Does Deep Super-Resolution Enhance UAV Detection?
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Abstract

The popularity of Unmanned Aerial Vehicles (UAVs) is
increasing year by year and reportedly their applications
hold great shares in global technology market. Yet, since
UAVs can be also used for illegal actions, this raises various
security issues that needs to be encountered. Towards this
end, UAV detection systems have emerged to detect and fur-
ther anticipate inimical drones. A very significant factor is
the maximum detection range in which the system’s senses
can “see” an upcoming UAV. For those systems that employ
optical cameras for detecting UAVs, the main issue is the
accurate drone detection when it fades away into sky. This
work proposes the incorporation of Super-Resolution (SR)
techniques in the detection pipeline, to increase its recall
capabilities. A deep SR model is utilized prior to the UAV
detector to enlarge the image by a factor of 2. Both models
are trained in an end-to-end manner to fully exploit the joint
optimization effects. Extensive experiments demonstrate the
validity of the proposed method, where potential gains in
the detector’s recall performance can reach up to 32.4%.

1. Introduction

Living in the decade where automation and artificial
intelligence have drawn unprecedented attention, has led
to contemporary applications in almost every field of sci-
ence. Unmanned Aerial Vehicles (UAVs) could not be ab-
sent from such an evolution and unsurprisingly incorpo-
rate cutting-edge technology. Their usage spans from enter-
taining applications -aerial video captioning- up to military
and surveillance services, to monitor a certain region from
above or for 3D surface mapping [15]. Although, high-tech
UAVs can be very helpful for humans, automating many of
their tasks, they can be also used for illegal activities, such
as carrying explosives on to targets, area surveillance for es-
pionage, terrorist attacks to buildings/people or disturbing
air traffic. As can be inferred, quite recent, this has given
rise to research on counter-UAV systems with key aim to
detect drones well in advance.
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Figure 1. Detection result example of our method from WOS-
DETC Drone-vs-Bird Challenge, 2019.

A system that senses impending drones —the terms UAV
and drone are used interchangeably— from distance, may
employ visual, infra-red, acoustics or radar sensory data,
with each modality having its advantages and shortcomings.
This work examines the drone detection problem under the
perspective of visual content. Recent advances of deep
learning in computer vision have made it possible to detect
objects [12] with high validity, in terms of recall-precision
metrics in real-time. Deep Neural Networks (DNNs) learn
hidden representations from a bunch of data which are in
turn used to recognize the objects which have been trained
on [13]. However, the key aspect of this problem is how far
in distance the object detector can reach, especially when
the object appears distorted from ambient light and occupies
merely a few pixels within the image. Hence, it is straight-
forward to see that the quality of input content, as well as
the scale are of utmost importance, because those objects
that appear in long distances are more susceptible to distor-
tion effects, thereby challenging the detector performance.

Super-resolution (SR) technique has been studied for
many years to increase the image resolution, while preserv-
ing fidelity in terms of quality [3, 15]. Recently, much re-
search on the field has been focused on exploiting DNNs
that have proved to be superior in performance [19, 1, 6],
when compared to old-fashion SR techniques. This work
exploits such mechanisms to realize whether SR improves
the detection recall of distant drones, when used not solely
as a pre-processing step into the object detector’s pipeline
but being part of the entire optimization process, affect-
ing the weights and the training of the detector module as
well. In doing so, small drones that almost fade away into
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Figure 2. Drone detection pipeline with SR

sky, can be enlarged and further enhanced, so that they can
be detectable by the DNN detector. Notably, our method
achieved the second place at the WOSDETC Drone-vs-Bird
Detection Challenge ! 2019.

The main contributions of this work can be summarized
as:

e Demonstrate how SR can be integrated into the drone
detection pipeline so that the two distinct models can
be jointly trained for improving the recall performance

e Extensive quantitative comparisons and results are
given to validate whether the proposed deep SR-
Detection method enhances the detection performance

2. Related Work

The brief literature review is focused on two main areas:
super-resolution enhancement and drone detection, as ei-
ther topics pertain our proposed method for accurate distant
drone detection.

