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Abstract

It has been shown that global scene understanding tasks
like layout estimation can benefit from wider field of views,
and specifically spherical panoramas. While much progress
has been made recently, all previous approaches rely on in-
termediate representations and postprocessing to produce
Manhattan-aligned estimates. In this work we show how
to estimate full room layouts in a single-shot, eliminating
the need for postprocessing. Our work is the first to di-
rectly infer Manhattan-aligned outputs. To achieve this,
our data-driven model exploits direct coordinate regression
and is supervised end-to-end. As a result, we can explicitly
add quasi-Manhattan constraints, which set the necessary
conditions for a homography-based Manhattan alignment
module. Finally, we introduce the geodesic heatmaps and
loss and a boundary-aware center of mass calculation that
facilitate higher quality keypoint estimation in the spheri-
cal domain. Our models and code are publicly available at
https://vcl3d.github.io/SingleShotCuboids/.

1. Introduction
Modern hardware advances have commoditized spheri-

cal cameras1 which have evolved beyond elaborate optics
and camera clusters. Affordable handheld 360o cameras
are finding widespread use in various applications, with
the more prominent ones being real-estate, interior design
and virtual tours, with recently introduced datasets follow-
ing the same trends. Realtor360 [60] contains panoramas
acquired by a real-estate company, while Kujiale [28] and
Structured3D [65] were rendered using a large corpus of

1We will be using the adjective terms spherical, omnidirectional and
360o for cameras and images interchangeably.

Figure 1: From a single indoor scene panorama input, we
estimate a Manhattan aligned cuboid of the room’s layout,
in a single-shot. To achieve this, we rely on spherical coor-
dinate localization using geodesic heatmaps. This explicit
reasoning about the corner positions in the image, allows for
the integration of vertical alignment constraints that drive a
differentiable homography-based cuboid fitting module.

computer-generated data from an interior design company.
Further, datasets containing spherical panoramas like Mat-
terport3D [3] and Stanford2D3D [1], were created using the
Matterport camera, originally developed for virtual tours.
This signifies the importance of spherical panoramas for in-
door 3D capturing, as they are (re-)used in multiple 3D vi-
sion tasks [55, 50, 67].

Spherical panoramas capture the entire scene context wi-
thin their field-of-view (FoV), an important trait for scene
understanding. While humans can infer out of FoV infor-
mation, the same cannot be said for machines, with view
extrapolation methods [44] using spherical data to address
this. Certain tasks like illumination or layout estimation im-
plicitly extrapolate outside narrow FoVs. Neural Illumina-
tion [43] estimates a scene’s lighting from a single perspec-
tive image employing a perspective-to-spherical completion
intermediate task within their end-to-end model. Estimating
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a scene’s layout involves extrapolating structural informa-
tion, and, thus, many works now resort to spherical panora-
mas to exploit their holistic structural and contextual infor-
mation.

The seminal work of PanoContext [64], reconstructs an
entire room into a 3D cuboid, fully exploiting the large
FoV of omnidirectional panoramas . Its complex for-
mulation and weak priors resulted in high computational
complexity, requiring several minutes for each panorama.
While modern deep priors produce higher quality results
[68, 60], increasing the accuracy of their predictions and
ensuring Manhattan-aligned layouts, requires postprocess-
ing and hurts runtime efficiency.

Spherical panoramas necessitate higher resolution pro-
cessing, and therefore, increased computational complexity,
as evidenced by recent data-driven layout estimation models
[68, 60, 47]. More efficient alternatives [15] produce irregu-
lar (i.e. non-Manhattan) outputs, require parameter sensitive
postprocessing, and increase efficiency by lowering spatial
resolution, which comes at the cost of accuracy. Moreover,
data-driven spherical vision needs to address the distortion
of the projective omnidirectional data formats. But distor-
tion mitigating convolutions add a significant computational
overhead as reported in [15] and [9].

In this work, we present a single-shot spherical layout
estimation model. As presented in Figure 1, we employ
spherical-aware corner coordinate estimation and thus, add
explicit constraints that facilitate vertically aligned corners.
Capitalizing on this, we further integrate full Manhattan
alignment directly into the model, allowing for end-to-end
training, lifting the postprocessing requirement.

2. Related Work

2.1. Layout Estimation

While an excellent review regarding the 3D reconstruc-
tion of structured indoor environments exists [40], our dis-
cussion will provide the necessary details for positioning
our work. We focus on monocular layout estimation and
thus, refrain from discussing works using multiple panora-
mas [39, 41, 37, 38], interaction [30], other types of cameras
[27, 29].

PanoContext [64] showcased the expressiveness of 360o

panoramas in terms of structural and contextual informa-
tion. Prior to the maturation of deep data-driven meth-
ods, PanoContext relied on edge and line detection, Hough
transform, and deformable part models to generate different
room layout hypotheses. Similarly, low-level line segments
were used in an energy minimization formulation to esti-
mate a scene’s structural planes [17]. In Panoramix [59],
the line features were supplemented by superpixel facets,
and embedded as vertices in a graph for a constrained least
squares problem.

Hybrid data-driven methods [16] used structural edge
detection to improve the performance and runtime of [64]
when using fewer hypotheses. Pano2CAD [58] used a prob-
abilistic formulation that relied on CNN object recognition
and detection. It generated a synthetic scene reconstruc-
tion but required several minutes of processing. Its com-
putational overhead largely comes from the fusion of nar-
row FoV predictions from perspective 360o crops. This is
common to all aforementioned methods relying on line seg-
ments and to [61], which runs various CNNs on all narrow
FoV sub-views before merging them in 360o.

PanoRoom [14] and LayoutNet [68] were the first mod-
els to be trained on spherical panoramas. They both mod-
elled layout corner and structural edge estimation as a
spatial probabilistic inference task. While it is possible
to extract the layout’s corners by relying on heuristically
or empirically parameterized peak detection, these estima-
tions will most likely not deliver Manhattan-aligned out-
puts. Consequently, joint optimization is performed using
both sources of information to recover the final layout cor-
ner estimates. LayoutNet requires several seconds to infer
and optimize the layout on a CPU, but PanoRoom is much
faster as it uses a greedy RANSAC approach.

