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Abstract
In this paper a combination of a rotation invariant method
with a method which utilizes rotation normalization is pro-
posed. Both methods used are based on 2D/3D Krawtchouk
moments. The first method is an extension of that which
was originally introduced in [1] and utilizes 2D Krawtchouk
moments while the second method was originally intro-
duced in [2] and utilizes 3D Krawtchouk moments.1

1 Introduction
The huge amount of 3D models available and the increas-
ingly important role of multimedia in many areas such as
medicine, engineering, architecture, graphics design etc,
showed up the need for efficient data access in 3D model
databases. An important question arises, is how to search
efficiently for 3D objects into many freely available 3D
model databases. A query by content approach seems to
be the simpler and more efficient way.

2 Spherical 3D Trace Transform Ap-
proach

Given a 3D object, its volumetric binary function is calcu-
lated fb(x), where x = (x, y, z) and x, y, z ∈ [0, 2N), by
voxelizing the whole object, which is defined as:

fb(x) =

{ 1, when x lies within the 3D model’s volume,

0, otherwise.

In order to achieve translation invariance the 3D object’s
center of mass is calculated and the model is translated so
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as its center of mass coincides with the coordinates system
origin. Afterwards, the maximum distance maxD of the
most distant voxel from the origin is found and the model is
scaled by the factor 1/maxD, hence scaling invariance is
also accomplished.

Then, every eight neighboring voxels are grouped, form-
ing a bigger one and fb(x) is transformed to the integer
volumetric function of the model f(x), which takes val-
ues from 0, none of the eight voxels lying inside the ob-
ject’s volume, to 8, all of them lie inside, and x = (x, y, z),
x, y, z ∈ [0, N). This transformation denotes that more at-
tention is given to the voxels lying inside the object’s vol-
ume, which characterize more reliable the 3D object.

2.1 Decomposition of f(x)

The next step involves the decomposition of f(x) into
planes. Each plane in the 3D space can be fully described
by the spherical coordinates (ρ, θ, φ) of the point on which
the plane is tangential to a sphere originated from the cen-
ter of the coordinate system. Imagine concentric spheres,
simulated by icosahedra whose triangles are subdivided in
many smaller equilateral triangles. The barycenters of these
triangle are considered to be the characteristic (tangential)
points for the planes.

The intersection of each plane with the object’s volume
provides a spline of the object, which can be treated as a 2D
image with dimensions N × N . Consider a 2D functional
F , which is applied to this 2D image, producing a single
value. Let us assume that the result of that functional when
applied to all splines, will be a function whose domain is
the set of the aforementioned points, and its range is the
results of the functional. The mathematical expression of
that transformation can be written as:

F{f(x)} = g(ρ, θ, φ)

Restricting to different values of ρ, g(ρ, θ, φ) can be con-
sidered as a set of functions gρ(θ, φ) whose domain is con-



centric spheres. Now, let T be a functional which can be
applied to a function defined on a sphere, producing a single
value. Then, the result of the T functional to every gρ(θ, φ)
is a vector with length equal to the number of the spherical
functions. The Krawtchouk moments were used as F func-
tionals and the Spherical Fourier Transform as T functional.

2.2 Rotation Invariance Requirements
In order to produce rotation invariant descriptor vectors two
requirements should be met. Imagine that the model is ro-
tated, hence f(x) is rotated, producing f ′(x) = f(Ax),
where A a 3D rotation matrix. The splines that will be de-
rived from f ′(x) will be the same with the ones derived
from f(x), but the characteristic points of the planes will
also be rotated by the same rotation matrix. This transfor-
mation can be translated to a rotation of gρ(θ, φ) by A. This
problem can be settled by using a rotation invariant T func-
tional. Moreover, the planes that are perpendicular to the
axes of rotation, will be rotated around their characteristic
point, resulting to a rotated version of their 2D image. Thus,
the F functionals should also be rotation invariant.

