized and cali-
brated RGB-D streams, captured with the proposed system
and offered to the research community for experimentation.

II. CAPTURING SETUP AND CALIBRATION

Although the proposed external calibration and 3D process-
ing methods apply well also with Kinect v1, in this section
we focus to the proposed multi-Kinect2 setup.

A. Capturing system

The proposed system theoretically supports an arbitrary
number of sensors, practically limited by the system’s com-
plexity, the needed processing power and the local network
bandwidth. Additionally, one has to take into account that in-
terference between multiple Kinect v2 sensors exists, although
it is less evident and its nature is completely different to that
with Kinect v1. For a detailed analysis, the reader is referred to
[31]. The devices are placed on a circle of radius r ∈ [2m, 4m],
all pointing to the center of the captured area (see also Fig.
2). As a good compromise between system’s complexity and
coverage area, the use of K = 4 Kinect sensors is proposed.
With careful placement of the devices, no major interference
issues are observed.

Since Kinect2 limits its usage to one sensor per computer,
a network architecture is mandatory. Specifically, the system
uses K computers, where K−1 of them serve as slave nodes
and the remaining one serves as both slave and master node.
The captured data arrive at the master node, where processing
takes place. The platform operates in two different modes, a
real-time mode and a quick-post one. The first mode contin-
ually polls the slave nodes/sensors for new synchronized (up
to half of the sensors’ internal clock interval) captured data.
The latter mode signals all connected nodes to start recording
data and finally triggers a “gathering” operation, having all
nodes transfer recorded data to the master node. To enable fast
transmission in the real-time mode and efficient storage in the
quick-post one, an intra-frame compression scheme (JPEG for
the RGB and LZ4 entropy compression for the depth images)
was employed, due to its reduced complexity and processing
time. These modes enable either i) on-line 3D reconstruction,
thus making it suitable for TI applications when combined
with real-time efficient data compression [2], or ii) temporally-
complete and higher quality results, exploiting all the recorded
data in a quick-post processing step.

B. Calibration

1) Internal calibration: The Kinect2 depth-to-color map-
ping operation cannot be expressed as a fixed table, since it
depends on the depth measurements. Due to the centralized
nature of processing the data, such a mapping table should
be transferred to the master node in each frame, which is
highly inefficient. Therefore, the mapping is approximated by
a fixed KRT matrix (intrinsics and relative pose of the RGB
camera). The approximation is performed based on 3D-to-2D
correspondences in a dense 3D grid, obtained by employing
the Kinect2 SDK functionality.

Fig. 1: From left-to-right: (i) The calibration structure,
constructed using 4 standardized IKEA boxes (JÄTTENE,
600.471.51), along with 32 unique QR markers [ISO/IEC
18004:2006]; (ii) its digitized 3D counterpart; (iii) the un-
wrapped texture image M(u) and SIFT correspondences.

2) External calibration: Spatial (external) calibration of
the sensors is achieved through a novel registration method,
utilizing an easy-to-build calibration structure that serves as a
registration “anchor”. The registration is performed separately
for each sensor, with respect to that “anchor”, using an
exact digital replica of the calibration object. The approach is
based on the Scale Invariant Feature Transform (SIFT) [32]
and Procrustes Analysis [33]. Apart from constructing the
calibration structure once, no user intervention is needed, in
contrast to commonly used methods that require capturing of
a moving target.
Calibration object: The design of the calibration object was
dictated by the following requirements: a) to be universally
easily reproducible; b) to exhibit unique texture patterns to
support SIFT feature extraction and matching; c) to be suf-
ficiently large, so that estimation/optimization is not affected
by noise/inaccuracies in feature extraction and matching. To
address these requirements, the calibration structure is realized
with 4 standardized IKEA package boxes, of size 56×33×41
cm3, as well as 32 unique Quick Response (QR) markers of
area 13 × 13 cm2, placed at the corners of the boxes’ side
faces. An illustration of the calibration structure is given in
Fig. 1(left). As shown, the exact virtual counterpart of the
calibration structure, a CAD 3D model, was also designed. A
complete manual with instructions and the CAD 3D model
can be downloaded from http://vcl.iti.gr/3dTI/TCSVT.
The virtual model’s texture is unwrapped into a single image
M(u). Let VM denote the set of model’s vertices and SM the
corresponding texture coordinates in M(u).
Calibration procedure: The calibration structure is posi-
tioned at approximately the center of the capturing space, so
that a) the full object is in the field-of-view of all sensors and
b) in the case of Kinect v1, to eliminate any bias, as in this
case the noise increases with the measured surface’s distance.

A color image Ik(u) and an “accumulated” depth image
D̂k(u) are acquired for each view-point k. During this step,
to avoid any potential multi-Kinect interference issues, the
sensors do not operate concurrently, given that the calibration
object is static. The accumulated depth image is obtained as
the pixel-wise median, to remove outliers and reduce noise.

SIFT features are extracted from each color image Ik(u)
and feature correspondences are established with the a-priori
calculated features of the model texture image M(u). Let
pj
k ↔ pj

M, j = 1, . . . , J denote the j-th established correspon-
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dence between the feature vector pj
k from image Ik(u) and

the corresponding vector pj
M from M(u). Let also uj

k and uj
M

denote the corresponding 2D image coordinates of the matched
features. Given the k-th sensor’s intrinsic parameters and the
depth image D̂k(u), the 2D points uj

k are back-projected to
obtain the 3D points Vj

k. The unwrapped texture coordinates
uj

M are transformed to the 3D vertices Vj
M by finding their

nearest neighbors in SM, and thus, their corresponding vertex
position in VM. Given the 3D correspondences Vj

k ↔ Vj
M,

the partial Procrustes problem [33] (no scaling and reflec-
tion) is solved to estimate the 6DOF pose matrix of the k-
th sensor, i.e. by minimizing the sum of squared distances∑

j ||(RkVj
k + tk)− Vj

M||2, subject to RTkRk = I3×3.

C. Quick-post synchronization

In order to synchronize the data recorded during the quick-
post operation mode, a post-synchronization procedure is
employed. Each sensor continuously acquires pairs of times-
tamped depth and color images. While it is not the exact
case, the depth and color components are considered to be
synchronized (in practice they are synchronized up to 16msec)
and therefore the depth timestamps are used. Each Kinect
generates timestamps according to its local time-line Tk. An
audio synchronization scheme is used to place the local time-
lines onto a global one. Audio signals of specific duration
are simultaneously recorded from each sensor. Let the audio
signal from the k-th Kinect be denoted as Ak(t). Its delay
with respect to the reference Kinect k0 is calculated by d̂k =
arg max(Rk,k0(d)), where Rk,k0(d) is the cross correlation of
audio signals Ak(t) and Ak0

(t). From these delays, the audio
timestamp offsets Ťk are obtained, which are used to place the
local time-lines Tk onto the reference one T.