DuLa-Net [60] employs a novel approach for 360o lay-
out estimation. The main insight is that spherical images
can be projected in multiple ways, and different projec-
tions highlight different cues. Specifically, DuLa-Net uses a
‘ceiling-view’ that offers a more informative viewpoint with
respect to the floor-plan, which is a projection of a Manhat-
tan 3D layout. It performs feature fusion across both the
equirectangular and ceiling-view branches, using a height
prediction to estimate the final 3D layout. HorizonNet [47]
is yet another novel take at omnidirectional layout estima-
tion. Instead of image localised predictions, it encodes the
boundaries and intersections in one-dimensional vectors,
which are then used to reconstruct the scene’s corners. This
allows HorizonNet to exploit the expressiveness of recur-
rent models (LSTM [22]) to offer globally coherent predic-
tions. After a postprocessing step involving peak detection
and height optimization, the final Manhattan-aligned layout
is computed. A recent thorough comparison between Lay-
outNet, DuLa-Net and HorizonNet was presented in [69].
Unified encoding models and training scripts were used to
fairly evaluate these approaches. Their findings indicate
that the PanoStretch data augmentation proposed in [47],
as well as its heavier encoder backbone lead to improved
performance for the other models as well. The Corners-
for-Layout (CFL) [15] model is currently the most efficient
approach for 360o layout estimation in terms of runtime, but
at the expense of accuracy and Manhattan alignment. While
an end-to-end model is discussed, an empirically or heuris-
tically parameterized postprocessing image peak detection
step is still required.
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Compared to these approaches, our model is end-to-end
trainable, producing Manhattan aligned corners in a single-
shot. We approach the layout estimation task as a keypoint
localization one and use an efficiently designed spherical
model.

2.2. Learning on the Sphere

There are multiple representations for spherical images
with the more straightforward being the cube-map. Tradi-
tional CNN models can be applied to the cube faces [33],
and then warped back to the sphere. This was used in [64]
and [59] to detect lines on each cube’s faces [53], while
[58] and [61] used CNN inference on each face. Still, cube-
maps suffer from distortion as well, and additionally require
face-specific padding [4] to deal with the faces’ discontinu-
ities. Yet, to capture the global context these approaches
need to expand their receptive field to connect all faces con-
tinuously, which leads to inefficient models.

A novel line of research pursues model adaptation
from the perspective domain to the equirectangular one
[45]. The follow-up work, Kernel Transformer Networks
[46], adapt traditional kernels to the spherical domain in
a learned manner, also discussing two important aspects.
First, the accuracy-resolution trade-off for spherical images,
which necessitates the user of higher resolutions. Indeed,
most aforementioned data-driven layout estimation meth-
ods from 360o images operate on 1024×512 images, which
are unusually large for CNNs. Only [15] is the exception to
this rule, which further supports this point, taking into ac-
count its reduced performance. The second point of discus-
sion is related to the effect that non-linearities have, when
combined with kernel projection methods like [6] and [51].
It is shown that the assumption that needs to hold for no er-
ror to accumulate when using kernel projection, only holds
for the first layers of the network, and as it deepens, the ac-
cumulated error becomes even larger. Still, [15] shows that
their EquiConv offer more robust predictions. A generaliza-
tion of this concept, Mapped Convolutions [9], decouple the
sampling operation from the filtering one, and demonstrate
increased performance in dense estimation tasks. Still, run-
time performance is greatly reduced as reported in both [15]
and [9].

This is also the main drawback of frequency-based
spherical convolutions as presented in the concurrent works
of [5] and [11]. They are also highly inefficient in terms
of memory, allowing for training and inference in very low
resolution images only. DeepSphere [8] and [25] present
another approach to handle distortion and discontinuity by
leveraging graph convolutions and lifting the sphere repre-
sentation to a graph. Nonetheless, this requires a graph gen-
eration step and loses efficacy compared to traditional con-
volutions, whose implementations are highly optimized to
exploit the memory regularity of image representations.

The most efficient way to handle the discontinuity is cir-
cular padding [54, 47, 7], which is partly our approach as
well, taking into account the inefficiency of distorted ker-
nels. It should also be noted that model adaptation meth-
ods would not transfer well for the layout estimation task.
While an object detection task parses a scene in a local man-
ner, layout estimation requires to reason about the global
context, with perspective methods typically needing to ex-
trapolate the scene’s structure. However, as first proven
by PanoContext [64], the availability of the entire scene is
much more informative, and this would hinder the applica-
bility of transferring models like RoomNet [27] to the 360o

domain using such techniques [45, 46].

2.3. Coordinate Regression

Regressing coordinates in an image has been shown to
be an intriguingly challenging problem [31]. The pro-
posed solution was to offer the coordinate information ex-
plicitly. Yet, most keypoint estimation works in the litera-
ture initially used fully connected layers to regress coordi-
nates. The counter-intuition is that convolutions are inher-
ently spatial, and should be more well-behaved in spatial
prediction tasks. This is how data-driven layout estimation
models have addressed this problem up to now ([68], [15]),
transforming coordinates into spatial configurations, using
smoothing kernels to approximate coordinates, and leverage
dense supervision. Keypoint localisation tasks with seman-
tic inter-correlated structures, typically use one heatmap per
keypoint. However, an issue that has recently received at-
tention [62], is the way the final coordinate is estimated
from each dense prediction. Indeed the spatial maxima
might not always best approximate the coordinate, and thus,
heuristic approaches have persisted. Specifically for lay-
out estimation, where the corners are predicted on the same
map, manually-set peak detection thresholds are used.

The overlapping works of [32], [48] and [35] derive smo-
oth operations to reduce a heatmap to single a coordinate.
Using the coordinate grid and a spatial softmax function,
they smoothly, and differentiably, transform a spatial prob-
abilistic representation into a single location. As shown in
[52], all the above operations are treating pixels as particles
with masses, and estimate their center of mass.

3. Single-Shot Cuboids
Unlike previous works, we approach layout estimation

as a keypoint localisation task, alleviating the need for post-
processing and simultaneously ensure Manhattan aligned
outputs. Section 3.1 formulates our coordinate regression
objective and its adaption to the spherical domain, Sec-
tion 3.2 introduces the geodesic heatmaps and loss function
and then, Section 3.3 provide insights into our model’s de-
sign, and the techniques to achieve end-to-end Manhattan
alignment.
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3.1. Spherical Center of Mass

The center of mass (CoM) cP for a collection of particles
P : {p0, . . . ,pN} ∈ R3 is defined as:

cP =

∑N
i mipi

M
, M =

N∑
i

mi, (1)

with mi being the mass of particle pi and M the system’s
total mass. The CoM cP represents a concentration of the
particle system’s mass and does not necessarily lie on an
existing particle. This way, when considering a sparse key-
point estimation task in a structured grid, we can reformu-
late it as a dense prediction task by instead inferring the
mass of each grid point. Using Eq. (1) we can directly su-
pervise it with the keypoint coordinates, instead of relying
on a surrogate objective as commonly done in pose estima-
tion [62] or facial landmark detection [13].