2.3 2D Krawtchouk Moments
Krawtchouk moments [3] is a set of moments formed by us-
ing Krawtchouk polynomials as the basis function set. The
nth order classical Krawtchouk polynomials are defined as:

Kn(x; p, N) =
N∑

κ=0

aκ,n,px
κ ⇒

⇒ Kn(x; p, N) =2 F1(−n,−x;−N ;
1
p
) (1)

where x, n − 0, 1, 2, . . . , N , N > 0, p ∈ (0, 1), 2F1 is the
hypergeometric function defined as:

2F1(a, b; c; z) =
∞∑

κ=0

(a)κ(b)κ

(c)k

zκ

κ!

and (a)κ is the Pochhammer symbol given by:

(a)κ = a(a + 1) . . . (a + κ− 1) =
Γ(a + κ)

Γ(a)

where Γ(.) is the gamma function.
For each f̂(i, j) with spatial dimension N × N , the

Krawtchouk moment invariants can be defined using the
classical geometric moments:

Mkm =
N−1∑

i=0

N−1∑

j=0

ikjmf(i, j)

The standard set of geometric moment invariants, which are
independent of rotation [4] can be written as:

νkm =
N−1∑

i=0

N−1∑

j=0

[icosξ + jsinξ]k[jcosξ − isinξ)]mf(i, j)

where ξ = (1/2)tan−1 2µ11
µ20−µ02

and µ are the central mo-
ments:

µpq =
N−1∑

i=0

N−1∑

j=0

(i−x̄)p(j−ȳ)q f̂t(i, j), p, q = 0, 1, 2, . . .

The value of ξ is limited to −45o ≤ ξ ≤ 45o. In or-
der to obtain the exact angle ξ in the range of 0o to 360o

modifications described in detail in [5] are required.
Following the analysis described in [3], the rotation in-

variant Krawtchouk moments are computed by:

Q̃km = [ρ(k)ρ(m)]−(1/2)
N−1∑

i=0

N−1∑

j=0

ai,k,p1aj,m,p2νij (2)

where the coefficients aκ,n,p can be determined by (1), and

ρ(n) = ρ(n; p, N) = (−1)n

(
1− p

p

)n n!
(−N)n

(3)

In this paper, parameter p of Krawtchouk polynomials
has been selected to be p = 0.5

2.4 Spherical Fourier Transform
Spherical harmonics [6] are special functions on the
unit sphere, generally denoted by Ylm(η), where l ≥
0, |m| ≤ l and η is the unit vector in R3, η =
[cosφsinθ, sinφsinθ, cosθ]. Using this notation, gρ(θ, φ)
can be rewritten as gρ(η).

These functions form a complete orthonormal set on the
unit sphere:

Ns∑

i=1

Ylm(ηi)Ykj(ηi) = δlkδmj (4)

where Ns is the total number of sampled points on the
unit sphere (in our case the number of the equilateral tri-
angle barycenters of the icosahedron). Hence, each func-
tion gρ(η) can be expanded as an infinite Fourier series of
spherical harmonics:

gρ(ηi) =
∞∑

l=0

l∑

m=−l

αlmYlm(ηi), i = 1, . . . , Ns (5)

where the expansion coefficients αlm are determined by:

αlm =
Ns∑

i=1

gρ(ηi)Ylm(ηi)∆η (6)



where ∆η is the area of each triangle, hence ∆η = 4π
Ns

,
since all the equilateral triangles have the same area and
each icosahedron is assumed to be of unit radius. The over-
all vector length of αlm coefficients with the same l:

A2
l =

∑

m

αlm (7)

is preserved under rotation and this is the reason why the
quantities Al are known as the rotationally invariant shape
descriptors. In the proposed method, for each l the corre-
sponding Al is a spherical functional T .

2.5 Descriptor Extraction
For each F functional, a descriptor vector with length L·Nρ,
where Nρ = 20 and L = 26, is produced. In our experi-
ments the first four Krawtchouk moments (Q̃00, Q̃10, Q̃11,
Q̃20) were used as F functionals and four descriptor vec-
tors were formed (D3DTrace00, D3DTrace10, D3DTrace20

and D3DTrace11, respectively).

3 3D Krawtchouk moments Ap-
proach

In this section the necessary steps followed so as to obtain
descriptor vectors based on the 3D Krawtchouk moments
are given.