Let now the RGB-D timestamps, synchronized to the global
time-line, be denoted as Tk(n), n = 1, . . . , Nk, where Nk

is the total number of frames in the k-th sequence. Under
nominal Kinect operation conditions, these timestamps are
approximately uniformly spaced, with a time step of 33ms.
In practice however, it is observed that frame generation rate
can fluctuate. Therefore, a “local synchronization” scheme is
employed, which continuously selects new groups of RGB-
D frames as follows. Let an RGB-D frame, with times-
tamp Tk(n), be denoted as Fk(n). A synchronized Group-of-
Frames (GoF), at a time instance m, is denoted as G(m) ={
F1

(
n1(m)

)
,F2

(
n2(m)

)
, . . . ,FK

(
nK(m)

)}
. The “synchro-

nization inconsistency” of a GoF is measured by the maximum
timestamp difference of its frames, i.e. max

i,j

{∣∣Ti(ni(m)
)
−

Tj
(
nj(m)

)∣∣} . Given a GoF G(m), in order to generate the
next group G(m+ 1), all candidate combinations Ǵ(m; s) ={
F1

(
n1(m) + s1

)
,F2

(
n2(m) + s2

)
, . . . ,FK

(
nK(m) + sK

)}
,

are considered, where s = [s1, s2, . . . , sK ] ∈ {0, 1}K is a
binary string of length K (excluding zero). Put simply, a
new GoF is generated by moving in some or in all the time-
lines by one step. Among all candidates Ǵ(m; s), the one that
minimizes the “synchronization inconsistency” is selected. The
algorithm continues iteratively, until the end of a sequence.

III. RECONSTRUCTION OF GEOMETRY AND APPEARANCE

The “performance” of a captured user along time is re-
constructed by the extraction of the user’s 3D geometry and
appearance on a per-frame basis, i.e. for each time instance.
Therefore, given multiple captured depth-maps Dk(u), u =
(u, v)T, k = 1, . . . ,K at a specific time instance, along with
the corresponding RGB images, the objective is the fast 3D
reconstruction in the form of a single textured triangular mesh.

Let u ← Πk(X) define the world-to-projective mapping
operation, which maps a 3D point X = (X,Y, Z)T to a pixel
u, while X ← Π−1k (u, Z) denotes the inverse (projective-to-
world) mapping. Similarly, let ΠRGB

k (X) stand for the corre-
sponding mapping for the k-th RGB camera.

A. Raw reconstruction and confidence weights

For each “foreground” pixel u ∈ Fk on the k-th depth-map,
a “raw” 3D point Xk(u) = Π−1k (u, Dk(u)) is reconstructed.
We use the notation X(u) to highlight that each reconstructed
3D point X is associated with a foreground pixel u ∈ Fk

on the image plane. Additionally, the corresponding “raw”
3D normals Nk(u) are estimated as follows: Terrain Step
Discontinuity Constraint Triangulation (SDCT) [13] is used to
realize an organized triangulation scheme, where each vertex
may be connected to one of its eight neighbors (on the
2D image plane). Given the triangle normals, each vertex is
assigned the mean of the normals of the triangles into which
it participates.

Apart from the raw position-normal information, a
confidence-weight map Wk(u) is calculated on a per-vertex
basis, based on the following intuitive observations. The “qual-
ity” of a raw measurement depends on the depth-camera’s
“viewing” angle, i.e. the angle between the camera’s line-of-
sight and the surface normal. Therefore, a confidence value
for a pixel (vertex) u ∈ Fk is computed from Wk,1(u) =

max{< X̂
loc
k (u),Nloc

k (u) >, 0}, where X̂ = −X/||X||, < ·, · >
denotes the inner vector product and the superscript “loc”
denotes that the 3D positions and normals are defined with re-
spect to the local camera’s coordinate system. Additionally, in
practice, the depth measurements near the foreground object’s
silhouette boundaries are noisy. An associated confidence map
Wk,2(u) ∈ [0, 1] is extracted based on this observation. A fast
approach to calculate such a confidence value for a specific
pixel u is to count the number of foreground pixels inside a
square neighborhood around u, divided by the neighborhood’s
size. This is implemented efficiently using a 2D moving aver-
age filter (with radius 10pixels in our experiments) on the cor-
responding binary silhouette image. The final confidence map
is calculated from the product Wk(u) = Wk,1(u) ·Wk,2(u).

B. 3D volume reconstruction

The objective is to calculate a scalar volume function
A(q), which implicitly contains the surface information as
the isosurface at an appropriate level L. The function is
defined over a 3D grid q = [qX , qY , qZ ]T ∈ {0, . . . , NX -1} ×
{0, . . . , NY -1}×{0, . . . , NZ-1}, inside the foreground object’s
bounding box. To this end, a FT-based approach [17] is
employed, enriched with a smoothing and weighting scheme.
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The raw normals Nk(u) are initially “splatted” to the voxel
grid, in order to obtain the gradient vector field V(q). In
the simplest, non-weighted version of the method, each raw
sample is “clapped” to its nearest voxel, and then the vector
field is normalized by the number of samples clapped at each
voxel. In the proposed method’s version, the normal Nk(u) is
smoothly distributed to point’s neighbor voxels, according to:

V(q) =
∑
k

∑
u∈Fk

g(Xk(u), q;σ1) ·
[
wk(u, q) · Nk(u)

]
, (1)

where g(Xk(u),q;σ1) are “splatting” weights based on the
distance x of point X from voxel q and more specifically,
g(x;σ1) = σ−11 exp(−x2/σ2

1) is a Gaussian. The confidence-
related weights wk(u,q) are obtained from: wk(u,q) =
Wk(u)/d(q), with the normalization factor d(q) being a
weighted estimate of the points density at the voxel q, namely:

d(q) =
∑
k

∑
u∈Fk

g(Xk(u), q;σ2) ·Wk(u), (2)

where g(x;σ2) is again a Gaussian with standard deviation
σ2. In other words, we employ kernel density estimation [34]
(taking into account the weights Wk(u)), using a Gaussian
kernel. In order to avoid singularities, σ2 should always be
larger than σ1. It was experimentally selected equal to σ2

2 =
3
2σ

2
1 . With respect to σ1, the larger its value, the smoother the

output gradient-field and the reconstruction is expected to be.
A reasonable selection is to use a σ1 value that is proportional
to the voxel’s diagonal. In our experiments we use a relatively
small value, equal to voxel’s radius (half of the diagonal).
Given this selection, in order to speed up calculation in our
implementation, we consider only the 43 voxels around each
input point, since the values at other voxels will be very low.

Intuitively, the use of the “splatting” weights in (1) is
similar (not equivalent) to convolving with a low-pass filter,
resulting into a smooth gradient field. The use of the density-
normalized weights wk(u,q) assigns smaller weights to non-
confident input samples at high-density regions, letting other
confident points in the neighborhood to contribute more in the
reconstruction of the gradient field.