For spherical layout estimation, the set of particles P
for which we seek to individually estimate their per particle
mass, lies on a sphere. Each layout corner is considered as
the CoM of a distinct particle system defined on the sphere.
Each particle p = (φ, θ) on the sphere is represented by
its longitude φ and latitude θ. While there are ways for
learning directly on the 2-sphere S2 manifold, as explained
in Section 2.2, they are very inefficient. Consequently, we
consider the equirectangular projection of the sphere which
preserves the angular parameterization of each particle. The
equirectangular projection is an equidistant planar projec-
tion of the sphere, where the pixels in the image domain
Ω : (u, v) ∈ [0,W ]× [0, H] are linearly mapped to the an-
gular domain2 A : (φ, θ) ∈ [0, 2π] × [0, π]. Nevertheless,
this format necessitates a different approach to overcome
its weaknesses, namely, image boundary discontinuity, and
planar projection distortion.

The discontinuity arises at the horizontal panorama
boundary, where the particles, even though at the opposite
sides of the image, are actually neighboring on the sphere.
For traditional images, the (normalized) grid coordinates
are typically defined in [0, 1] or [−1, 1], and thus, the parti-
cles at the boundary would be maximally distant. However,
for spherical panoramas, the longitudinal coordinate φ is pe-
riodic and wraps around, with the particles at the boundaries
being proximal (i.e. minimally distant). To address this, we
split the CoM calculation for the longitude and latitude co-
ordinates, and adapt the former to consider each point as
lying on a circle. Therefore, for each panorama row, which
represents a circle of (equal) latitude, we define new parti-
cles r ∈ R with

r(φ) = (λ, τ) = (cosφ, sinφ), (2)

while lie on a unit circle. We can then calculate the CoM
2We transition between these terms flexibly given their linear mapping.

Figure 2: Spherical Center of Mass calculation. Left: Two
sets of particles distributed on two circles of latitude (blue
and pink). Middle: Their equirectangular projection grid
coordinates. Right: Lifting the problem to the unit circle
allows for continuous CoM estimation. Darker points illus-
trate the CoMs calculated using our lifting approach, and
white ones the erroneous estimates when directly estimat-
ing CoM on the grid.

cR:

cR = (λ̄, τ̄) =

∑N
i miri
M

. (3)

This estimates, exactly and continuously, the CoM of the
circle. To map this back to the original domain, we extract
the angle φ̄:

φ̄ = atan2(−τ̄ ,−λ̄) + π, (4)

which represents the longitudinal CoM across the disconti-
nuity. Figure 2 shows a toy example of CoM calculations
along two circles of latitude on the sphere, with the erro-
neous estimates acquired on the equirectangular projection
and the correct ones when considering the boundary.

Although the equirectangular projection maps circles of
latitude (longitude) to horizontal (vertical) lines of constant
spacing, the same does not apply for its sampling density.
Indeed, while it samples the sphere with a constant den-
sity vertically, it stretches each circle of latitude to fit the
same constant horizontal line. Thus, its sphere sampling
density is not uniform in all planar pixel locations. The
sampling density is 1/ sin θ [49] and it approaches infinity
near the pole singularities. When calculating the CoM in the
equirectangular domain, we need to compensate for it by re-
weighting the contribution of each pixel p by σ(p) = sin θ
[66].

Essentially, given a dense mass prediction M(p),p ∈
A, we calculate the spherical CoM by first estimating a
three-dimensional coordinate ca:

ca = (λ̄, τ̄ , θ̄) =

∑A
p M(p)σ(p)a(p)∑A

p M(p)σ(p)
, (5)

with a(p) = (r(φ), θ) = (cosφ, sinφ, θ), and then drop
it to the two-dimensions again to calculate the final CoM
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Figure 3: Geodesic heatmaps respect the horizontal bound-
ary continuity and the equirectangular projection’s distor-
tion. Five normal distributions on the sphere centered
around different coordinates but using the same angular
standard deviation are presented on the top row. Their
corresponding geodesic heatmaps are aggregated on the
equirectangular image on the bottom row. In addition, the
geodesic distance between the red square and the colorized
diamond coordinates are also presented on the same image.
The geodesic distance similarly respects the boundary and
distortion of the equirectangular projection as seen by the
great circles drawn on the image that correspond to each
pair’s angular distance.

cm = (φ̄, θ̄) = (atan2(−τ̄ ,−λ̄) + π, θ) of M in the
equirectangular domain.

3.2. Geodesic Heatmaps

Accordingly, predicting the sparse coordinates of a cor-
ner comes down to predicting the dense mass map M, or
otherwise heatmap, which is the terminology we will be
using hereafter. Previous approaches complemented the
sparse objective with a dense regularisation term [35]. The
reason was that CoM regression is not constrained in any
way as to the shape of its dense prediction. This was ad-
dressed by adding a distribution loss over the predicted
heatmap and a Gaussian centered at the groundtruth coor-
dinate.

Yet while extracting the CoM, as presented in Section
3.1, takes the spherical domain into account, traditional
(flat) Gaussian heatmaps do not. A spatial normal distri-
bution N (c, s) centered around a coordinate c = (u, v),
using a standard deviation s = (sx, sy) would consider the
equirectangular image as a flat one, with a discontinuous
boundary and no distortion.

To overcome this, we construct geodesic heatmaps,
which are reconstructed directly on the equirectangular do-

main using a shifted angular coordinate gridAs3 defined on
the panorama:

G(cm, α) =
1

α
√

2π
e
−g(cm,ps)

2α2 ,ps ∈ As, (6)

where α is the angular standard deviation around the distri-
bution’s center cm, and g(·) is the geodesic distance:

g(p1,p2) = 2 arcsin
√

sin2 ∆θ
2 +cos θ1 cos θ2 sin2 ∆φ

2 , (7)

where ∆φ = φ1 − φ2 and ∆θ = θ1 − θ2. As illustrated
in Figure 3, using the geodesic distance between two an-
gular coordinates on the equirectangular panorama, we re-
construct geodesic heatmaps that simultaneously take into
account both the continuous boundary, as well as the pro-
jection’s distortion.

3.3. End-to-end Manhattan Model

Our model infers a set of heatmaps Mj , one for each
layout corner j ∈ [1, J ] (or junction, given that 3 planes
intersect), with J = 8 for cuboid layouts. It operates
in a single-shot manner, as these predictions are directly
mapped into layout corners cjm. Apart from removing the
post-processing step, another advantage of our single-shot
approach is the sub-pixel level accuracy that it allows for,
as the CoM of the particles is not necessarily one of the par-
ticles themselves. This translates to a reduction of the input
and working resolution of the model.

