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Abstract

Monitoring of ecosystems entails the evaluation of contributing factors by the expert
ecologist. The aim of this study is to examine to what extent the quantitative variables,
calculated solely by the spectral and textural information of the space-borne image, may
reproduce verified habitat maps. 555 spectral and texture attributes are extracted and
calculated from the image. Results reached an overall accuracy of 65% per object, 76%
per pixel, and 77% in reproducing the original objects with segmentation. Taking into
consideration the large number of different habitats queried and the lack of any ancillary
information the results suggest the discriminatory power of the finally selected attributes.
Potential and limitations are discussed.

Keywords: Texture analysis, segmentation, EUNIS habitats, feature selection, random
forest, ecosystem monitoring.

Introduction

In recent years, there has been an increasing interest in mapping and monitoring ecosystems
and related services [Maes et al., 2012, 2016]. Mapping of ecosystems provides significant
insight into their status and underlying functions, e.g. it allows the assessment of the effects
of land-use change on the spatial distribution of environmental resources and the condition
of the ecosystem services [Dickson et al., 2014]. Many organizations support the idea of
ecosystem mapping as a core prerequisite towards ecosystem’s protection. The “Mapping
and Assessment of Ecosystem and their Services” (MAES) report states that “for the
practical purposes of mapping and assessment, an ecosystem is considered at the scale of
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habitat/biotope or landscape” [Maes et al., 2013]. This is how it is treated in this research
as well.

According to MAES Technical Report [2014], mapping of ecosystems (and their services)
is based on land cover datasets (e.g. CORINE land cover) and is largely dependent on their
availability. The interpretation of such land cover data should be implemented on the basis of
the European Nature Information System (EUNIS) habitat classification, in order to enrich
the land cover information with more detailed information related with biodiversity. In fact,
EUNIS has been recognized as an important standardizing tool for habitat classification in
the EEA [Ichter et al., 2014] and as reference taxonomy for the establishment of a Red List
of European habitats [Rodwell et al., 2013]. The definition of habitat according to EUNIS
is: “a place where plants or animals normally live, characterized primarily by its physical
features (topography, plant or animal physiognomy, soil characteristics, climate, water
quality etc.) and secondarily by the species of plants and animals that live there” [Davies
et al., 2004]. Habitat classification constitutes an integral part of EUNIS, developed and
managed by the European Topic Centre for Nature Protection and Biodiversity (ETC/NPB
in Paris) for the European Environment Agency (EEA) and the European Environmental
Information Observation Network (EIONET) [Davies et al., 2004]. EUNIS provides
a comprehensive typology for the habitats of Europe and its adjoining seas, acting as a
common reference for habitats in the framework of the EU INSPIRE Directive [Ichter et
al., 2014]. It provides cross-linkages to the habitat types listed in Annex 1 of the Habitat
Directive [European Commission, 1992], attempting a link with ecosystems and ecosystem
services.

Acting within this framework the cooperation of remote sensing researchers and experts for
biodiversity assessment issues brings along important benefits in the science of ecology and
the improvement of the monitoring techniques of the environment and its conservation status
[Turner et al., 2003; Nagendra et al., 2012, 2014, 2015]. Ecosystem functions are linked to
biodiversity, both directly and indirectly [Loreau et al., 2001; Costanza et al., 2006]. Apart
from covering the urgent need for periodic and regular updates on land cover and habitat
maps, attention is given to the objective reproducibility of the maps. A lot of different
datasets, features, classification schemes and mapping methods have been developed and
used to tackle aforementioned expectations and challenges [Bunce et al., 2008; Vanden
Borre et al., 2011; Kosmidou et al., 2014]. A wide number of features have been extracted
from remote sensing images and employed to enhance habitat mapping performance.
Depending on the nature of the available data, they may range from spectral reflectance,
backscatter coefficients, and 3D point clouds for passive radiometer, RADAR, and LIDAR
data, respectively, to spectral band combinations, texture features, morphological, and
topological features [Bock et al., 2005; Mishra et al., 2005; Boyd et al., 2006; Lucas et
al., 2011; Cornforth et al., 2013; Petrou et al., 2014a; Adamo et al., 2014; Jin et al., 2014;
Zhuang and Mountrakis, 2014].

The scope of this paper is to extract a feature knowledge base from a single multispectral
very high resolution satellite image and examine its performance in discriminating EUNIS
habitats both for their assigned category and their extent. No further ancillary knowledge
is considered, in an effort to evaluate the potential of remotely sensed information content.
Main aim is to quantitatively identify the support remote sensing may offer to ecologists
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and mapping experts in their task to delineate processing-person indifferent reproducible
boundaries and transition zones between habitats. Following the objective and framework
set, a wide number of spectral and texture features are extracted from a very high resolution
WorldView-2 (WV-2) image. Dimensionality reduction with a wrapper feature selection
approach is applied to identify small subsets of features in the initial large set that best
discriminate among habitat classes. Results are generated per object and per pixel. Finally,
an iterative trial and error process is carried out to identify the capacity and limitations
brought along with multilayer segmentation to support objective/ quantitative habitat
boundaries’ delineation.

Materials

The study area is a Natura 2000 site in Italy, namely Le Cesine (SCI 1T9150032; SPA
IT9150014). According to the World Wildlife Fund (WWF), Le Cesine is one of the best
preserved wetlands of Southern Italy and the last surviving portion of what was once a vast
wetland area ranging from Brindisi to Otranto. Le Cesine Nature Reserve is 380 hectares
in size and it provides resting and breeding sites for many species of birds. This site is a
coastal area, whose structure is mainly comprised of ponds, marshes and wet meadows,
with a very high diversity in habitats and vegetation types [Tomaselli et al., 2011; Adamo
etal., 2014].