Subsequently, following [17], the calculated gradient field
V(q) = [VX(q), VY (q), VZ(q)]T is transformed into the
3D frequency domain, by applying 3D FFT separately to
each of vector field’s X , Y , Z components, to obtain
V̂(ω) = [V̂X(ω), V̂Y (ω), V̂Z(ω)]T, where ω = (ωx, ωy, ωz)T

is the 3D frequency vector. The integration filter F̂(ω) =
[F̂X(ω), F̂Y (ω), F̂Z(ω)]T = 1

||ω||2 [jωx,jωy,jωz]T, j =√
−1, is applied by multiplication in the frequency domain.
The final volumetric function A(q) is calculated by applying

the inverse 3D FFT on the integrated (filtered) vector field and
adding its X , Y , Z components. The purpose of applying the
integration filter in the frequency domain is justified by the
IIR (Infinite Impulse Response) nature of the filter, which does
not allow for parallel calculations on the GPU if applied in
the original domain, as well as by the existence of very fast
FFT implementations.

It has to be recalled here that multiplication in the discrete
Fourier domain is equivalent to circular convolution in the
original spatial domain. Therefore, to avoid any unwanted

effects of circular convolution, the tight foreground object’s
bounding box is adequately extended before voxelization
(equivalent to zero padding of V(q)).

The final 3D surface is extracted in the form of a triangle
mesh (vertex positions, normals and connectivity), as the
isosurface A(q) = L using the marching cubes algorithm
[35]. The level L is calculated as the average value of A(q)
at the input sample locations Xk(u). The whole reconstruc-
tion method was implemented with CUDA (www.nvidia.com/
object/cuda_home_new.html) for parallel computing on the
GPU, since most of its stages involve pixel- or voxel-wise
calculations.

C. Texture mapping - Reconstruction of appearance
Many vertices in the final reconstructed model are visible

in more than one RGB cameras. Therefore, colors from
more than one RGB camera have to be combined to pro-
duce the color of each reconstructed vertex. There are two
important issues that need to be taken into account and
can significantly improve the visual quality of the rendered
reconstruction. Firstly, volumetric 3D reconstruction methods
generally produce a relatively low number of triangles and
vertices (depending on the volume resolution), lower than the
number of pixels in the original 2D domain. Therefore, a
color-per-vertex rendering approach will lead to color alias-
ing, producing low visual quality. Instead, we employ full
texture-mapping and assign multiple texture patches to each
triangle, from the multiple RGB views. Secondly, instead of
using equal weights for each “visible” RGB camera, one
could use weights based on the “quality” of the captured
colors. Practically, given that the RGB cameras are more-
or-less equidistant from the captured user, a) the quality of
the “captured” color depends on the “viewing” angle of the
captured surface, i.e. it depends on the angle between the
line-of-sight and the surface normal. Additionally, b) near the
captured object boundaries, inaccurate Depth-to-RGB camera
registration (calibration) may lead to color-mapping artifacts
(e.g. color of the background assigned on the reconstructed
foreground object). Therefore, the captured color information
near the object boundaries have to be assigned a smaller
weight. It should be noted now that the depth image-based
weights Wk(u) in subsection III-A were defined based on
similar intuitions. Finally, given that the depth and RGB
cameras of a single Kinect-like RGB-D device are parallel
and very close to each other, it can be practically considered
that the visibility of a vertex is the same in both cameras. In
practice, this approximation proved to be helpful in speeding-
up calculations without introducing significant color artifacts.
Since the weights Wk(u) contain visibility information and
incorporate the practical observations for weighting, they are
directly used in the texture mapping process.

Formally, let V(X) ⊆ {1, . . . ,K} denote the subset of
depth cameras in which the vertex X is visible. Let also
uk, k ∈ V(X) be the corresponding pixels on the “visible”
depth cameras, where the vertex X projects according to uk =
Πk(X). Similarly, let uRGBk = ΠRGB

k (X) be the corresponding
pixels (UV-coordinates) on the “visible” RGB cameras. Each
vertex is assigned multiple weights Wk(u) and UV texture

www.nvidia.com/object/cuda_home_new.html
www.nvidia.com/object/cuda_home_new.html
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coordinates uRGBk on the corresponding “visible” images. Each
reconstructed triangle is rendered with OpenGL multi-texture
blending, using the associated vertices’ weights.

D. Color correction
The RGB cameras of consumer-grade sensors, especially

under non-uniform lighting and background conditions, may
output color values that vary significantly between adjacent
RGB views, i.e. the color of the same 3D point appears
different in two captured RGB views. To attenuate the resulting
texture artifacts, we search for the color-correction functions
that minimize (in a robust mean-square sense) the color
difference between pairs of pixels in two cameras that capture
(approximately) the same 3D point. Our approach borrows
ideas from [18], but uses the HSV colorspace instead.

1) Searching for color correspondences: Consider two ad-
jacent RGB cameras, with overlapping field-of-view, indexed
with k1 and k2. Let the raw vertex positions for a given frame
be denoted as Xi

k1
, i = 1, . . . , I and Xj

k2
, j = 1, . . . , J , re-

spectively, whereas the corresponding raw RGB vertex colors
be Ci

k1
and Cj

k2
. The “mutual” closest points between the

point-clouds, with Euclidean distance smaller than 20mm, are
searched. This way, a number of color correspondences Cm

k1
↔

Cn(m)
k2

,m = 1, . . . ,M , is found. To achieve robustness, color
correspondences in multiple frames are accumulated.

2) Estimating color-correction functions: The objective is
to find a linear function Fk1,k2

(C) such as ||Fk1,k2
(Cm

k1
) −

Cn(m)
k2
|| is minimized. We found in practice that an RGB-

separately approach [18] may be ill-posed when the range
of colors in the foreground object is limited, e.g. when a
specific color channel is missing. On the other hand, by
working in the HSV color-space, it is expected that the Hue
component is not affected by the exposure control, while it
was experimentally found that the Saturation component is
only slightly affected. Therefore, the correspondence colors are
transformed into the HSV color-space and a linear mapping
model is built by robust (RANSAC) linear regression on
the Value data V m

k1
and V

n(m)
k2

,m = 1, . . . ,M , such that
|Fk1,k2

(V m
k1

)−V n(m)
k2

| is minimized in a (robust) mean-square
sense. Given a reference camera, the final color-correction
function for a specific camera is obtained by considering the
path from that camera to the reference.

E. Methodology for quantitative objective evaluation
In order to objectively evaluate the performance of a real-

time 3D reconstruction method, a capturing system consisting
of K + K ′ calibrated RGB-D sensors is employed, where
K sensors take part in the reconstruction procedure and
K ′ sensors serve as additional ground-truth planar views of
the user. Such a capturing system is shown in Fig. 2. The
proposed objective evaluation framework aims at addressing
the following question: How well does the reconstructed mesh
“explain” (match) the captured data in all available 2D views?
The comparison is performed on the 2D image plane, by i)
projecting the reconstructed mesh into the K+K ′ planar views
and ii) comparing the “rendered” depth and color images (the
depth- and color- buffers of the OpenGL frame-buffer) with
the original captured views. Since the ground truth data are

Fig. 2: Camera setup for 3D reconstruction and quantitative
evaluation. K = 4 sensors (c0, c1, c3, and c5) take part in the
reconstruction process and K ′ = 2 sensors (c2, c4) serve as
additional ground-truth views.

sensor data, they may suffer from noise, especially near the
border areas between the user and the background. This means
that, the employed performance measures may sometimes
deteriorate due to bad ground-truth model assumption. Such
situations will be further discussed in the experimental section.

