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Abstract

This paper presents the second edition of the “drone-
vs-bird” detection challenge, launched within the activi-
ties of the 16-th IEEE International Conference on Ad-
vanced Video and Signal-based Surveillance (AVSS). The
challenge’s goal is to detect one or more drones appear-
ing at some point in video sequences where birds may be
also present, together with motion in background or fore-
ground. Submitted algorithms should raise an alarm and
provide a position estimate only when a drone is present,
while not issuing alarms on birds, nor being confused by
the rest of the scene. This paper reports on the challenge
results on the 2019 dataset, which extends the first edition
dataset provided by the SafeShore project with additional
footage under different conditions.

1. Introduction
Adopting effective detection and countermeasure tech-

niques to face the rising threat of small drones — whose
payload capability can be exploited for terrorism attacks us-
ing explosives or chemical weapons, as well as for smug-
gling of drugs and other illegal activities — is a great con-
cern of security agencies today. Both in the context of criti-
cal infrastructure and border protection, but also for general
persecution of illegal activities and anti-terrorism activities,
surveillance and detection technologies based on different
modalities are under investigation, with different trade-offs
in complexity, range, and capabilities [1]. Given their char-
acteristics, drones can be easily confused with birds, partic-
ularly at long distance, which makes the surveillance tasks
even more challenging. The use of video analytics can solve
the issue, but effective algorithms are needed, which are
able to operate under unfavorable conditions, namely weak
contrast, long range, low visibility, etc.

In 2017 the first edition of the International Workshop
on Small-Drone Surveillance, Detection and Counteraction
Techniques (WOSDETC) [2] was organized in Lecce, Italy,
as part of the 14th edition of the IEEE International Con-
ference on Advanced Video and Signal based Surveillance
(AVSS). Supported by the SafeShore Consortium1, one of
the initiatives was to launch the drone-vs-bird detection
challenge, whose aim was to address one of the main issues
arising in the described context [3, 4]. A second edition
of the challenge has been launched in 2019, and this pa-
per reports on its definition and results. The challenge was
again part of WOSDETC, co-located with the 16th edition
of AVSS and held in Taipei, Taiwan. The challenge aimed
at attracting research efforts to identify novel solutions to

1The project “SafeShore” has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 700643.

Figure 1. Map of the research groups participating in the challenge.

the problem of discrimination between birds and drones, by
providing an annotated video dataset recorded at shore areas
in different conditions. The 2019 challenge dataset has been
doubled by courtesy of the Fraunhofer IOSB institute, Karl-
sruhe, Germany, which provided 6 additional videos with
different cameras and background so as to cover also land
scenarios (not only maritime ones, as for the first edition
based solely on the SafeShore footage).

The challenge’s goal is to detect drones appearing at
some time in a short video sequence while not generating
detections on birds and other distracting scene elements. All
the participants of the challenge were asked to submit score
files with their detection results and a companion paper de-
scribing the applied methodology. The worldwide distribu-
tion of the research institutions that have been interested in
the 2019 challenge is shown in Fig. 1. About 15 different
research groups requested access to the dataset for partici-
pation in the competition.

2. Challenge Dataset and Evaluation Metric

For the 2019 challenge a new dataset has been made
available. The training data consists of a collection of 11
MPEG4-coded static-camera videos where a drone enters
the scene at some point. Annotation is provided in separate
files in terms of frame number and bounding box of the tar-
get given as [top x top y width height] for those frames
where drones are present. Birds or other scene elements are
not annotated. Several examples of frames extracted from
the training videos are shown in Fig. 2. The first four im-
ages depict maritime sequences from first challenge edition
while the remaining four depict the newly added scenes.
Compared to the first challenge edition, the difficulty of the
task is increased by the need to cope with very diverse back-
ground and illumination conditions, as well as with differ-
ent scales (zoom), viewpoints, low contrast, and presence
of birds.

Two days before the challenge deadline, 3 new static-
camera video sequences have been provided to participants
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Figure 2. Sample frames extracted from the training videos.
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Figure 3. Distribution of UAV sizes across the ground truth annotations in train and test data. Note the large number of very small objects
that had to be detected (log scale axis).

for testing their methods. While the first installment of the
challenge relied on a single test video, this greater number
of very diverse test videos helps to better assess the devel-
oped algorithms under various conditions and avoids satu-
ration effects on the performance metrics. Participants were
asked to submit one file per test sequence providing the
frame number and estimated bounding boxes for the frames
where their algorithm detects the presence of drones. For
frames not reported, no detection was assumed. Only one
configuration of the algorithm parameters has been allowed.

A particular challenge in the 2019 data was the large
number of very distant drones in train and test data that had
to be detected. Fig. 3 shows the number of ground truth
annotations for various drone sizes (i.e., distances). The
majority of cases required detection of objects with an aver-
age box edge width of 20 pixels or less. In the training data,
the smallest annotations were of size 3 pixels and in the test
data 4 pixels. The plots also illustrate the large range of
detection sizes that the developed models had to be able to
handle, i.e., from 3-4 pixels up to almost 300 pixels.

