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ABSTRACT

This paper presents a completely automated 3D facial feature track-

ing system using 2D+3D image sequences recorded by a real-time

3D sensor. It is based on local feature detectors constrained by a

3D shape model, using techniques that make it robust under pose

and partial occlusion. Several experiments conducted under rela-

tively non-controlled conditions demonstrate the accuracy and ro-

bustness of the approach.

Index Terms — Face recognition, tracking, feature extrac-

tion, geometric modeling

1. INTRODUCTION

The problem of detecting and tracking facial features from images

and image sequences is important for a large range of applications

including facial expression recognition and facial motion capture

for expressive character production. Most techniques proposed in

the literature use 2D image sequences [1, 2]. The problem with

such techniques is that they are prone to illumination and pose

variation changes that affect the perceived geometry of the face.

Moreover, subtle skin deformations that characterize facial muscle

movements such as wrinkles, furrows, bulges, etc are difficult to

capture by a 2D camera due to problems caused by illumination,

shadows, projection, etc. Some techniques try to alleviate these

problems using deformable 3D face models [3] or multiple views

[4] sacrificing however real-time performance.

In this paper, we propose using 2D+3D (brightness + depth)

image sequences captured in real-time. Recent technological ad-

vances have made real time recording of good quality 3D data

possible [5, 6]. Although the advantages of using 3D facial im-

ages are self evident, only few works have examined facial feature

tracking from 3D sequences. In [7] dense deformable face models

are used that are computationally expensive and require manual

initialization. More similar to our approach is the work of Liebelt

et al. [8] that also uses 2D+3D image sequences. However, our

approach relies on local features only, while [8] relies largely on

texture information since it employs Active Appearance Models.

In this paper, we employ a model-based feature tracker ap-

plied to sequences of 3D range images and corresponding grayscale

images recorded by a novel real-time 3D sensor. To achieve real-

time performance we use feature based 3D pose estimation fol-

lowed by iterative tracking of 81 facial points using local appear-

ance and surface geometry information. Special trackers are de-
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veloped for important facial features such as the mouth and the

eyebrows that account for the non-linearity in the movement of

these features. The efficiency of the 3D face tracker is evaluated

in a database with many subjects and sequences and promising

results are obtained.

The paper is organized as follows. The face tracker is de-

scribed in Section 2. Local detectors for the mouth and eyebrows

are presented in Section 3. The performance of the face tracker is

evaluated in Section 4. Finally, Section 5 concludes the paper.

2. FACE AND FACIAL FEATURE TRACKING

Our 3D face tracker extends the well-known Active Shape Model

(ASM) technique [9] to handle 3D data and also cope with mea-

surement uncertainty and missing data caused by occlusions and

sensor errors. The ASM is a point distribution model (PDM) ac-

companied by a local appearance pattern for every point, which

effectively models the shape of a class of objects, faces in our

case. Point and local appearance distributions are obtained us-

ing a set of annotated training images. Any shape can then be

expressed as the sum of a mean shape and a linear combination

of basis shapes computed during training. Although ASMs have

been demonstrated less accurate than Active Appearance Mod-

els (AAM), they have the advantage of robustness to illumination

variations (using local gradient search) and are very efficient.

In each time instant we capture a grayscale image and a depth

image. Pixel values of depth images represent the distance of the

corresponding point from the camera plane. Using the one-to-

one pixel correspondence of depth and grayscale images as well

as camera projection parameters, we can directly associate every

image point with its 3D coordinates and a texture value.

The shape s of the face is represented as a sequence of n=81

points corresponding to salient facial features (see Fig.1). The

PDM is then expressed as

s = s̃+

m∑

i=1

aisi = s̃+ a · S (1)

where s = {x1, y1, z1, ..., xn, yn, zn} is the vector of n landmark

coordinates, si are the basis shapes computed by applying Princi-

pal Component Analysis to a set of manually annotated training

examples, which are aligned to a common coordinate 3D frame

(called model coordinate frame), s̃ is the mean shape computed in

the same space and a is a vector of shape parameters.

The local appearance model for each landmark Li is com-

puted from image gradient information gathered in all 2D training

images along the projection of a line that passes from Li and is
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Figure 1. The 81 landmarks Li and corresponding segments of the ASM.

perpendicular to the facial contour that Li belongs to (e.g. eye-

brow, mouth, etc). A set of shape contours is defined in terms of

connectivity information between landmarks as illustrated in Fig.

1. After computing the gradient profiles of Li in all training im-

ages, we can build a local model of gradient changes associated

with this landmark assuming a unimodal Gaussian distribution.

The same procedure is applied for every landmark thus obtaining

n local appearance models.