1) Evaluation of the reconstructed volume: The recon-
structed 3D shape may suffer from holes, missing/cut limbs
and model distortions. In order to quantify such errors, the
percentage of the non-reconstructed object volume is estimated
based on the silhouette information, as follows. Firstly, the
reconstructed 3D mesh is projected onto the depth image plane
of sensor ck, k = 1, . . . ,K + K ′ and the reconstruction’s
binary 0/1 silhouette mask Sr

k is extracted. The ground-truth
silhouette mask Sg

k is also extracted by performing foreground-
background segmentation on the sensor depth. The “volume
reconstruction error” (VRE) metric is calculated from:

Vk = |Sr
k ⊕ S

g
k| / |S

r
k ∨ S

g
k|, (3)

where ⊕ and ∨ denote the binary operators XOR and OR,
respectively and | · | is the silhouette mask area. Due to the
XOR operation, the metric punishes both false positive and
false negative silhouette areas. Another used silhouette-based
metric is the 2D Hausdorff distance [36], expressed in pixels:

Hk = max
{

sup
ur∈Sr

k

inf
ug∈S

g
k

d(ur,ug), sup
ug∈S

g
k

inf
ur∈Sr

k

d(ur,ug)
}
, (4)

where d(ur,ug) denotes the 2D distance between the pixel ur
in the reconstructed silhouette mask and the pixel ug in the
ground-truth mask. When the reconstructed model contains
holes, the Hausdorff distance is equal to the radius of the
circle, inscribed to the hole. When it contains a missing or cut
limb, the metric will be equal to the length of the that limb.

2) Evaluation of the reconstructed geometry: In order to
evaluate how accurately the 3D geometry is reconstructed, a
3D closest-point approach is employed. Firstly, the ground-
truth foreground depth image of the sensor ck is back-projected
onto the 3D space to generate a point-cloud {Xg

k,i, i =
1, . . . , Ik}. The point-cloud {Xr

k,j , j = 1, . . . , Jk} is also
generated from the corresponding depth image obtained from
the reconstructed mesh. The use of a closest-point rooted mean
square error (CP-RMSE) metric is proposed, given from:

CPRMSEk =

√√√√ 1

Ik

Ik∑
i=1

inf
j=1,...,Jk

{
‖Xg

k,i −Xr
k,j‖2

}
. (5)
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A closest-point MSE metric is employed instead of 3D Haus-
dorff distance between surfaces, since the latter would require
connectivity information for the ground-truth point-cloud, and
more importantly, due to its sup operation (instead of mean),
it would mainly count for missing limbs (as in the previous
paragraph), instead of the reconstruction geometry accuracy.

3) Evaluation of the appearance quality: The evaluation
of the appearance quality is perceived as an image quality
assessment task: How well does the ground-truth RGB image,
captured from a specific view-point, match the textured model,
rendered from exactly the same view-point? Due to the poor
performance of MSE and PSNR as visual quality metrics [37],
a Structural Similarity Index (SSIM)-based measure [38] was
chosen in our framework. The SSIM between two images,
evaluated at pixel u, is given from: SSIM(u) = [l(u)]α ·[c(u)]β ·
[s(u)]γ , where α, β, γ are constant exponents and

l(u)=
2µXµY+C1

µ2
X+µ2

Y + C1
, c(u)=

2σXσY+C2

σ2
X+σ2

Y+C2
, s(u)=

2σXY+C3

σXσY+C3
(6)

are the “luminance”, “contrast” and “structural” terms, re-
spectively. C1, C2, C3 are small constants and µX, µY, σX,
σY, σXY stand for the images’ means, standard deviations and
cross-covariances in a neighborhood N (u) around pixel u.
In this work, a variation of SSIM is employed, the Weighted
Multi-Scale SSIM (WMS3IM) [39], evaluated at J = 3 scales.
WMS3IM is calculated from: WMS3IMk(u) =

∏3
j=1 l

αj

j c
βj
j s

γj
j ,

where j = 1, 2, 3 stands for the scale and the constants
αj , βj , γj have been set based on the psychovisual experiments
of [40] and more specifically: {α1, α2, α3} = {0, 0, 0.1333}
and {β1, β2, β3} = {γ1, γ2, γ3} = {0.0448, 0.3001, 0.1333}.
The “structural” term at scale j is calculated from:

sj =

∑
u∈Sr

k
s(u)w(u)∑

u∈Sr
k
w(u)

, (7)

where the weights in our case are w(u) =
∑

v∈N (u) S
r
k(v).

Similar equations are used to calculate the “luminance” and
“contrast” terms lj and cj .

IV. VOLUME-BASED MOTION TRACKING

In this section, a fast method for human skeleton tracking
is presented, exploiting the human volume reconstructed as
in section III. The method tracks the joint positions of a 15-
joints skeletal structure, illustrated in Fig. 3. This structure is
separated into a) the rigid-body part that includes the “torso”,
“hip”, “neck” and “shoulder” joints, and b) the limb-parts that
consist of the “elbow” and “wrist” or the “knee” and “ankle”
joints. The rigid-body part is a group that moves rigidly, based
on the assumption that the relative rotations of the upper- and
lower- body trunk can be ignored. This simplification, although
constitutes a limitation, introduces robustness.

The proposed method consists of two phases. Initially, in a
“user-calibration” phase, the user body structure is estimated.
Then, during the “main tracking” phase, both the position-
orientation of the rigid-body part and the limb-joint positions
are tracked. The main tracking algorithm is initially described,
assuming that the necessary “user-calibration” data are known,
before going into the description of the “user-calibration”
phase in subsection IV-B. The algorithm steps, performed on
a per-frame basis, are given sequentially in the next section.

A. Main tracking algorithm

Volume binarization and skeletonization: Given the re-
constructed volume function A(q) and the corresponding
isosurface level L (subsection III-B), the binary human volume
Ah(q) ∈ {0, 1} is extracted (Fig. 4(a)). Skeletonization is
then realized (Fig. 4(b)), using the method in [41]. The
result is denoted as As(q). Additionally, we let Qh denote
the set of voxels belonging to the binary volume Ah, i.e.
Qh = {q : Ah(q) = 1}, and Qs the voxels belonging to
the skeletonized volume, respectively.
Estimation of torso position: Given the structure and
symmetry of the human body, the torso is in most cases the
joint closest to the human mass center [42]. Therefore, the
“most centralized” voxel of Qh is initially searched. More
specifically, let p(q) denote the 3D coordinates of voxel q.
The average Euclidean distance of a voxel q with the rest
voxels is D(q) = 1

|Qh|
∑

qi∈Qh
||p(qi) − p(q)|| , where |Qh|

is the cardinality of Qh. The point p(qc) for which D(q) is
minimized, represents the voxel closest to the torso. The point
in the set Qs, closest to p(qc), represents the detected torso
position and is notated as pt.
Detection of extreme joints (head, wrists and ankles):
Towards our objective a graph-based technique is utilized.