2.1. Super-Resolution

Among an abundance of works that revolve around SR
techniques, we will only focus on those using the deep
learning paradigm since they provide state-of-the-art re-
sults. Most of the works learn a mapping between low/high-
resolution patches directly from data by using different ar-
chitectures. For instance, [0] bridges the gap between tra-
ditional methods and DL by demonstrating how traditional
sparse-coding-based SR techniques can be realized under
the CNN perspective. Kim et al. [9] propose a very deep
architecture by cascading small filters successively, to ex-
ploit the contextual information over the large image region.
Besides, Ahn et al. [1] implement a cascading mechanism
upon a residual network to provide a lightweight method.
Two interesting works [17, 19] show that the combination
of low- and high-level features by using skip connections
yielded better performance results, improving the computa-
tional burden as well.

https://wosdetc2019.wordpress.com/

2.2. UAV Detection

The problem of drone detection is becoming very pop-
ular [2, 13, 7, 5, 14] where different mechanisms are be-
ing adopted for tackling the various challenges that occur,
such as cluttered background —clouds, ambient light—, sim-
ilar flying objects —airplanes, birds— [14], as well as large
variations in distance and drone type. In general, state-of-
the-art generic object detectors, if properly trained on drone
data, provide a very elegant solution for drone detection.
Recent research on the drone detection problem are exten-
sively using deep learning methods, where DNN-based de-
tectors provide the best performance. For instance, Wu et
al. [18] modify a popular’s network [ | ] parameters to bet-
ter fit the drone detection problem. Aker ef al. [2] address
the scarcity of training data for DNNs by proposing an ar-
tificial dataset with drones in different flying scenarios and
complex background. Saqib et al. carry out a study for sev-
eral object detectors which shows that the VGG-16 [16] per-
forms best as the core DNN in a Faster-RCNN pipeline, at
a higher complexity though.

3. Proposed Pipeline
3.1. Super Resolution

In Section 2, some of the ways to enhance the image
quality and scale were discussed. In this work, taking into
account the best tradeoff between accuracy, in terms of
Peak-to-Signal-Noise-Ratio (PSNR), and time complexity,
we opt for the Deep Residual CNN with Skip Connection
and Network in Network (DCSCN) [19] model. The DC-
SCN consists of two networks, the feature extraction and
the reconstruction one.

3.1.1 Feature Extraction

Most of the deep learning models which perform Single-
Image-Super-Resolution (SISR), at their very first step ap-
ply a bicubic upscale at the input image before the first
convolutional layer and afterwards the network merely im-
proves the local feature representation. It is straightforward
to see that applying the convolutional filters on the upscaled



image, results in considerably higher computational com-
plexity and at the expense of fidelity. To this end, the DC-
SCN model operates on the raw image which is upsampled
through the deep network at a later stage. Furthermore, the
number of filters is decreased for the sake of complexity
and smoother training of the model. Also, the parameters at
the subsequent and deeper layers diminish in order to em-
phasize more on the local, rather than the global features,
which is more consequential for the SISR problem. The
Parametric Rectified Linear Unit (PReLU) is also selected
as activation layer after each convolutional one.

3.1.2 Reconstruction Network

After the feature extraction process, all the intermediate fea-
tures are concatenated using skip connections, thus result-
ing in a large feature volume, where 1 x 1 convolutional lay-
ers are employed to reduce its dimensionality, before further
processing. The reconstruction network comprise four con-
volutional layers, following the Network in Network model
setting [ 10]. The reconstruction network learns the residual
upscaled image and eventually adds it to the bicubic upsam-
pled input image for improving its PSNR. The entire model
is comparably shallow with other deep models, thereby em-
phasizing more on the learning of local features. Besides,
the shallower architecture leads in turn to fewer parameters,
casting the model an elegant option to be used prior to the
detector, getting them jointly optimized.

This work examines two versions of the DCSCN: The
full model parameters and a more compact version (c-
DCSCN) with the number of filters truncated to realize
the tradeoffs between computational time and recall perfor-
mance.

3.2. Object Detection

The object detector is based on the well established
Faster-RCNN model [12]. This generic object detection ar-
chitecture is based on a Region Proposals Network (RPN)
and enables fast and accurate object detection.

RPN uses the intermediate deep feature representation of
the input image to suggest potential object locations. It em-
ploys a sliding window mechanism on the feature map to
estimate confidence scores about how possible is each re-
gion to include an object. Using the official terminology,
the RPN evaluates the “objectness” of the region. Also a re-
gression layer, makes the refinement over the initial anchor
box position to improve the object localization. As such,
the RPN derives k regions that might have objects at some
probability. In our work, we retain the » most confident
object regions per frame, while with Non-Maximal Sup-
pression (NMS) algorithm, those regions which have high
overlaps are merged to a single proposal. The h parame-
ter, which also dictates the maximum number of detections

has been set to 64, thus expediting the testing time of the
module. The feature volume that corresponds to each of the
64 region proposals is cropped and pooled from the inter-
mediate feature volume such that each region proposal is
represented by a 7 x 7 x 512 feature. The batch with all
region proposals (here up to 64 X 7 x 7 x 512) is in turn for-
warded to the classifier to assign a confidence on each class
and to refine the coordinates of the bounding box, as sug-
gested by the RPN. We chose to replace the backbone net-
work within the Faster-RCNN architecture with MobileNet
[8], since it provides a computational inexpensive solution
for object detection at high detection performance.