Using Eq. 1, we can represent the shape of any face in the

model coordinate frame. To express the same shape in the real-

world coordinate frame we use

x = R · s+T = R · (̃s+ a · S) +T (2)

where R is the 3D rotation matrix and T the 3D translation vector

that rigidly align the model coordinate frame with the real-world

coordinate frame and x represents the landmark coordinates in

the real-world coordinate frame. By projecting x in the image

plane, we obtain the corresponding 2D shape v = P (x), where

P represents a camera projection function that models the imaging

process. v represents the landmark positions in the 2D image.

To estimate the landmark positions in a new pair of 2D and

3D images the following steps are taken:

1. Let R be the 3D rotation matrix and T the 3D translation

vector that rigidly align the model with the face. A first

estimate of these is obtained using the 3D face detection

and pose estimation technique proposed in [10]. The shape

parameters a are initialized to zero, i.e. we start from the

mean face shape s̃.

2. The current shape s is transformed to the real-world co-

ordinate frame using the rigid transformation (R, T) and

is subsequently projected on the 2D camera plane through

P . A local search is then performed around each projected

landmark position to find the point that best matches the

local appearance model. To do this, first we compute the

normal vector at the specific location. Then, we define a

set of candidate pixels along this line and compute a local

gradient vector for each of them exactly as in the case of

training images. Similarity between extracted gradient pro-

files and the corresponding local appearance model is mea-

sured using the Mahalanobis distance. The point associated

with the lowest distance is selected. The same procedure is

applied for all landmarks and a set of new landmark posi-

tions is estimated in the 2D image. These are subsequently

back-projected in the 3D space using the inverse projection

function P−1 and the z values of the corresponding pixels

of the depth image. Thus a new 3D shape x is defined in

the real-world coordinate frame. Moreover, each landmark

is associated with a weight set to be the reciprocal of the

computed Mahalanobis distance. In case the z value of a

point is undefined, the median depth value in the neigh-

borhood of this pixel is used. If no depth is defined in the

greater area of this pixel, then a zero weight is assigned to

this landmark, so that it is neglected in model estimation.

3. A new rigid transformation (R,T) aligning the new shape

x with the current template s is estimated using Horn’s

quaternion method [11]. A new rectified shape y = R−1 ·
(x−T) is computed in the model coordinate frame.

4. A new set of parameters a is estimated by minimizing ‖ỹ−
s̃−a·S‖2+λ·‖a‖2, where the second term is a regulariza-

tion constraint. A robust least squares approach using Hu-

ber’s scheme is adopted. We also exclude points that may

be occluded, for example points on the side of the face or

nose, which may be easily determined using the estimated

face orientation. Once a new set of parameters a is esti-

mated, a new shape s is synthesized using Eq. 1.

5. Steps 2-5 are repeated until convergence of the fitting error

e = ‖y − s‖ or until a number of iterations is reached.

Then a new real-world shape x is computed using Eq. 2.

For each subsequent frame, initialization is performed based

on the previous frame, i.e. we start from step 2 using R, T and s

estimated in the previous frame. If the model has not converged,

we re-initialize the tracker, i.e. we start from step 1 and repeat

face detection, pose estimation and model fitting. For faster con-

vergence we use a multi-resolution scheme with three layers.

3. LOCAL FEATURE DETECTORS

The proposed tracker achieves small localization errors per land-

mark, however there are cases where localization of individual

features such as the eyebrows and the mouth is not accurate enough.

This is due to the inadequacy of the linearity assumption in the

PDM, but also due to the uni-modal distribution chosen for local

appearance variations (e.g. appearance of teeth when opening the

mouth). Instead of resorting to non-linear modeling techniques,

we propose a set of dedicated local facial feature detectors.

3.1. Local eyebrows detector

A local 3D ASM with 16 landmarks corresponding to the eye-

brows boundaries is used, which is initialized using the eyebrows

estimation provided by the global tracker. Furthermore, we adopt

a different local appearance model as follows.

For each candidate landmark position, we compute the av-

erage intensities S1 and S2 above and below this feature point

inside small rectangular boxes aligned with the eyebrow contour.

Our goal is to find the point maximizing S1−S2, i.e. the contrast

between bright and dark areas (skin and eyebrow). In addition,

we ask that S1−S2>T1 and S2<T2. The first condition implies

that the landmark point should lie in an area of adequate gradient

change. The second is used to overcome the problem of shadows,

which results in selecting points lying in the border of shadowed

and non-shadowed skin areas instead of lying in the border of eye-

brow and skin areas. T1 and T2 are experimentally chosen from

training images.



Figure 2. Examples of eyebrow and lip boundary localization using the

global 3D ASM model (black line) and local detectors (white line).

Figure 3. Examples of facial feature tracking results using the proposed

global tracker and local feature detectors.

Since a bad initial estimation may prevent the local model

from converging, we perform several local fittings with slightly

perturbed initial positions and choose the one minimizing the fit

error. The proposed local eyebrow detector enhances significantly

the estimation provided by the global ASM especially in cases

where the eyebrows are raised or lowered (see Fig. 2).