1) Graph and Minimum Spanning Tree (MST): The points
of the skeletonized set Qs are considered as the vertices
(nodes) Vs of a graph G(Vs, E), where E is the edge set. The
graph is constructed by connecting the nodes with Euclidean
distance lower than a predefined radius (i.e. ∼15cm), so that
only neighboring vertices are connected. The cost of an edge
between two connected nodes is set equal to their Euclidean
distance. The cost along a path from one node to another
equals their geodesic distance. The Minimum Spanning Tree
(MST), let T , is extracted from G, using Kruskal’s algorithm
[43], as shown in Fig. 4(c). The MST provides an initial
skeleton-like model, with unique paths from node to node.

2) Extreme joints detection: Exploiting the structure of the
given MST, under normal circumstances, its leaves correspond
to the human body extremities, as depicted in Fig. 4(d). These
5 extremities need to be labeled as “ankle”, “wrist” or “head”.

However, in special cases, the leaves of the initial tree T
may not count to N = 5. Let Nd denote the number of the
MST’s leaves. In the non-standard case of Nd < 5, indicating
possible body part stacking, a heuristic approach is used: The
two “lower” detected leaves (their 3D positions have the lowest
values along the Y-axis) are labelled as “ankle” joints. Given
that, let Tlow denote the sub-tree that includes the paths from
the ankles to the torso. Subtracting Tlow from T (i.e. dropping
the nodes of Tlow and their incident edges), the upper-body
sub-tree Tup = T \ Tlow is obtained. In cases of holding the
hands stacked on the body, the number of the leaves of Tup will
be equal to 3, i.e. the “wrists” joints are revealed. In the other
non-standard, rare case of Nd > 5, indicating “spurious artifact
limbs”, the detected leaves are filtered based on their geodesic
distance to the torso. The paths with geodesic lengths closer
to those estimated during the calibration phase are selected,
while the rest of them are dropped. Thus, the number of the
leaves in the final tree equals to N = 5.
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Fig. 3: The 15-joints structure,
separated into the rigid-body part
and the limbs part.

Fig. 4: Overview of the main stages of the proposed method. a) The initial binary volume
Ah, b) the skeletonized volume As, c) the Minimum Spanning Tree (MST) of graph
G(Vs, E), d) the 6 basic/initial joints detection and e) the final extracted skeleton.

Let H = {Hp}p=1,...,10 denote the set of all paths from
extremity to extremity. Let also B = {Bp}p=1,...,6 denote the
subset of H that includes only the paths passing through the
torso point pt, i.e. the paths from an upper-body extremity to
a lower-body one. The intersection of the paths in B, (i.e.
keeping only the nodes common in these paths) gives the
“spine” path S. The detection of the spine path is crucial, since
its usage is twofold: i) it separates the extremities into the
upper-body (‘wrists” and “head”) and lower-body (“ankles”)
groups. The upper-body joint with the shortest path to the
torso is labelled as the “head”; ii) the torso orientation can be
estimated by applying PCA on the area around the spine.
Torso orientation estimation and rigid-body update: Given
the spine path S and the initial volume Ah, we extract the
points in the area of the thorax, the abdominal and the pelvis
segments, by considering a radius r whose value depends on
the human-body volume, around the points of the spine. Let
the set of these points be Ptr. By applying PCA to Ptr, the
torso orientation Rt is estimated. Assuming that the neck, the
shoulders, the hips and the torso are rigidly connected (rigid-
body part), we use Rt and the torso-position pt to transform
the root-rigid body in the world space.
Detection of link joints (elbows and knees): Let Xr and Xx

stand for the position of the root joint (i.e. hip or shoulder)
and the corresponding human extremity (i.e. wrist or ankle)
of a limb, respectively. Let also Xj be the position of a node
along the path from Xr to Xx. The bone lengths are considered
to be known, estimated during the user-calibration phase. The
positions of the link joints are extracted from:

p̂ = argmin
j

(∣∣∣||Xj − Xr|| − dr
∣∣∣+ ∣∣∣||Xj − Xx|| − dx

∣∣∣) , (8)

where dr is the bone length from joint r to j and dx the length
from joint x to j. This means that p̂ is given as the point on the
skeleton graph that intersects with the circular patch obtained
from the intersection of the spheres {Xr, dr} and {Xx, dx}.
Kalman filtering: Kalman filtering [44] is applied on a
per-joint basis, in order to achieve a smooth transition from
frame to frame and avoid errors from volume noise. Erroneous
estimates of joint positions (especially under circumstances
like self-occlusion or ghost limbs) can be partially corrected
by imposing inter-frame correlation of joint positions via
Kalman Filtering. In the employed Kalman-filter model, the

(a) (b)

Fig. 5: User calibration in X-pose: (a) Estimation of bone
lengths. (b) Extraction of the rigid-body structure.

“state transition” matrix is set based on the Newtonian law
p(t)=p(t-1)+v(t-1), while the measurement/observation vector
corresponds to the estimated 3D joint position and is modelled
as the actual position plus zero-mean Gaussian white noise.

B. Human body structure calibration

The calibration phase assumes that the user is standing in X-
pose, shown in Fig. 5(a). Initially, the rigid-body part structure
is estimated, as shown in Fig. 5(b). The bounding box of
the body trunk is extracted and the intersections of the edges
of the MST with this bounding box gives the shoulders and
hips joints. The neck is extracted as the midpoint between the
shoulders. The positions of the link joints (elbows and knees)
in X-pose (Fig. 5(a)) are then extracted from:

p̂ = argmax
j

(
||(Xj − Xr)× (Xx − Xr)||

||(Xx − Xr)||

)
. (9)

The notation is similar to the one in eq. (8). According to
(9), based on human body bones rigidness, the point with
the maximum distance from the line segment that connects
the joints (e.g. shoulder with wrist) represents the link-joint
position, as shown in Fig. 5(a). During the calibration phase,
apart from the bone lengths, the geodesic lengths of the paths
from each joint to torso are extracted.

The method is applied for a sequence of frames, instead
of a single frame. The body structure definition is considered
complete after a few frames, in which, rules of human body
symmetry and estimation repeatability were satisfied.