3.1 Rotation Estimation
An essential part of the approach contains a novel combina-
tion of the two dominant rotation estimation methods, PCA
and VCA [7], which have been proposed so far in the liter-
ature.

The VCA method achieves more accurate rotation es-
timation results than PCA when the 3D objects are com-
posed of large flat areas. Otherwise, PCA produces bet-
ter results than VCA. The proposed fully automatic ap-
proach tracks wrong rotation estimated objects produced
either from PCA, or from VCA, and selects the most ap-
propriate one.

In this paper for every model, rotation normalization is
estimated using both PCA and VCA. Then, the volume of
the bounding boxes parallel to principal axes are computed
and the method which leads to minimum volume is chosen.

3.2 Extraction Of Krawtchouk Descriptors
In [3], Yap et al. introduced Krawtchouk moments and
Krawtchouk moment invariants for image analysis, 2D ob-
ject recognition and region based feature extraction (2D
case), based on Krawtchouk polynomials. Their work was

extended in 3D case [2] and the discrete Weighted 3D
Krawtchouk moments were defined. A short description of
this extension is presented in the sequel.

As it was mentioned earlier (Section 2), f(x) is the
volumetric representation of the 3D object. Then, the 3D
Krawtchouk moments of order (n+m+l) of f , are defined
as:

Q̄nml =
N−1∑

x=0

N−1∑

y=0

N−1∑

z=0

K̄n(x; px, N − 1)×

×K̄m(y; py, N − 1)K̄l(z; pz, N − 1)×
×f(x, y, z) (8)

where

K̄(x; p,N) = Kn(x; p, N)

√
w(x; p, N)
ρ(n; p,N)

(9)

and

w(x; p, N) =
(

N
x

)
px(1− p)N−x (10)

The 3D Krawtchouk moments can then be used to form
the descriptor vector of every object. Specifically, the de-
scriptor vector is composed of 3D Krawtchouk Moments up
to order s, where s is experimentally selected to be s = 18.

D3DKraw =
[
Q̄nml

]
, n + m + l = 0 . . . s (11)

4 Matching
The first step is the normalization of each descriptor accord-
ing to:

D̃(i) =
1

∑T
i=1 |D(i)|

D(i)

where T is the number of descriptors in the descriptor vec-
tor D, D(i) is the i − th element of D, and D̃(i) is i − th
element of the normalized vector D̃.

Then, the well-known L1-norm defined as:

L1(A,B) =

√√√√
T∑

i=1

|D̃A(i)− D̃B(i)|

is used for every normalized descriptor vector D̃3DKraw,
D̃3DTrace00, D̃3DTrace10, D̃3DTrace20, D̃3DTrace11 and
five distances are computed: L3DTrace00, L3DTrace10,
L3DTrace20, L3DTrace11 and L3DKraw, each one for ev-
ery normalized descriptor vector. It has to be mentioned



that due to the ambiguity of axis orientation after the rota-
tion estimation that takes place for the 3D Krawtchouk ap-
proach, the distance is selected to be the minimum for every
possible orientation.

The total distance is computed as follows:

Ltot = a1L3DTrace00 + a2L3DTrace10 + a3L3DTrace20

+a4L3DTrace11 + a5L3DKraw (12)

where a1 = a4 = 0.15, a2 = a3 = 0.25 and a5 = 0.2.
These values were experimentally selected.

5 Results
The proposed method was evaluated in terms of retrieval
accuracy, using the Princeton Shape benchmark (PSB)
database which consists of 1814 3D objects. The perfor-
mance of the proposed method against the other 16 com-
petitive ones which took part in the SHREC contest, was
proved to be among the best. The results published by the
contest organizers have shown that the proposed method
clearly outperforms the other methods if we take into ac-
count the first 10% of the retrieved results and it is among
the first 3-4 methods concerning the overall performance.
Also, it should be clearly stated that the proposed method is
based on a native 3D descriptor extraction algorithm.