3.2. Local mouth detector

Lip boundary localization is also problematic due to the multi-

modal nature of local mouth appearance in the inner lip bound-

aries, since their local gradient patterns are significantly affected

by whether the mouth is open or closed. The problem is more

severe when the mouth is open and the teeth are visible, since in

this case the boundary between the teeth and the dark area of the

mouth cavity is erroneously recognized as a lip boundary.

To overcome this problem, we propose a two-step approach

for localizing lip boundaries. First, a two-class Support Vector

Machine classifier with an RBF kernel is used to decide whether

the mouth is open or closed. This classifier is trained using 16-

dimensional feature vectors of local gradient measurements in the

area of the mouth, obtained from 240 labelled images. After the

mouth is classified as open or closed, an open or closed mouth lo-

cal 3D ASM is fitted on the face to localize the position of outer

and inner lip boundaries. Model fitting is based on image gradi-

ent profiles. However, we do not only consider points along the

normal but also points in a narrow zone aligned with the normal.

Examples of improved mouth localization are shown in Fig. 2.

3.3. Combining global and local feature position estimates

To incorporate the information provided by the local feature de-

tectors into the global model, the fitting algorithm presented in

Section 2 is modified as follows: after step 2, the parts of shape

x corresponding to eyebrows and mouth are replaced with the im-

proved estimates. Then we continue with step 3. Using the pro-

posed 2D+3D ASM and dedicated local detectors very good local-

ization accuracy may be achieved even under moderate face poses

as can be seen in Fig. 3.

Figure 4. Examples of grayscale images and corresponding 3D models of

the facial expression database. The latter are generated from the recorded

3D images.

4. EXPERIMENTAL RESULTS

Our experiments were conducted on a 2D+3D image database

(800 sequences of 52 participants) that was recorded using a pro-

totype 3D sensor [6] and for the aim of automatic facial action

coding [12]. Therefore each sequence depicts the subject mimick-

ing a facial action or facial expression. The resolution of captured

images is 582×782 pixels, while the accuracy of depth data is

better than 0.3mm for objects standing at a mean distance of 60cm

(see Fig. 4). The duration of each sequence is about 30s with a

framerate of about 5 fps.

To train the global 3D shape model as well as the local detec-

tors we used a set of 400 image pairs depicting an action unit or fa-

cial expression at its peak. To test the face tracker, we use another

set of 600 images, where we manually mark the positions of facial

landmarks. The estimated feature positions are compared against

their ground-truth positions. Using the proposed face tracker, we

achieve a mean localization error of 5.35 pixels and standard de-

viation 2.2, when the mean face dimensions are 280×370 pixels.

On the contrary using the global detector only, the corresponding

error is 7.8 pixels. We also compare the 2D+3D tracker against a

2D only ASM with the same 81 landmarks. In this case, we ob-

tain a localization error of 10.2 pixels, which is mainly attributed

to erroneous estimation of open mouth landmarks.

In Fig. 5, we plot the localization error of the algorithm for se-

lected landmarks Li (see Fig. 1) in sequences depicting raising of

eyebrows and surprise. Estimated feature positions are compared

against their actual positions, which were manually defined in se-

quence frames. We also plot the movement of facial landmarks

with respect to their position in the first frame.

Unlike similar 2D techniques, the proposed face tracker achieves

good performance even if there is a lot of head movement as

demonstrated by the following experiment. We have recorded an

image sequence showing a human subject smiling and laughing

while rotating her head up to 30◦ to the left and right (see Fig. 6).

In Fig. 7 the tracking errors for selected facial landmarks in this

sequence are shown. In case of larger poses, where half of the face

is occluded, the tracking error increases significantly.

The algorithm runs on 5 frames per second on an Intel Core

Duo 2.0 GHz PC with 4GB RAM.

5. CONCLUSION

In this paper, a novel real-time face tracker based on active shape

models and a set of special local detectors for the eyebrows and
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Figure 5. Tracking errors of eyebrow and mouth landmarks Li (see Fig. 1)

in sequences depicting a) raising of eyebrows and b) surprise (jaw dropped

+ eyebrows raised). Movements of facial landmarks with respect to their

positions in the first frame are also shown.

Figure 6. Example of image sequence showing a happy expression under

pose variations. White lines correspond to tracking results.

the mouth were presented. The proposed techniques effectively

combine 3D face geometry and 2D appearance data to achieve

increased accuracy and robustness under facial expressions and

pose variations as demonstrated by experiments conducted in a

face database with many subjects and different expressions.

This is our first step towards real-time 3D dense motion cap-

ture of the face. Thus future work will focus on capturing non-

rigid 3D facial deformation in texture-less areas such as the cheeks

as well as making the algorithms robust to large head poses where

half of the face may be occluded.
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