We choose a light-weight stacked hourglass (SH) archi-
tecture [34]. It is designed for multi-scale feature extraction
and merging, that enables the effective capturing of spatial
context. It suits spherical layout estimation very well as it
is a global scene understanding task that benefits from spa-
tial context aggregation, which is achieved by lowering the
spatial dimension of the features. Still, it also requires pre-
cise localisation of specific keypoints, which needs higher
spatial fidelity, (i.e. resolution) predictions.

3.3.1 Stacked Hourglass Model Adaptation

We made several modifications to the original SH model
stemming mainly from recent advances made in the field.
While we preserve the original residual block [20] in the
feature preprocessing block, we replace the hourglass resid-
ual blocks with preactivated ones [21]. Essentially, this adds
direct identity mappings between the stack of hourglasses,
allowing for immediate information propagation from the
output to the earlier hourglass modules. We also use anti-
aliased max-pooling [63], which preserves shift equivari-
ance and leads to smoother activations across downsampled
layers. Finally, unlike some state-of-the-art spherical layout
estimation methods [68, 60, 69], we address feature map

3φ and θ are shifted by −π and −π/2 respectively.
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Figure 4: Our model stacks N hourglasses which embed recently developed CNN modules for direct inter-hourglass in-
formation flow, spherically padded convolutions, and smoother multi-scale feature flow. The predicted geodesic heatmaps
get transformed directly to panoramic layout coordinates through a spherical CoM module. Since we regress coordinates,
we explicitly enforce quasi-Manhattan alignment. This sets the ground for a homography-based cuboid alignment head that
ensures the Manhattan alignment of our estimates. The F symbol denotes a global multiply-accumulate operation, reducing
the predicted dense representation to a set of sparse coordinates. Color-graded spheres indicate coordinate-based distance
from the origin.

discontinuity by using spherical padding. For the horizon-
tal image direction, we apply circular padding, as also done
in [54] and [47], and for the vertical one at the pole singu-
larities, we resort to replication padding.

3.3.2 Quasi-Manhattan Alignment

Since we are directly regressing coordinates, we can ex-
plicitly ensure quasi-Manhattan alignment during training
and inference alike. Previous approaches either use post-
processing to ensure the Manhattan alignment of their pre-
dictions [68, 60, 47], or simply forego it and produce non-
Manhattan outputs [15]. While this relaxation is some-
times presented as an advantage, most man-made environ-
ments are Manhattan-aligned, with walls being orthogonal
to ceiling and floors, and therefore, same edge wall cor-
ners are vertically aligned. For each wall-to-ceiling junc-
tion, there exists a wall-to-floor junction, effectively split-
ting our heatmaps in two groups, the top Mj

t and bottom
Mj

b heatmaps (i.e. ceiling and floor junctions respectively).
We enforce quasi-Manhattan alignment by averaging the
longitudinal coordinates of each wall’s vertical edge, guar-
anteeing a consistent longitudinal coordinate for both the
top and bottom junction.

3.3.3 Homography-based Full Manhattan Alignment

This quasi-Manhattan alignment ensures that wall edges are
vertical to the floor, but does not enforce their orthogonal-
ity. To achieve this, we introduce a differentiable operation
that transforms the predicted corners so as to ensure the or-
thogonality between adjacent walls. While the estimated
corners are up-to-scale, with a single center-to-floor/ceiling
measurement/assumption we can extract metric 3D coordi-
nates for each corner as in [64]4, by fixing the ceiling/floor
vertical distance to the corresponding average height.

We extract the f = (x,y) horizontal coordinates coor-
dinates, corresponding to an orthographic floor view pro-
jection, which comprise a general trapezoid. This is trans-
formed to a unit square by estimating the projective trans-
formation H (planar homography) mapping the former to
the latter [18]. Using the trapezoid’s edge norms ‖v‖2, with
v = f j+1 − f j , we calculate the average opposite edge dis-
tances and use them to scale the unit square to a rectan-
gle, after translating it for their centroids to align. Then,
we rotate and translate the rectangle to align with the origi-
nal trapezoid using orthogonal Procrustes analysis [42]. Fi-
nally, the rectangle gets lifted to a cuboid using the verti-
cal (z) ceiling and floor coordinates. The resulting cuboid

4See the supplementary material [56]
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vertices can be transformed back to angular coordinates for
loss computation, with the overall process presented in Fig-
ure 5. We use this cuboid alignment transform C as the final
block of our model to ensure full Manhattan alignment in
an end-to-end manner.

We supervise the junction angular coordinates using the
geodesic distance of Eq.(7):

LG =
1

J

∑
j

g(cjm, ĉ
j
m), (8)

with cjm and ĉjm being the groundtruth and predicted coor-
dinates. The geodesic distance smoothly handles the con-
tinuous boundary and provides a more appropriate distance
metric on the sphere, instead of the equirectangular projec-
tion. We additionally supervise the spatially normalized
heatmaps Hj = spatial softmax(Mj) predicted by our
model with Kullback Leibler divergence:

LD =
∑
A∫ ,j
DKL(Hj , G̃(cjm)), (9)

where G̃(·) is the spatially normalized geodesic heatmap
G(·). Apart from regularizing the predicted heatmaps, this
loss allows for stable end-to-end training with the cuboid
alignment transform, as pure coordinate supervision desta-
bilized the model during early training, which prevented
convergence as a consequence of the double solve required
in the homography and Procrustes analysis. Our final loss
is defined as:

L =

N∑
n=1

λG
N
LnG +

λD
N
LnD, (10)

with λG and λD being weighting factors between the
geodesic distance and KL loss, applied on each of the N
hourglass predictions.

The higher level SH architecture allows for global pro-
cessing without relying on heavy bottlenecks [68], compu-
tational expensive feature fusion [60] or recurrent models
[47]. It also requires no post-processing as it can produce
a Manhattan aligned layout in a single-shot with high accu-
racy albeit operating at lower than typical resolutions.

4. Results
4.1. Implementation Details

The input to our model is a single upright5, i.e. horizontal
floor, 512 × 256 spherical panorama. We use 128 features
for each hourglass’s residual block, with a 128×64 heatmap
resolution, and initialize our SH model using [19]. We use
the Adam [26] optimizer with a learning rate of 0.002 and

5Traditional [68, 23], or data-driven methods [24] can be used.