The submitted algorithms were evaluated by matching
ground truth to detection via the well established Intersec-
tion over Union (IoU) measure, which is determined as

IoU =
detection ∩ ground truth
detection ∪ ground truth

.

If a detection achieves an IoU with a ground truth anno-
tation higher than a threshold (usually 0.5), it is counted
as a true positive detection (TP). Otherwise a detection is
counted as a false positive (FP). Ground truth annotations
which were not assigned a TP, are counted as false negatives
(FN), i.e., missed detections. Based on these measures, pre-
cision and recall of the detection algorithm can be computed
and aggregated into the F1-score:

F1 = 2
precision× recall
precision + recall

.

The final ranking of submitted methods is obtained based

on the F1-score, ranging from the best (maximum) possible
value of 1.0 to the worst (minimum) value of 0.0.

3. Participation and Best Proposed Algorithms

We briefly summarize the methodology of the four best
performing approaches. All approaches rely on convolu-
tional neural networks and some of the most prominent ob-
ject detection meta-architectures from literature. However,
the approaches greatly differ in the way these models are
used and adapted.

Nalamati et al. [5] from University of Technology, Syd-
ney, evaluate deep learning based object detection architec-
tures for the task of drone detection. The single-stage SSD
[6] and two-stage Faster R-CNN [7] meta-architectures are
applied. As backbone convolutional neural networks, the
Inception-v2 [8] and ResNet-101 [9] models are chosen.
The conducted evaluation finds that among the investigated
architectures Faster R-CNN with ResNet-101 performs best
while the single-stage SSD generally performs worse than
the two-stage Faster R-CNN.

Magoulianitis et al. [10] from CERTH, Greece, propose
to use super-resolution jointly with object detection in or-
der to locate very small (i.e., distant) drones better. The
DCSCN model [11] is chosen as the super-resolution com-
ponent of the proposed approach and upscales the image by
a factor of 2. For object detection, the Faster R-CNN de-
tector is applied. Both models are trained jointly so that
the object detector can maximally benefit from the super-
resolution result.

Craye and Ardjoune [12] from CerbAir Research Lab,
France, have proposed a detection approach based on two
separate convolutional neural networks. First, U-Net [13]
— a semantic segmentation network originally designed
for medical imaging — is used to identify areas of interest
within the larger image. Instead of using single RGB im-
ages as input, N grayscaled images of the video sequence
with a pre-defined step T between consecutive images are



fed into the network to integrate a temporal aspect. Then,
areas of interest are obtained by applying a blob finder on
the background-foreground mask generated by the U-Net.
Finally, a classification network, ResNet, is used to deter-
mine whether those areas contain a drone or not.

De la Iglesia et al. [14] from GRADIANT, Spain, pro-
pose a detection algorithm based on RetinaNet, which em-
ploys the Feature Pyramid Network (FPN) [15] architecture
to perform predictions at different scales. While lower pyra-
midal levels contain fine-grained details which are useful to
detect small objects, the upper levels aggregate dense spa-
tial information that are more adequate for larger objects.
As the third pyramid level (P5) already provides enough
context to detect most of the larger drones, the two last fea-
ture pyramid levels (P6, P7) are discarded. Furthermore, a
lower feature pyramid level is additionally considered for
prediction to account for very small drones. K-means clus-
tering is performed in order to determine appropriate anchor
boxes used for bounding box regression.

The four approaches vary strongly in how they address
the drone detection problem. [5] and [14] rely purely on ex-
isting object detection CNN meta-architectures. While [5]
carries out an evaluation of different architecture combina-
tions, [14] goes a step further and adapts a state-of-the-art
object detection framework specifically to the task of drone
detection. In contrast to this, the other two teams rely on
additional components in their detection approach. In both
cases, these components pre-process the image for the de-
tection task. However, the motivation is a very different
one. While one approach relies on super-resolution to im-
prove detection of very distant drones, the other performs
a pre-selection of image regions based on motion informa-
tion so that the subsequent classifier can solve a more lim-
ited and potentially easier problem. [12] is the only one of
the four approaches to consider temporal information. Both,
approaches [12] and [10] also rely on extended training data
from additional sources other than the provided challenge
training set.

4. Results
For evaluation and ranking of the submitted approaches

the F1 score was computed across all three test sequences
for an IoU threshold of 0.5. The results are given in Ta-
ble 1. The scores of the different teams vary strongly with
the two teams that use additional components for super-
resolution or motion segmentation achieving the best result.
The overall top score was achieved by team 3, which re-
lied on motion information. The Faster R-CNN based ap-
proach of team 1 achieves a comparatively low score, while
the specifically adapted feature pyramid network of team 4
performs quite a bit better.

A more detailed analysis of the types of errors that lead
to the resulting scores is depicted in Fig. 4. The figure

Table 1. Final scores of the top-4 algorithms on the test videos.