Very useful conclusions can be derived by examining
the Mean Normalized Cumulated Gain (MNCG) and the
Mean Normalized Discounted Cumulated Gain (MNDCG)
graphs. Both graphs visualize the performance of the re-
trieval methods as a function of the retrieved results. How-
ever, MNDCG applies a discount factor to devaluate late-
retrieved results and, thus, it is an appropriate user-oriented
evaluation metric for retrieval applications. Our method is
always in the first three positions based on MNDCG and
in the first four based on MNCG. It should be noticed that
our method is ranked first using both MNCG and MNDCG,
considering the first 10% of the retrieved results. That
means that the proposed method first retrieves the more rel-
evant to the query 3D objects.

Specifically, based on MNDCG, the proposed method is
ranked first for 5% and 10% of the retrieved results, second
for 25% and third for 50% and 100%. Based on MNCG,
the proposed method is first at 5%, third at 25% and forth at
50% and 100%. However, by examining the MNCG graph,
methods ranked in the second, third and forth position after
50% of the retrieved results change consecutively.

The proposed method is ranked third with respect to
Mean First and Second Tier measures, if only the highly rel-
evant objects considered as similar. However, if marginally
relevant objects are considered as similar too, it is ranked 6-
th and 7-th respectively, although the differences between

Rank Participant RunNr Mean ADR
1 Makadia et al. 2 0.54986260
2 Makadia et al. 1 0.54084843
3 Daras et al. 1 0.52424060
4 Chaouch et al. 1 0.50018275
5 Pratikakis et al. 1 0.49523294
6 Shilane et al. 3 0.49371490
7 Zaharia et al. 1 0.49247277
8 Shilane et al. 2 0.48770607
9 Chaouch et al. 2 0.42156762
10 Shilane et al. 1 0.39706558
11 Makadia et al. 3 0.39249521
12 Makadia et al. 4 0.37667266
13 Laga et al. 1 0.32631385
14 Laga et al. 2 0.30619973
15 Jayanti et al. 2 0.26785165
16 Jayanti et al. 3 0.23702210
17 Jayanti et al. 1 0.23020707

Table 1: Ranking Results based on Mean Average Dynamic
Recall (ADR) value. The Second and Third column show
the name of the first author and the serial number of the
method respectively

the methods from 3rd to 7th position are close to 0.5%.
The main reason for these results derives from the fact
that marginally relevant objects are usually semantically
and functionally similar rather than geometrically similar,
while the proposed method does take into account only ge-
ometrical information. In addition, the proposed method is
ranked third based on Mean Dynamic Average Recall met-
ric, which measures the overall performance of the retrieval
method. The Mean ADR takes into account both highly and
marginally relevant objects with different weights. The re-
sults based on ADR are presented in Table 1. These results
clearly rank the proposed method among the best in native
3D content-based search.

References
[1] P.Daras, D.Zarpalas, D.Tzovaras and M.G.Strintzis:

“3D Model Search and Retrieval Based on the Spher-
ical Trace Transform”,IEEE International Workshop on
Multimedia Signal Processing (MMSP 2004), Siena,
Italy, October 2004.

[2] A. Mademlis, A. Axenopoulos, P. Daras, D. Tzovaras
and M. G. Strintzis, “3D Content-based Search Based
on 3D Krawtchouk Moments”, In Proc. of Third Inter-
national Symposium on 3D Data Processing, Visualiza-
tion and Transmission (3DPVT 2006), accepted for pub-
lication.



[3] P-T. Yap, R. Paramesran, “Image Analysis by Krawt-
couk Moments”, IEEE Trans. On Image Processing,
Vol. 12, No.11 pp. 1367-1377, November 2003.

[4] M.K.Hu, “Visual Pattern Recognition by Moment In-
variants”, IRE Trans. on Information Theory, Vol 8, pp.
179-197, 1962.

[5] M. R. Teague, “Image analysis via the general theory of
moments”, Journal of Optical Society of America, vol.
70, pp. 920930, 1979.

[6] D.W.Ritchie, “Parametric Protein Shale Recognition”,
PhD Thesis, University of Aberdeen, 1998.

[7] J. Pu, and K. Ramani “ An Approach to Drawing-
Like View Generation From 3D Models”, In Proc. of
IDETC/CIE 2005, ASME 2005