Figure 5: Starting from quasi-Manhattan corner estimates,
these get first deprojected (K−1) to 3D coordinates. Then,
keeping only the horizontal coordinates (F), we get a floor
view trapezoid, which depending on the measurement and
coordinates (floor/ceiling) our projection operated on, is
slightly different (cyan for the ceiling, and blue for the
floor). Using these floor view horizontal coordinates, we
estimate a homography H to transform them to an axis
aligned, unit square. This gets translated and scaled (S)
using the average opposite edge lengths and centroid of the
original untransformed floor view coordinates. An orthog-
onal Procrustes analysis (O) is used to align the rectangle
to the trapezoid, which then gets lifted to a cuboid (Q)
using the original heights, taking into account the quasi-
Manhattan alignment of our estimates. The cuboid’s 3D
coordinates then get projected (K) back to equirectangular
domain corners. Apart from the ceiling and floor starting
corners, we also consider a joint approach where the hor-
izontal floor view coordinates get averaged from both 3D
estimates, before proceeding to estimate the homography.
For this approach to work, we rescale the ceiling coordi-
nates so that their camera to floor distances align, therefore
removing any scale difference from the camera’s position
deviation from the true center.

default values for the other parameters, no weight decay,
and a batch size of 8. Further, after an empirical greedy
search, we use a fixed α = 2o and s = (3.5, 3.5) for our
Geodesic and Isotropic Gaussian distribution reconstruc-
tions respectively, which are created using the encoding of
[62], and set the loss weights to λG = 1.0 and λD = 0.15.
For cuboid alignment we use the joint approach and use a
floor distance of −1.6m. We implement our models us-
ing PyTorch [36, 12], setting the same seed for all random
number generators. Further, each parameter update uses the
gradients of 16 samples.

We apply heavy data augmentation during training, as es-
tablished in prior work [69, 47, 15]. Apart from photomet-
ric augmentations (random brightness, contrast, and gamma
[2]), following [15], we further apply random erasing, with
a uniform random selection between 1 and 3 blocks erased
per sample. We also probabilistically apply a set of 360o

panorama specific augmentations in a cascaded manner: i)
uniformly random horizontal rotations spanning the full an-
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Figure 6: Qualitative results on the PanoContext (top) and Stanford2D3D (bottom) datasets. On each panorama, we overlay
the reconstructed layout from the groundtruth red and predicted blue junctions. The next row showcases the overlaid aggre-
gated heatmap predictions, with the following one illustrating the resulting 3D mesh. Finally, two orthographic floor views
are presented, showing the full Manhattan (left), and quasi-Manhattan aligned (right) estimations.8



gle range, ii) left-right flipping, and iii) PanoStretch aug-
mentations [47] using the default stretching ratio ranges.
All augmentation probabilities are set to 50%.

4.2. Datasets

Prior work up to now has experimented with small scale
datasets. PanoContext [64] manually annotated a total of
547 panoramas from the Sun360 dataset [57] as cuboids.
Additionally, LayoutNet manually annotated 552 panora-
mas from the Stanford2D3D dataset [1], which are not
complete spherical images as their vertical FoV is nar-
rower. Similar to previous works, we use the common train,
test and validation splits as used in [15] and [68] for the
PanoContext and Stanford2D3D datasets respectively. Tak-
ing into account their small scale, we jointly consider them
as a single real dataset and train all our models for 150
epochs.

More recently, layout annotations have been provided
in newer computer-generated datasets, the Kujiale dataset
used in [28] and the Structured3D dataset [65], totaling
3550 and 21835 annotated images respectively. Albeit syn-
thetic, they offer a much more expanded data corpus than
what is currently available for real datasets. Given their
synthetic nature, these datasets offer different room styles
for the same scene. In particular, they provide empty rooms
as well as rooms filled with furniture by interior designers.
For the Kujiale dataset we use both types of scenes, while
for Structured3D we only use full scenes and follow their
respective official dataset splits. Our models are trained for
30 and 125 epochs respectively on Structured3D and Ku-
jiale.

4.3. Metrics

For the quantitative assessment of our approach against
prior works we use a set of standard metrics found in the lit-
erature [69], complemented by another set of accuracy met-
rics. The standard metrics include 2D and 3D intersection
over union (IoU2D and IoU3D), normalized corner error
(CE), pixel error (PE), and the depth-based RMSE and δ1
accuracy [10]. For all 3D calculations a fixed floor distance
at −1.6m is used. We also use junction (Jd) and wireframe
(Wd) accuracy metrics, defined as correct when the closest
groundtruth junction or line segment respectively is within
a pixel threshold d. More specifically, we use the thresholds
d = [5, 10, 15]. Finally, since we regress sub-pixel coordi-
nates, all metric calculations are evaluated on a 1024× 512
panorama resolution, and the arrows next to each metric de-
note the direction of better performance.

4.4. Performance Analysis

First, we focus on the latest results reported in [69],
where three data-driven cuboid panoramic layout estima-
tion methods ([68, 60, 47]) were adapted for fairer compar-

ison. Similar to [69], we train a 3 stack (HG-3) single-shot
cuboid (SSC) model using the real dataset. We present re-
sults tested on real (combined and single) datasets in Table 1
where our model compares favorably with the state-of-the-
art6, offering robust performance and end-to-end Manhattan
aligned estimates, a trait no other state-of-the-art method of-
fers currently. For these results, we report the same metrics
as those reported in [69]. Furthermore, Figure 6 presents a
set of qualitative results for our HG-3 model on these two
datasets.

With the recent availability of large scale synthetic
datasets, we additionally train a model using Structured3D
[65]. Since only HorizonNet offers a pretrained model us-
ing the same data, we present results on the Structured3D
test dataset for two HorizonNet variants and our model in
Table 2. Apart from the standard model that includes post-
processing, we also assess a single-shot variant of Hori-
zonNet. For this, we only perform peak detection on the
predicted wall-to-wall boundary vector and directly sample
the heights at the detected peaks to reconstruct the layout.
While this saves an amount of processing, the postprocess-
ing scheme used by HorizonNet improves the results when
applied to Structured3D’s test set. On the other hand, our
model produces accurate layout corner estimates without
any postprocessing. While SSC outperforms HorizonNet
in the established metrics, HorizonNet offers higher accu-
racy in the junction and wireframe metrics. This is also the
case for the cross-validation experiment that we present in
Table 3. We test the models trained using Structured3D on
the test set of Kujiale, using only the full rooms. The differ-
ence is this setting is that the single-shot variant of Horizon-
Net provides more accurate layout estimates than the post-
processed one. This exposes the weakness of postprocess-
ing approaches, which require empiric or heuristic tuning.
Nonetheless, this HorizonNet model is trained for general
layout estimation, and the performance deviation might be
related to this extra trait. Qualitative results for our end-
to-end model for both synthetic datasets are presented in
Figure 7.