Approach F1 Score
Nalamati et al. (Team 1) [5] 0.12

Magoulianitis et al. (Team 2) [10] 0.68
Craye and Ardjoune (Team 3) [12] 0.73

de la Iglesia et al. (Team 4) [14] 0.41

shows the number of true positives, misses, and false posi-
tives for various object sizes. It can be observed that teams
2 and 3 perform very accurately for objects of size 32 pix-
els or above. The other approaches have difficulty detecting
some of these larger objects, likely due to an overly strong
focus on small objects during training. Most errors for all
teams occur in the very small object range below 32 pixels.
Teams 2 and 3 can detect more than half of these very small
objects and simultaneously produce a comparatively small
number of false positive detections.

Due to the main errors occurring on very small object
sizes, we additionally evaluated with less restrictive IoU
thresholds. For very small box sizes, a single pixel in devia-
tion from the correct location can have a huge impact on the
IoU measure, while the detection is still essentially correct.
Figure 5 shows precision, recall, and F1 score for all teams
across different IoU thresholds. Most importantly, it can
be observed that regardless of IoU value, the relative rank-
ing of all teams remains the same. However, for lower IoU
thresholds particularly the results of team 3 show that very
small objects can still be detected quite accurately. This is
indicated by the continuing rise in F1 score with lower IoU.
For an IoU of 0.3 recall lies above 90% while precision is
close to 100%. For IoU below 0.3 saturation is observed for
most teams, indicating that there are no further detections
located near ground truth boxes.

Qualitative analysis of the submitted results shows that
teams 1 and 4, which rely on standard object detection ar-
chitectures, generate a larger amount of false positives. Par-
ticularly fixed scene elements that bare some resemblance
to very distant drones cause re-occurring false positive de-
tections. A temporal aspect to the approaches might well
be able to filter these false positives. Conversely, team 3
benefits strongly from the motion segmentation element,
which seems to reduce the number of false positives on
background elements greatly. However, in one of the test
sequences, which contains a motorway in the background,
several false positives are caused by moving cars. This
might indicate that the subsequent classifier after the mo-
tion segmentation could still be improved. Overall, the in-
clusion of additional training data, as well as motion infor-
mation appears to be a very promising approach to drone
detection at long distance. This is in line with observations
made at the previous challenge, in which the winning entry



Figure 4. Numbers of true positive detections, misses, and false positives for various drone size ranges. Values were computed for IoU=0.5.

Figure 5. Precision, recall, and F1-score curves for various IoU thresholds of the top 4 teams.

also relied on added training data and temporal information
for filtering errors [16].

5. Conclusions
This work reported on the results of the 2019 drone-

vs-bird detection challenge, held with the 16th IEEE Inter-
national Conference on Advanced Video and Signal based
Surveillance (AVSS). Compared to the previous install-
ment, a new and more challenging drone dataset was pro-
vided and a variety of approaches were submitted that dif-
fered strongly in the methods chosen to address the prob-
lem. Ultimately, a combination of added training data and
use of motion segmentation achieved the best result. How-
ever, strong results were also achieved by combining drone
detection with super-resolution and reliance on recent state-
of-the-art object detection architectures. Since these ap-
proaches address different aspects of the detection problem,
a combination of their key properties might be an interest
avenue for future research.
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R. Chamrád, T. Radulescu, E. Izquierdo, and Z. Gagov. The
SafeShore system for the detection of threat agents in a mar-
itime border environment. In IARP Workshop on Risky Inter-
ventions and Environmental Surveillance, Les Bons Villers,
Belgium, May 2017. 2

[5] Mrunalini Nalamati, Ankit Kapoor, Muhammed Saqib,
Nabin Sharma, and Michael Blumenstein. Drone detection in
long-range surveillance videos. In 16th IEEE International
Conference on Advanced Video and Signal Based Surveil-
lance (AVSS) Workshop. IEEE, 2019. 4, 5

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 4

[7] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:towards
real-time object detection with region proposal networks:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 2015. 4



[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 4

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[10] Vasileios Magoulianitis, Dimitrios Ataloglou, Anastasios
Dimou, Dimitrios Zarpalas, and Petros Daras. Does deep
super-resolution enhance uav detection? In 16th IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance (AVSS) Workshop. IEEE, 2019. 4, 5

[11] Jin Yamanaka, Shigesumi Kuwashima, and Takio Kurita.
Fast and accurate image super resolution by deep cnn with
skip connection and network in network. In International
Conference on Neural Information Processing, pages 217–
225. Springer, 2017. 4

[12] Celine Craye and Salem Ardjoune. Spatio-temporal seman-
tic segmentation for drone detection. In 16th IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance (AVSS) Workshop. IEEE, 2019. 4, 5

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 4

[14] David de la Iglesia, Miguel Mendez, Raquel Dosil, and Iago
Gonzalez. Drone detection cnn for close and long range
surveillance in mobile applications. In 16th IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance (AVSS) Workshop. IEEE, 2019. 5

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 5

[16] Arne Schumann, Lars Sommer, Johannes Klatte, Tobias
Schuchert, and Jürgen Beyerer. Deep cross-domain fly-
ing object classification for robust uav detection. In 14th
IEEE International Conference on Advanced Video and Sig-
nal Based Surveillance (AVSS) Workshop. IEEE, 2017. 6