3.3. End-to-end training

To fully leverage the interoperability between the two
deep models, by the time they are used sequentially in the
detection pipeline, the models are jointly being optimized as
one thing. In particular, we train afresh the DCSCN model
on generic data (see Section 4.1) and use the pre-trained
weights in the end-to-end optimization to favor the train-
ing process. In doing so, the DCSCN model’s weights are
fine-tuned and adjust so to favor the drone detection model
which follows. As such, the backward propagation of the
gradients from the detector’s classifier up to the LR input
image affect all the inside networks. In other words, as the
training process goes along, the DCSCN model learns to
enhance the input image quality and scale, targeted to the
drone detection task, while the Faster RCNN learns to take
advantage from the enhanced images towards the same task.

4. Experiments
4.1. Training and Testing Setting
4.1.1 Super Resolution Model

For both the feature extraction and reconstruction networks,
biases and PReLLUs parameters are initialized to zero. A
dropout with p = 0.8 is applied to all layers to prevent over-
fitting effects. Moreover, we utilize the Mean Squared Error
(MSE) as the objective, where we add the sum of L2 norms
of each CNN’s weight, scaled by a factor of 10~4, following
the original setup [19]. We use Adam optimizer with initial
learning rate of 2 x 1073, We decrease the learning rate
by a factor of two when loss plateaus for five epochs and
when it reaches 2 x 10~° we stop training. The SR model
is trained afresh on the Berkeley Segmentation Dataset [4]
with data augmentation techniques, such as horizontal and
vertical flipping, thus making the training images as many
as three times of their initial number. Having been trained,
the DCSCN is used pre-trained in the end-to-end optimiza-
tion (Fig. 2). The input images have size of 1920 x 1080
and are upsampled by a factor of two from the DCSCN.



Table 1. Comparative results between LR and SR videos

O | gerirtr Pt 61 | Restcor O
p Recall (%) | Prec1s1on (%) || Recall (% | Precision (%)
FiveDistantDrones 20.41 52.88 100
FiveDrones 66.67 100 88.47 100
DoubleDrones 92.26 100 93.15 100
SingleDrone 92.58 99.17 94.12 99.12

4.1.2 Drone Detector

For the RPN, the NMS uses an Intersection over Union
(IoU) threshold of 0.7 to merge highly overlapping detec-
tions. The Faster-RCNN was trained for 70K iterations
with an initial learning rate of 10~3, which was reduced by
a factor of 10 during the last 20000 iterations. Trainable pa-
rameters were optimized using stochastic gradient descend
(SGD) with 0.9 momentum and a 4 x 107> weight decay.
The base CNN (MobileNet) was initialized with weights
from a pre-trained model on the ImageNet dataset. The
first 5 layers of the Base CNN, as well as all Batch Nor-
malization layers, were kept fixed during training. Among
the bunch of video data with UAVs, we found that a bal-
anced sampling of roughly 16 K frames suffice for training
the detector pipeline. Train data comprise a variety of UAV's
appearing from close distance up to far away and a com-
mensurate amount of frames with annotated birds, all com-
ing from the WOSDETC challenge and other publicly avail-
able datasets, to form a rich bunch of training data. There-
fore, the detector is trained to predict three classes; “drone”,
“bird” and “rest”. We found this training setting to assist the
detector for more efficiently disentangling between drones
and birds, thus increasing its precision. For validation set
we use 2814 randomly sampled frames —not successively in
sequence— to tune the detector’s hyper-parameters. Finally,
the detection threshold is set to 0.9 to proclaim “drone” a
yielded detection. All experiments were performed on a
NVIDIA GeForce TITAN XP with 12GB memory.

4.2. Test Data

To evaluate our initial hypothesis, on how conducive can
be the incorporation of the SR technique in the drone de-
tection pipeline, we have selectively pick short video se-
quences with two types of UAVs that soar around the sky,
including many hard cases of UAVs flying scenarios in
terms of recall performance. Notably, the bare detector pro-
vides adequate results in detecting drones with high preci-
sion and fails mainly when drones fly and fade away into
sky at distances higher than 200 meters. Hence, in order to
assess the improvement offered by the SR model under such
circumstances, our experimental data includes mainly flight
scenarios where drones are at the verge of getting detected.

Within the bunch of available data, four short video clip
sequences have been extracted with difficult challenging
scenarios. These scenarios depict drones that typically fly

in distances from 120 up to roughly 280 meters. In the
FiveDistantDrones clip five Phantom-4 drones appear to fly
in fixed shape and at large distance. The FiveDrones clip
shows the same drones to fly in a bit shorter distance. Dou-
bleDrone clip shows one Parrot drone which is flying and
intermittently another one of the same type, passing through
the scene with higher speed. The last clip, SingleDrone
comprises the same drone flight scenario that flies in dis-
tance alone.