4.5. Ablation Study

We perform an ablation study across all datasets. Ta-
bles 4, 2 and 5 present the results on the real and syn-
thetic datasets7. Our baseline is the model as presented
in Section 3.3 without the end-to-end Manhattan alignment
homography module (Section 3.3.3), but with the quasi-
Manhattan alignment (Section 3.3.2) offered by aligning the
longitude of top and bottom corners. Apart from adding
the end-to-end Manhattan alignment module, we also ab-
late the effect of the geodesic heatmap and loss (Sec-
tion 3.2), the SH model adaptation (spherical padding, pre-

6Best three performances are denoted with bold red, orange and yellow.
7Our supplement offers results for each of the real datasets.
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Figure 7: Qualitative results on the Structured3D (top) and Kujiale (bottom) datasets. Same scheme as Figure 6 applies.
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Table 1: Quantitative results on the real domain datasets for each model variant.

Model PanoContext Stanford2D3D Real (Combined)
Name Variant Parameters ↓ CE ↓ IoU3D ↑ PE ↓ CE ↓ IoU3D ↑ PE ↓ CE ↓ IoU3D ↑ PE ↓

LayoutNet v2 ResNet-18 15.57M 0.65% 84.13% 1.92% 0.77% 83.53% 2.30% 0.71% 83.83% 2.11%
LayoutNet v2 ResNet-34 25.68M 0.63% 85.02% 1.79% 0.71% 84.17% 2.04% 0.67% 84.60% 1.92%
LayoutNet v2 ResNet-50 91.50M 0.75% 82.44% 2.22% 0.83% 82.66% 2.59% 0.79% 82.55% 2.41%
DuLa-Net v2 ResNet-18 25.64M 0.83% 82.43% 2.55% 0.74% 84.93% 2.56% 0.79% 83.68% 2.56%
DuLa-Net v2 ResNet-34 45.86M 0.82% 83.41% 2.54% 0.66% 86.45% 2.43% 0.74% 84.93% 2.49%
DuLa-Net v2 ResNet-50 57.38M 0.81% 83.77% 2.43% 0.67% 86.6% 2.48% 0.74% 85.19% 2.46%
HorizonNet ResNet-18 23.49M 0.83% 80.27% 2.44% 0.82% 80.59% 2.72% 0.83% 80.43% 2.58%
HorizonNet ResNet-34 33.59M 0.76% 81.30% 2.22% 0.78% 80.44% 2.65% 0.77% 80.87% 2.44%
HorizonNet ResNet-50 81.57M 0.74% 82.63% 2.17% 0.69% 82.72% 2.27% 0.72% 82.68% 2.22%

SSC HG-3 6.35M 0.63% 83.97% 1.78% 0.51% 87.80% 1.62% 0.57% 85.89% 1.70%

Table 2: Quantitative results and ablation on the synthetic Structured3D synthetic dataset.

Model Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

HNet Single-Shot 0.57% 93.10% 91.17% 1.53% 78.20% 90.69% 95.09% 56.67% 77.50% 86.53% 0.0712 97.84%
Postprocessed 0.75% 93.49% 91.82% 1.46% 78.61% 91.64% 95.75% 56.67% 78.22% 87.57% 0.0756 98.58%

SSC
HG-3

Quasi-Manhattan 0.39% 93.97% 92.00% 1.25% 75.18% 90.96% 95.82% 49.27% 74.22% 86.29% 0.0667 98.80%
w/ Homography (joint) 0.40% 94.27% 92.33% 1.26% 75.35% 90.90% 95.74% 48.16% 74.35% 85.68% 0.0626 98.76%

w/o Geodesics 0.39% 93.94% 92.03% 1.25% 73.95% 90.14% 95.35% 49.26% 73.20% 84.98% 0.0671 98.71%
w/o Model Adaptation 0.45% 93.15% 91.04% 1.44% 71.10% 88.19% 94.35% 43.01% 69.59% 82.74% 0.0800 98.20%
w/o Quasi-Manhattan 0.39% 93.89% 92.00% 1.23% 73.43% 90.42% 95.63% 47.38% 72.63% 85.00% 0.0651 98.73%

Table 3: Cross-validation results on the Kujiale dataset using the Structured3D trained model.

Model Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

HNet Single-Shot 0.61% 91.68% 89.53% 1.83% 72.27% 87.91% 94.09% 46.27% 71.30% 81.88% 0.0899 98.02%
Postprocessed 1.04% 90.97% 88.96% 1.82% 71.18% 86.59% 92.95% 45.45% 69.67% 81.39% 0.0967 98.29%

SSC
HG-3

Quasi-Manhattan 0.45% 92.83% 90.55% 1.46% 70.95% 86.86% 93.41% 41.55% 68.58% 81.88% 0.0811 98.40%
w/ Homography (joint) 0.42% 93.37% 91.21% 1.38% 71.82% 87.36% 94.86% 44.12% 70.73% 82.06% 0.0706 98.45%

activated residual blocks and anti-aliased maxpooling - Sec-
tion 3.3.1), and the quasi-Manhattan alignment itself by
training a model with unrestricted, traditional (i.e.not spher-
ical as presented in Section 3.1) CoM calculation for each
corner.

These offer a number of insights. While the end-to-
end model provides the more robust performance across
all datasets, its performance is uncontested in the IoU and
depth related metrics. However, on the remaining pro-
jective metrics, the unrestricted coordinate regression ap-
proaches usually perform better. This is reasonable as the
homography fits a cuboid on the predictions, while the un-
/semi-constrained approaches can freely localise the cor-
ners, even though at the expense of unnatural/Manhattan
outputs, which manifests at an IoU3D drop. Overall, we
observe that the additional of explicit Manhattan constraints
(quasi and homography-based) offer increased performance
compared to directly regressing the corners. The same ap-
plies to spherical (periodic CoM and geodesics) and model
adaptation that consistently increase performance.

We also ablate the three approaches (floor/ceiling/joint)
that use different starting coordinates for the homography
estimation in Tables 4 and 5. We find that the joint approach

produces higher quality results, as it enforces both the top
and bottom predictions to be consistent between them. This
way, the cuboid misalignment errors are backpropagated to
all corner estimates through the homography.