ALEXIADIS et al.: AN INTEGRATED PLATFORM FOR LIVE 3D HUMAN RECONSTRUCTION AND MOTION CAPTURING 9

Fig. 6: “Argyris” sequence - (a) Initial Kinect data, i.e. four separate meshes [13], vs proposed watertight reconstructed
geometry; (b) Results with color - From left to right: (i) Four separate meshes, (ii) Poisson reconstruction [16] (resolution
2r × 2r × 2r) and (iii) proposed watertight volumetric reconstruction (resolution 2r × 2r+1 × 2r), all with color-per-vertex
information without weighted combination of the colors, i.e. equal weights are used; (iv) Using weighted blending of the RGB
textures, based on the proposed weights. The texture is sharper and the colors are smoothly blended.

Fig. 7: “Argyris” sequence - For each pair, the proposed
watertight reconstruction (right) is compared with TSDF-based
reconstruction (left), at the same volume resolution.

Fig. 8: “Giorgos” sequence - The effect of color-correction
and weighted texture blending. From left to right: (i) Initial,
(ii) after color correction, (iii) and after weighted blending.

V. EXPERIMENTAL RESULTS

We initially present results of the employed capturing and
reconstruction method, in terms of subjective 3D geome-
try/appearance reconstruction quality and processing time,
before going into an objective quantitative evaluation analysis,
which is based on the proposed framework of section III-E. In

Fig. 9: “Stavroula” sequence (Kinect1 data) - From left-to-
right: (i) Raw reconstruction (five separate meshes); (ii),(iii)
The effect of color-correction: Without and with color correc-
tion. In both cases, weighted texture blending was applied.

subsection V-C, experimental results of the proposed human
skeleton tracking method are finally presented.

Additional experimental results, in the spirit of this section,
can be found in the supplementary document, along with sup-
plementary videos, at http://vcl.iti.gr/3dTI/TCSVT. The
datasets used in this section can be downloaded from:
http://vcl.iti.gr/3dTI/TCSVT/dataset.

A. 3D reconstruction results and processing time

Most results were obtained using capturing setups with
multiple Kinects2, in both small-area and medium-area spatial
configurations. In the second case, professional athletes are
captured, performing “skills” of traditional Gaelic and Basque
sports. The presented results were obtained using a volume
resolution 2r× 2r+1× 2r with r = 7, unless otherwise stated.
Notice that the resolution along Y is doubled, as the human
bounding box is larger along its height.
Small-area configuration

Four sensors are placed on a circle of radius approximately
2.5m, with an individual performing athletic movements at the
center of the captured space.

1) “Argyris” sequence: In Fig. 6(a), the proposed recon-
struction result is compared with the initial reconstructed data
(four aligned separate meshes), in terms of 3D geometry.

http://vcl.iti.gr/3dTI/TCSVT
http://vcl.iti.gr/3dTI/TCSVT/dataset
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Fig. 10: Gaelic football “punt kick” - From left to right:
(i) Original RGB view, (ii) raw reconstruction (four separate
meshes) and (iii) proposed reconstruction from two view
points.

Despite the high quality of Kinect2 sensors and the short-range
capture, the initial raw reconstruction presents some geomet-
ric artifacts, whereas, the proposed watertight reconstruction
presents a smooth geometry with much fewer artifacts.

Fig. 6(b) presents reconstruction results with color informa-
tion. From left to right, the initial raw data is compared with
the Poisson volumetric reconstruction method [16] (resolution
2r× 2r× 2r, r = 7) and the employed volumetric reconstruc-
tion, all with color-per-vertex information without weighted
combination of the colors. As can be seen, the employed
method presents similar results with the Poisson reconstruction
method [16], although it is much faster, as described later
in this section. At the right of Fig. 6(b), the final rendered
reconstruction, using weighted texture blending, is given. The
color artifacts are much fewer, the colors are smoothly blended
and the texture is sharper. We highlight that in Fig. 6(b) and
all subsequent figures, the light-gray regions (e.g. at the hairs
of “Argyris”) correspond to untextured regions, since some
reconstructed vertices are not visible to any camera.

In Fig. 7, the proposed volumetric reconstruction is qualita-
tively compared with a TSDF-based reconstruction [12], [21],
at the same volume resolution (2r × 2r+1 × 2r, r = 7). It
is evident that the proposed FT-based method can efficiently
handle the depth-measurement noise, compared to TSDF that
additionally does not produce watertight reconstruction.

2) “Giorgos” sequence: In contrast to the previous exam-
ple, in this sequence one can observe color-mismatch problems
between the cameras, due to change of the lighting conditions.
Compared to Kinect1, with the Kinect2 RGB camera the
problem is less frequently observed. However, an example
is presented in Fig. 8, to showcase the performance of the
employed color-correction method (subsection III-D), as well
as the importance of the proposed weighted texture blending.
As shown in the middle of Fig. 8, the situation improves after
color-correction application, while the artifacts completely
fade out with the weighting of the textures (right).

3) “Stavroula” sequence: A color-correction example with
Kinect1 data is provided in Fig. 9. “Stavroula” was captured
with five Kinects1 at distances approx. 2.5m. The improvement
after the application of color-correction is visible. One can

Fig. 11: Gaelic football - From left to right: (i) raw reconstruc-
tion; (ii) Reconstruction without and (iii) with the smoothing
and confidence-based weighting in equation (1).

Fig. 12: Gaelic football “Overhead Catch” - Left: Raw recon-
struction vs proposed reconstruction (geometry only). Right:
Raw reconstruction vs proposed reconstruction, with weighted
UV-texture mapping.

Fig. 13: “Jai Alai Backhand Shot” - From left to right: (i)
Reconstructed geometry; (ii) original view; (iii) textured mesh,
rendered from two view points.

Fig. 14: “Pala Straight-arm Side Shot” - Original view vs
rendered reconstruction from two view points - Due to the
fast motion under non-perfect synchronization conditions, thin
structures like the arms are not well reconstructed.
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TABLE I: Comparative results: Average time (msec) of the
volumetric methods, for the “Argyris” sequence

Reconstruction resolution
Vol. Recon. Method r = 5 r = 6 r = 7

Vol. FT-based proposed (simple) 10 msec 22 msec 102 msec
Vol. FT-based proposed 17 msec 27 msec 163 msec
Vol. Poisson [16] 385 msec 1061 msec 4602 msec
Vol. TSDF-based [12], [21] 10 msec 21 msec 89 msec

TABLE II: Average reconstruction time (msec) and rates for
“Argyris” sequence

Reconstruction resolution
Method’s step r = 5 r = 6 r = 7

Raw point-normal reconstruction 15 msec
Calcul. of confidence weights 4 msec
Vol. FT-based proposed (simple) 10 msec 22 msec 102 msec
Other (e.g. texture mapping) 5 msec 23 msec 46 msec
Total (msec) 34 msec 64 msec 167 msec
Rate (fps) 29.4 fps 15.6 fps 6.0 fps

notice in Fig. 9(left) the noisy nature of the input Kinect1
data, due to multi-Kinect interference.
Medium-area configuration: Traditional sport “skills”

The reconstruction of traditional sport performances is con-
sidered in the current subsection. The capturing setup consists
of four Kinect2 sensors, placed on a circle of radius close to
4m. The athletes perform fast sport “skills”, within a large
area, sometimes at the distance limits of Kinect2.