4.3. Evaluation

To validate our intuition on the usefulness of the SR im-
age enhancement technique before applying the drone de-
tector, we provide extensive experiments with different set-
tings to draw inferences for each approach.

To begin with, Table 1 demonstrates the recall and preci-
sion results, where either the low resolution (LR) images or
the enhanced SR ones are used as input to the detector. The
precision performance approaches the absolute in all test
sequences, since the background is mainly naive in most
of the test frames, thereby leaving no space for improve-
ments and yielding only imperceptible differences. Hence,
our analysis will be mainly focused on the recall metric,
which is the initial subject that this work opts for optimiz-
ing.

The first sequence “FiveDistantDrones” yields outstand-
ing improvement, by recalling almost 32% more UAVs than
the LR input image. The “FiveDrones” recall increased by
22%, which shows that although the drones are not flying
that far, the bare detector failed to retrieve them in some in-
stances and the SR step improved the whole performance
pipeline. In the rest two clip sequences, the bare detec-
tor achieves already sufficient results and the margins for
large improvements are rather narrow, but we can still no-
tice a small but significant recall increment. Furthermore,
the precision performance seems that is not affected from
the application of the SR model.

In order to realize tradeoffs between the full version of
DCSCN and its more compact version, Table 2 demon-
strates that in all clip sequences the full version demon-
strates only marginally better recall results. However, the
time complexity benefits from the compact version (c-
DCSCN), the latter seems to be more worthy for real-time
applications, since it needs much less computational effort
—81.25% faster—, while on the other hand, the mean loss in



Table 2. Comparative results between DCSCN and ¢c-DCSCN

Cli DCSCN c-DCSCN
p Recall (%) | Precision (%) || Recall (%) | Precision (%)
FiveDistantDrones 52.88 100 52.37 100
FiveDrones 88.47 100 88.34 100
DoubleDrones 93.15 100 92.89 100
SingleDrone 94.12 99.17 93.93 99.12

Table 3. Comparative results between linear and bicubic upsampling methods

Cli Linear Bicubic
p Recall (%) | Precision (%) || Recall (%) | Precision (%)
FiveDistantDrones 25.77 100 36.33 100
FiveDrones 61.78 100 74.17 100
DoubleDrones 85.24 100 88.71 100
SingleDrone 90.41 99.29 92.01 99.17

Table 4. Time complexity vs mean recall ratio gain tradeoffs. The
mean gain in recall ratio for the four tested clip sequences

Model Frames per Sec (FPS) | Mean Recall Gain (%)
DCSCN 0.32 14.17
¢-DCSCN 0.58 13.9
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Figure 3. Recall Ratio - Distance diagram for the FiveDistant-
Drones clip

recall ratio for all the clip sequences is only 1.9% (Table 4).

One could argue that the image upscaling by a factor of
two enlarges the drone size, as it appears on the image,
which eventually helps the detector to find it more easily.
To renounce this allegation, we performed an experiment,
where we utilized two common and computationally inex-
pensive methods for upscaling the input image. Interest-
ingly, comparing the recall results between Tables 1 and 3,
for the “FiveDistantDrones” sequence the results are sig-
nificantly improved —not as much as with SR—, but for the
remaining three sequences, we can see that the recall per-
formance drops instead, possibly due to distortion effects
induced by the upsampling. Only the Bicubic method yields
an improvement at the “FiveDrones” sequence but drops in
performance for the rest as well. Therefore, the SR module
usage before the detector is beneficial, if the recall factor
is the aim for a UAV detection system which operates with
visual data. The superiority of the usage of SR over LR is
illustrated also in Fig. 3, where the recall factor for higher

Figure 4. Qualitative results. White boxes refer to the ground truth
(implies the UAV existence) and the green boxes correspond to the
detections. Red circles indicate the distant drones in zoomed-in
areas. Best viewed in color

distance flying UAVs is significantly improved. The impact
on the full SR detection pipeline is also visualized in Fig. 4.

5. Conclusion

This work presents a UAV detection pipeline that em-
beds the SR technique, prior to the drone detector for jointly
training both modules. In doing so, the entire pipeline ben-
efits from learning to enhance the input LR image and in
turn to improve the recall capabilities of the system. This
is meant to retrieve drones that fly far away where typical
state-of-the-art detectors fail in such scenarios. The impact
of the SR model that performs the SISR is consequential for
UAV detection at longer ranges and has been validated by
extensive experimentation.
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