5. Conclusion
Our work has focused on keypoint estimation on the

sphere and in particular on layout corner estimation.
Through coordinate regression we integrate explicit con-
straints in our model. Moreover, while we have also shown
that end-to-end single-shot layout estimation is possible,
our approach is rigid as it is based on a frequent and log-
ical assumption, that the underlying room is, or can be ap-
proximated by, a cuboid. Nonetheless, this rigidity comes
from the structured predictions that CNN enforce, with the
number of heatmaps that will be predicted being strictly de-
fined at the design phase. Future work should try to address
this limitation to fully exploit the potential that single-shot
approaches offer, mainly stemming from end-to-end super-
vision. Finally, as with all prior layout estimation works,
predictions are up to a scale, which hinders applicability.
Even so, structured scene layout estimation is an important
task that can even be used as an intermediate task to improve
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Table 4: Ablation study on the real dataset.

Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑
Quasi-Manhattan 0.55% 87.90% 85.02% 1.74% 61.54% 84.04% 91.02% 30.61% 57.97% 74.93% 0.1734 96.14%

w/ Homography (joint) 0.57% 88.39% 85.89% 1.70% 55.01% 80.62% 91.75% 20.98% 52.63% 71.07% 0.1557 97.93%
w/ Homography (floor) 0.68% 88.25% 85.97% 1.91% 47.01% 76.66% 88.65% 16.30% 43.11% 63.24% 0.1591 97.52%
w/ Homography (ceil) 0.63% 87.63% 85.25% 1.88% 52.79% 81.58% 91.43% 18.50% 51.64% 69.73% 0.1671 97.64%

w/o Geodesics 0.79% 84.40% 81.08% 2.31% 33.78% 70.05% 86.80% 4.66% 26.33% 53.39% 0.2233 95.48%
w/o Model Adaptation 0.65% 86.60% 82.94% 1.98% 55.41% 78.16% 88.55% 22.73% 50.21% 66.49% 0.2033 95.61%
w/o Quasi-Manhattan 0.61% 87.24% 84.09% 1.81% 54.15% 80.21% 91.00% 16.26% 50.04% 69.62% 0.1874 96.31%

Table 5: Ablation study on the synthetic Kujiale dataset.

Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑
Quasi-Manhattan 0.53% 91.13% 88.43% 1.74% 65.00% 82.14% 90.50% 37.27% 62.30% 74.91% 0.0979 96.99%

w/ Homography (joint) 0.53% 91.40% 89.01% 1.70% 63.36% 82.55% 90.55% 35.91% 61.79% 74.24% 0.0872 97.09%
w/ Homography (floor) 0.57% 91.28% 88.72% 1.79% 62.09% 80.55% 89.68% 34.24% 58.97% 72.42% 0.0945 97.44%
w/ Homography (ceil) 0.56% 90.92% 88.55% 1.78% 61.68% 80.82% 89.59% 35.55% 60.42% 72.48% 0.0925 97.13%

w/o Geodesics 0.59% 90.81% 88.31% 1.81% 59.55% 79.36% 89.64% 27.64% 56.39% 71.24% 0.0998 96.92%
w/o Model Adaptation 0.59% 90.42% 87.52% 1.82% 61.36% 79.14% 88.68% 29.61% 57.27% 70.82% 0.1026 96.65%
w/o Quasi-Manhattan 0.54% 90.92% 88.42% 1.73% 62.59% 80.91% 90.36% 33.03% 59.33% 73.36% 0.0962 97.07%

other tasks, as shown in [28]. With metric scale inference,
it has the potential for significant interplay with other 3D
vision tasks like depth or surface estimation.

Supplement
Supplementary material including additional ablation

experiments and qualitative results are appended after the
references.
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A. Supplementary Material
In this supplementary material we present additional in-

formation regarding runtime and floating point operations,
with the data offered in Table 6, and illustrated in Fig-
ure 8. Apart from the models presented in the main doc-
ument, we also add efficient CFL models for complete-
ness. In addition, we provide evaluation results for the Stan-
ford2D3D and PanoContext datasets separately, in Tables 7
and 8 respectively. Further, in Tables 9, 10, and 11, we
offer a decomposed model ablation for the Stanford2D3D,
the PanoContext, and both datasets (averaged) respectively,
where each individual component is ablated (namely, pre-
activated bottlenecks, spherical padding, and anti-aliased
max pooling). The pre-activated residual blocks offer the
larger gains, followed by the padding and finally, the anti-
aliased max pooling. Nonetheless, each different compo-
nent is contributing to increased performance, with their
combined effect being the most significant as observed by
the model without all of these components together. Fig-
ures 9, 10, 11 and 12 present additional qualitative results
of our single-shot, end-to-end Manhattan aligned layout es-
timation model using the joint homography head module
in Stanford2D3D, PanoContext, Structured3D and Kujiale
datasets respectively. Finally, Figures 13 and 14 present the
qualitative samples from the real and synthetic datasets re-
spectively, which are included in the main manuscript in
animated 3D views (can only be viewed in recent Adobe
Acrobat Reader versions).
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Figure 8: Model Size vs Accuracy vs Complexity. Vi-
sual comparison of spherical layout estimation models in
terms of parameters (denoted by each bullet’s size), com-
putational complexity (x axis, in log scale, billions of
multiply-accumulate operations) and accuracy (y axis, av-
erage IoU3D accuracy). Our model (SSC) is the most light-
weight and offers a good comprise between complexity and
accuracy, surpassing most other approaches. It also pro-
vides an end-to-end layout prediction in a single-shot, com-
pared to all other approaches that require postprocessing.
Different variants of each model are depicted. The exact
data of this plot can be found in Table 6.
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Table 6: This table presents model complexity measures (multiply-accumulate giga-operations per inference, millions of
parameter counts, runtime performance) as well as accuracy (IoU3D) on real domain datasets. This table’s reported values
are used to generate Figure 8.

Method Variant MACS Parameters CPU GPU IoU3D

SSC HG-3 17.61G 6.35M 1.78s 0.085s 85.89%
LayoutNet v2 ResNet18 76.12G 15.57M 11.65s 0.034s 83.83%
LayoutNet v2 ResNet34 95.48G 25.68M 12.97s 0.044s 84.60%
LayoutNet v2 ResNet50 607.43G 91.50M 34.63s 0.130s 82.55%
DuLa-Net v2 ResNet18 46.76G 25.64M 4.99s 0.037s 83.68%
DuLa-Net v2 ResNet34 75.79G 45.86M 6.46s 0.049s 84.93%
DuLa-Net v2 ResNet50 93.53G 57.38M 7.22s 0.072s 85.19%
HorizonNet ResNet18 23.03G 23.49M N/As N/As 80.43%
HorizonNet ResNet34 42.38G 33.59M N/As N/As 80.87%
HorizonNet ResNet50 71.70G 81.57M 3.21s 0.063s 82.68%