4) Gaelic football “Punt kick”: Figure 10 depicts an exam-
ple 3D reconstruction of an athlete during the execution of a
Gaelic football “skill”. Due to the lack of perfect synchroniza-
tion and the relatively fast motion (notice that the motion blur
is visible even in the original view), the captured data are not
perfectly aligned. However, the method reconstructs a good-
shaped model, while the texture weighting method reduces the
artifacts significantly.

Figure 11 demonstrates the positive effect of the smoothing
and confidence-based weighting in equation (1), especially
at the separate meshes’ boundaries, where noisy input point
positions and normals may introduce artifacts.

5) Gaelic football “Overhead catch”: The reconstructed
3D geometry of the proposed method is compared to the
originally captured data (four separate meshes) at the left Fig.
12. The volume resolution here is 2r × 2r+1× 2r with r = 6.
As can be seen, due to the low resolution of the voxel grid,
some details, e.g. the hands, are lost. Additional reasons are
i) the low density of the input captured 3D points (the athlete
is far from the cameras); ii) the non perfect synchronization,
which causes data to be not perfectly aligned and opposite
surfaces to “cancel out” each other.

At the right of Fig. 12, the corresponding final UV-textured
model is depicted versus the originally captured data.

6) Traditional Basque sports: In Fig. 13 an athlete is
reconstructed performing a traditional Basque sport “skill”.
Despite the large capture distance and the relatively fast
motion, the 3D reconstruction method “captures” acceptably
well the shape and appearance of the athlete.

An additional example is given in Fig. 14, with a female
athlete in a fast “skill”. In this case, thin structures, such as the
arms, are not well reconstructed, due to very fast motion under

Fig. 15: For each pair: (i),(iii) Originally captured depth,
serving as ground truth, and (ii),(iv) the reconstructed one.

non-perfect synchronization conditions. This example reveals
the limitation of the capturing system in very fast movements,
as any multi-camera system without external hardware-based
triggering synchronization. This limitation dictates directions
for our future work, as will be discussed in section VI.
Reconstruction Time / Rate

The proposed GPU volumetric reconstruction was applied
for voxel-grid resolutions 2r×2r+1×2r, with r = 5, 6, and 7.
Similarly, a TSDF-based reconstruction was employed, using
the optimized GPU implementation of the Point-Cloud library
(ver.1.8.0, http://pointclouds.org/). Finally, the Poisson
reconstruction method [16] was applied with a tree-depth
equal to r + 1, which corresponds to the same voxel-grid
resolution, halved along Y . The average number of vertices
produced by the proposed method at r = 7 is 90K vertices,
whereas the corresponding number for Poisson reconstruction
is approximately the half.

Table I provides mean execution time results for the pro-
posed volumetric FT-based reconstruction method vs the Pois-
son method and the TSDF method, considering the “Argyris”
sequence. The experiments ran on a PC with an i7 processor
(3.2GHz), 8GB RAM and a CUDA-enabled NVidia GTX 560.
As shown in the third row of Table I, the mean reconstruction
time for the CPU Poisson method is above 4sec at r = 7,
whereas the GPU implemented (weighted) FT-based method
requires 163msec, as given in the third row. The corresponding
number for the simple version of the method (without the
weighting scheme in equation (1)), is 102msec. Therefore,
for TI applications in the real-time mode, the simple recon-
struction version is used, to increase the reconstruction rate.
Compared to the optimized GPU TSDF reconstruction, the
proposed method can run at similar time, while producing
superior results, as shown in Fig. 7.

Considering all the steps of the reconstruction framework,
given in Table II, the total reconstruction time is 167msec
at r = 7, which results into near real-time frame rates. The
corresponding number for r = 6 is 64msec (15.6 fps), which
is quite satisfactory for TI applications with consumer-grade
equipment.

B. 3D reconstruction - Quantitative evaluation
The experimental results presented here were extracted

from the “Argyris” sequence. Additional results are given
in the supplementary document. The objective is threefold:
a) to highlight some practical limitations of the quantitative

http://pointclouds.org/
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Fig. 16: “Argyris” sequence:
Hausdorff distance H5 (↓) along
time.

(a) Hausdorff distance (↓) (b) VRE measure (↓) (c) CPRMSE measure (↓)

Fig. 17: “Argyris” sequence: Reconstruction performance, considering the mean for all
views. The results for the employed and the “Poisson” method are given, with respect to
reconstruction resolution.

evaluation methodology of section III-E, b) to showcase how-
ever its validity, and obviously c) evaluate the employed 3D
reconstruction method, presenting also comparative results.

Fig. 15 presents two examples of “reconstructed” depth-
maps versus the corresponding captured maps. As explained
in section III-E, such pairs constitute the input to the proposed
evaluation metrics. From Fig. 15(a) one can notice that the
reconstructed silhouette(ii) is well-shaped and smooth, while
the corresponding ground-truth (captured) silhouette(i) is noisy
by nature, since it comes from sensor data. This means
that, the evaluation method is practically limited by the non-
perfect ground-truth assumption. More importantly, theoret-
ically the evaluation methodology assumes perfect temporal
synchronization and calibration of the sensors. In practice,
not perfectly synchronized data from multiple sensors and/or
small registration misalignments will lead to worse perfor-
mance metric values. In other words, the evaluation method
addresses the capturing-reconstruction process as a whole. If
the capturing process is “noisy”, the method’s capability to
differentiate a good reconstruction method from a bad one, is
reduced. However, as demonstrated below, the method presents
meaningful results.

In order to assist the reader, the symbols (↑) or (↓) are
used in all subsequent figures, to highlight whether a higher
or lower metric value, respectively, reflects better performance.
The evolution of the Hausdorff distance metric along time,
when the sensor c5 is employed for ground truth, is depicted
in Fig. 16. During the first half of the sequence, the metric
remains in low levels, whereas it increases during the second
half due to fast motion of the user and loose inter-Kinect
synchronization. Some strong peaks, as the highlighted one,
correspond to missing-limb cases, as the one shown in Fig.
15(b). In accordance to section III-E1, the Hausdorff distance
in this case is equal to the length of the missing limb, that is
approximately 25 pixels.

Figure 17 depicts the mean values (considering all ground-
truth views ck) for the metrics that reflect the volume/geometry
reconstruction quality. The results are given for voxel-grid
resolutions r = 5, 6, and 7, considering the employed and
the “Poisson” reconstruction method. All metrics decrease,
as the reconstruction resolution increases, as expected. In all
plots, the employed reconstruction method presents similar or
slightly better performance than the “Poisson” method. This is
explained by the doubled resolution along Y for the employed
method. Only for low resolution (r = 5), and according to
VRE and Hausdorff distance, the Poisson method performs

better.
The Hausdorff distance for two views (c0 and c2) are

given in Fig. 18. The same conclusions can be drawn. An
additional conclusion is that the metric values for view c2 are
higher, as expected, since sensor c2 does not participate in the
reconstruction process.

Finally, results with respect to the RGB appearance quality
are given in Fig. 19, using the structure similarity index
(WMS3IM) metric. The color-per-vertex representation ap-
proach is compared with the UV texture-mapping approach,
considering three reconstruction resolutions. The results are
meaningful, since i) WMS3IM improves as the resolution in-
creases; ii) the color-per-vertex representation always performs
worse, since it produces blurred (lower resolution) rendered
views than the originally captured one; iii) On the other
hand, the UV texture-mapping approach performs well even at
r = 5, since it directly maps the high-definition captured RGB
textures. Finally, the WMS3IM values at the left diagram are
higher than those at the right, since sensor c0 participates in
the reconstruction and texture-mapping process.

C. Volume-based motion tracking

Our motion capturing system is evaluated mainly using a
dataset of Gaelic and Basque Traditional Sports, provided
by the project RePlay. The specific dataset was selected for
experimentation because, apart from multiple Kinect skeleton
data, Vicon marker-based ground-truth is available. The 15-
joints skeleton structure, extracted by the proposed method,
constitutes a subset of the Kinect and Vicon structures and
therefore, there exist one-to-one joint correspondences be-
tween the three structures. The captured motions are chal-
lenging, fast, with severe self-occlusions and simultaneous
movements of several body parts. Sequences from different
sport skill captures were chosen, characterized by short, quick
movements. The data used in the experiments, can be found
at http://vcl.iti.gr/3dTI/TCSVT/dataset.

An illustrative skeleton-tracking example is given in Fig.
20. As can be seen at the top figure, the estimates of the
proposed method may be inaccurate at the presence of large
reconstructed objects (e.g. the ball) touching the human limbs.
This limitation is expected to be overridden by fusing in
our method data from an inertia measurement unit. The
plot diagram at the bottom of Fig. 20 depicts the estimated
anthropometric angle (between two bones) along time for the
most important limb of this “skill”. The valley of the curves
at the beginning of the sequence corresponds to the flexion

http://vcl.iti.gr/3dTI/TCSVT/dataset
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Fig. 18: “Argyris” sequence: Hausdorff distances Hk (↓)
considering sensors ck, k = {0, 2}.

Fig. 19: “Argyris” sequence: WMS3IM similarity index (↑)
considering sensor c0 (left) and all sensors (right). The results
for the color-per-vertex representation and UV texture map-
ping are given.

of the knee for kicking. Whereas Kinect2 loses tracking for a
few frames after the fast knee flexion (large valley that reaches
0o), the proposed method tracks well the motion.

Table III shows comparisons of the angle estimates with the
ground-truth, using the RMSE and the Mean Absolute Error
(MAE) (↓), while highlighting with bold the most important
limb, as analyzed by biomechanical engineers.

Runtime Evaluation
The experiments ran on a PC with an Intel Core i7

processor at 3.5 GHz, 16MB RAM and the NVidia GTX
680 graphics card. The proposed skeleton-tracking method
can achieve frame rates higher than 10fps. a) The human-
body volumetric function is reconstructed on the GPU at a
volume resolution r = 6 within approximately 20msec (see
also V-A); b) The processing time for volume binarization
and skeletonization, running on a CPU thread, is 10msec;
c) Creating and processing the skeletal graph lasts 30 ms;
d) Fitting a skeleton to the graph requires less than 10 ms.
Although the implementation of the method after the volume
extraction is not optimized, it allows the skeleton estimation
at rates higher than 10fps.

VI. CONCLUSIONS-FUTURE WORK

In this work, the main elements of an integrated system
that targets real-time future 3D applications were described,
including multi-Kinect2 capturing and fast 3D reconstruction
of moving humans, as well skeleton-based motion tracking
from multiple depth cameras. Regarding these elements, novel
approaches were proposed and/or the adaptation of existing
ones were described. Simultaneously, a novel framework for
the quantitative evaluation of 3D reconstruction systems has
been proposed.

Some limitations of the ongoing, in terms of research and
development, system have also been discussed. Overriding
these limitations is subject of ongoing research: Regarding the
non-perfect synchronization issue with consumer-grade RGB-
D sensors, which may deteriorate the reconstruction quality
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Fig. 20: Gaelic Football Punt Kick. Qualitative and quantitative
skeleton-tracking results: Ground-truth (Vicon) with cyan,
proposed with green and Kinect2 (using the best skeleton
among the 4 Kinect2 sensors) with red.

TABLE III: Skeleton tracking results: Mean errors between
the estimated angle and the ground-truth.

Sequences Left Elbow Right Elbow Left Knee Right Knee
Kinect2 MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Jai Alai

(Sidearm Shot) 31.19 35.69 25.96 38.35 22.58 30.68 12.99 18.22
Pelota

(R-H Serve) 40.35 48.04 29.30 38.92 3.43 8.34 14.88 20.04
Handball

(R-H Volley) 38.62 45.71 34.06 46.54 13.71 26.06 7.74 18.38
Gaelic Football
(R-F Punt Kick) 5.39 10.42 25.084 25.79 18.34 20.53 21.03 53.11

Proposed
Jai Alai

(Sidearm Shot) 25.29 29.34 14.26 21.60 9.940 13.68 12.87 18.11
Pelota

(R-H Serve) 16.79 25.59 16.39 25.09 9.30 19.41 9.04 16.29
Handball

(R-H Volley) 17.78 26.51 14.65 23.35 7.15 17.51 10.014 25.31
Gaelic Football
(R-F Punt Kick) 16.34 26.47 23.37 31.42 15.88 17.32 10.85 17.20

in fast motion, we work towards spatio-temporal interpolation
via estimation of the separate 3D data misalignment. With
respect to the skeleton tracking method, limitations regarding
topology change (e.g. “piece hands together”) are expected
to be overriden by a skeleton-fitting scheme, where the limbs
of a user-specific skeleton model are fitted to the extracted
MST. Additionally, by splitting the rigid-body part into upper
and lower segments and fusing in our method data from two
inertial measurement units, we aim at handling the limitations
due to the assumption that the trunk joints move rigidly.
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To increase realism, with respect to 3D reconstruction of
humans, a generic future-work direction is the improvement
of the visual quality and frame-rates, by continuously investi-
gating towards more efficient solutions. For example, in many
applications the reconstruction of user’s face is more important
than other body parts, and therefore we investigate towards
the real-time deformation and fusion of a pre-scanned user’s
head model with the captured 3D data. In real-time applica-
tions, such as Tele-Immersion, both i) realistic replications of
the users appearance (heavy data) and ii) natural interaction
among geographically remote user (real-time exchange of the
3D reconstructions among remote locations), are required. The
above contradiction also highlights the need to research both
in the compression of the 3D replicants, and in the network
layer to offer novel tele-immersion architectures, allowing to
scale up the interaction among large number of users capable
to support such exciting applications.
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