CFL EfficientNet 42.19G 11.69M 0.074s 0.028s N/A%
CFL ResNet50 N/A N/A 0.420s 0.052s 78.79%

Table 7: Ablation results on the Stanford2D3D dataset.
Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

Quasi-Manhattan 0.56% 88.18% 85.16% 1.83% 64.82% 83.41% 89.82% 33.55% 62.32% 75.81% 0.1787 95.59%
w/ Homography (joint) 0.51% 89.83% 87.80% 1.62% 64.27% 85.07% 92.70% 27.65% 62.02% 77.36% 0.1402 98.28%
w/ Homography (floor) 0.59% 89.51% 87.56% 1.80% 54.87% 81.86% 90.27% 23.01% 52.73% 70.35% 0.1474 97.95%
w/ Homography (ceil) 0.58% 89.04% 87.04% 1.82% 60.29% 82.74% 91.81% 27.88% 57.52% 74.04% 0.1539 97.36%

w/o Geodesics 0.80% 84.72% 81.73% 2.34% 32.19% 67.70% 87.28% 4.13% 25.15% 49.71% 0.2213 95.31%
w/o Model Adaptation 0.62% 87.77% 84.47% 1.85% 59.40% 79.20% 89.60% 25.96% 54.35% 69.76% 0.1815 97.10%
w/o Quasi-Manhattan 0.60% 87.50% 84.72% 1.86% 58.30% 79.76% 90.49% 19.32% 54.79% 71.17% 0.1825 95.97%

Table 8: Ablation results on the PanoContext dataset.
Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

Quasi-Manhattan 0.53% 87.63% 84.89% 1.65% 58.25% 84.67% 92.22% 27.67% 53.62% 74.06% 0.1682 96.68%
w/ Homography (joint) 0.63% 86.95% 83.97% 1.78% 45.75% 76.18% 90.80% 14.31% 43.24% 64.78% 0.1711 97.58%
w/ Homography (floor) 0.76% 87.00% 84.39% 2.02% 39.15% 71.46% 87.03% 9.59% 33.49% 56.13% 0.1708 97.09%
w/ Homography (ceil) 0.68% 86.22% 83.47% 1.93% 45.28% 80.42% 91.04% 9.12% 45.75% 65.41% 0.1803 97.92%

w/o Geodesics 0.78% 84.08% 80.43% 2.27% 35.38% 72.41% 86.32% 5.19% 27.52% 57.08% 0.2252 95.64%
w/o Model Adaptation 0.68% 85.42% 81.41% 2.11% 51.42% 77.12% 87.50% 19.50% 46.07% 63.21% 0.2250 94.13%
w/o Quasi-Manhattan 0.61% 86.99% 83.46% 1.77% 50.00% 80.66% 91.51% 13.21% 45.28% 68.08% 0.1922 96.66%

Table 9: Model ablation results on the Stanford2D3D dataset.
Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

Quasi-Manhattan 0.56% 88.18% 85.16% 1.83% 64.82% 83.41% 89.82% 33.55% 62.32% 75.81% 0.1787 95.59%
w/o Model Adaptation 0.62% 87.77% 84.47% 1.85% 59.40% 79.20% 89.60% 25.96% 54.35% 69.76% 0.1815 97.10%

w/o Pre-activated 0.58% 87.93% 85.09% 1.86% 63.94% 83.08% 89.82% 28.24% 61.73% 74.34% 0.1748 96.05%
w/o Padding 0.56% 88.10% 85.07% 1.73% 64.82% 83.85% 90.71% 30.60% 62.02% 75.22% 0.1788 96.61%

w/o Anti-aliasing 0.56% 88.06% 85.15% 1.76% 62.50% 82.52% 90.60% 28.32% 60.03% 75.29% 0.1721 97.11%

Table 10: Model ablation results on the PanoContext dataset.
Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

Quasi-Manhattan 0.53% 87.63% 84.89% 1.65% 58.25% 84.67% 92.22% 27.67% 53.62% 74.06% 0.1682 96.68%
w/o Model Adaptation 0.68% 85.42% 81.41% 2.11% 51.42% 77.12% 87.50% 19.50% 46.07% 63.21% 0.2250 94.13%

w/o Pre-activated 0.62% 87.48% 83.68% 1.81% 55.90% 79.48% 88.92% 20.60% 51.10% 68.40% 0.1793 95.85%
w/o Padding 0.61% 85.96% 82.84% 1.96% 56.13% 82.31% 87.97% 24.69% 50.94% 70.28% 0.2043 95.18%

w/o Anti-aliasing 0.55% 87.48% 84.41% 1.76% 55.42% 82.78% 91.98% 27.52% 51.10% 69.50% 0.1745 96.72%

Table 11: Average model ablation results on both the real datasets.
Variant CE ↓ IoU2D ↑ IoU3D ↑ PE ↓ J5 ↑ J10 ↑ J15 ↑ W5 ↑ W10 ↑ W15 ↑ RMSE ↓ δ1 ↑

Quasi-Manhattan 0.55% 87.90% 85.02% 1.74% 61.54% 84.04% 91.02% 30.61% 57.97% 74.93% 0.1734 96.14%
w/o Model Adaptation 0.65% 86.60% 82.94% 1.98% 55.41% 78.16% 88.55% 22.73% 50.21% 66.49% 0.2033 95.61%

w/o Pre-activated 0.60% 87.70% 84.39% 1.84% 59.92% 81.28% 89.37% 24.42% 56.41% 71.37% 0.1771 95.95%
w/o Padding 0.59% 87.03% 83.95% 1.84% 60.48% 83.08% 89.34% 27.65% 56.48% 72.75% 0.1916 95.90%

w/o Anti-aliasing 0.56% 87.77% 84.78% 1.76% 58.96% 82.65% 91.29% 27.92% 55.57% 72.40% 0.1733 96.92%

16



Figure 9: Additional qualitative results on the Stanford2D3D dataset.
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Figure 10: Additional qualitative results on the PanoContext dataset.
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Figure 11: Additional qualitative results on the Structured3D dataset.
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Figure 12: Additional qualitative results on the Kujiale dataset.
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Figure 13: Animated renderings of the 3D qualitative results of the real datasets as presented in the figures of the main
manuscript. Top row samples are from PanoContext, bottom row samples are from Stanford2D3D. (animations are only
playable in recent Adobe Acrobat Reader versions).

Figure 14: Animated renderings of the 3D qualitative results of the synthetic datasets as presented in the figures of the main
manuscript. Top rows samples are from Structured3D, bottom row samples are from Kujiale. (animations are only playable
in recent Adobe Acrobat Reader versions).
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