On the basis of ground truth data by the National Research Council in Italy (CNR), and
according to the Typology of Ecosystems proposed by Maes et al. (2013) as basic units
for ecosystem mapping at European scale, there are two types of terrestrial ecosystems
in the area of interest. The first one is the “sparsely vegetated land” and the second is the
“marine inlets and transitional waters”. All non-vegetated or sparsely vegetated habitats
(naturally non-vegetated areas) were considered as sparsely vegetated land [Kosmidou et
al., 2014]. Often these ecosystems are exposed to extreme natural conditions that might
support particular species. They are open spaces with little or no vegetation (bare rocks,
glaciers and dunes, beaches and sand plains). The marine inlets and transitional waters are
ecosystems on the land-water interface under the influence of tides with salinity higher than
0.5% [European Commission, 2014]. They include coastal wetlands (saltmarshes, saline
and intertidal flats), lagoons (highly restricted connection to open sea, and reduced, often
relatively stable, salinity regime), estuaries and other transitional waters, fjords and sea
lochs as well as embayment [European Commission, 2014]. Table 1 analytically describes
the 21 different categories of EUNIS description evident in Le Cesine.
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Table 1 - Le Cesine categories according to the EUNIS classification (The “Numbers” column is the
representative number of each habitat to facilitate their use in the text, “EUNIS code” represents the
codes of each habitat according to the EUNIS classification, “Number of polygons” and “Number of
pixels” represent the number of polygons and pixels assessed for each habitat, respectively, in the
study area, and “EUNIS description” represents the name of each habitat according to EUNIS).

Number | EUNIS code | 1Vmber of | Number of EUNIS description
polygons pixels

| A2.522 40 6946526 Mediterranean Juncus maritimus and Juncus
acutus salt marshes

2 A2.526 5 392 Mediterranean saltmarsh scrubs

3 A2.551 19 3543 Salicornia, Suaeda and Salsola pioneer
saltmarshes

4 Bl1.1 5 20081 Sand beach driftlines

5 B1.31 29 26600 Embryonic shifting dunes

6 B1.63 34 6882 Dune Juniperus thickets

7 C2 4 20155 Surface running waters

8 C3.421 3 2321 Short Mediterranean amphibious communities

9 D5.1 38 172007 Reedbeds normally without free standing
water

10 D5.24 169 268267 | Fen Cladium mariscus beds

1 E1313 14 2228 Ms.sdlterranean annual communities of shallow
soils

12 El.6 44 182154 | Subnitrophilous annual grassland

13 F5.51 12 16915 Thermo Medlterranean brushes, thickets and
heath garrigues

14 F5.514 141 197704 | Lentisc brush

15 F6.2C 30 159006 | Eastern Erica garrigues

16 G2.91 33 147003 | Olea europaca groves

17 G3.F1 57 406081 | Native conifer plantations

13 13 5 11370 Arable lanq w1th.unm1xed crops grown by
low intensity agricultural methods

19 2.1 12 6273 Scattered residential buildings

20 J4.2 25 22983 Road networks

21 X03 41 281609 | Brackish coastal lagoons
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For the area of interest, a WV-2 image (Fig. 1) with a total of 8 bands was used for the
analysis, in particular: Coastal (400-450 nm), Blue (450-510 nm), Green (510-580 nm),
Yellow (585-625 nm), Red (630-690 nm), Red-Edge (705-745 nm), Near Infrared 1 (NIR-
1) (770-895 nm), and NIR-2 (860-1040 nm) bands. For this study the panchromatic band
was not used. The spatial resolution of the WV-2 image was 2 m after the pre-processing
applied for georeferencing, co-registration, orthorectification and calibration in Top-of-
Atmosphere reflectance values.
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Figure 1 - Location of the area of interest, the WorldView-2 clipped image and the EUNIS categories.

CNR supported this research by offering i) a plethora of data specifying the land cover
classes, which were used as segmentation layers in order to split the image into polygons/
objects for this analysis, and ii) object-based information about the ecosystems on the
ground according to the EUNIS system (Fig. 1). The latter was utilized as the ground truth
information for this study. In particular, the data preparation by CNR included digitizing
the thematic maps of the study site in ArcGis 10.2 from recent colour orthophotos in
combination with topographical maps (source: SIT-Puglia, http://www.sit.puglia.it/).
Natural and semi-natural landscape elements were first defined as vegetation types on a
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1:5,000 scale. This vegetation map represented the baseline position for natural and semi-
natural types. Vegetation units were, thus, reclassified in EUNIS habitat types (level III and
IV). As for anthropogenic (agricultural and artificial) types, they were directly assigned
to EUNIS types. Maps were validated by in-field campaigns carried out in 2011-2013 to
verify presence and distribution of both artificial and natural and semi-natural habitat types.
Information on vegetation composition and structure, as well as agricultural practices or
land use, was also collected. Such information, geocoded by GPS, was integrated into a
GIS geo-database and allowed an accurate definition of some types.

Methods
The proposed methodology for this research is applied in two stages (Fig. 2):

- The first stage deals with the extraction of a wide number of spectral-based and texture
features, and the selection of an effective feature subset, able to characterize and
discriminate among different habitat classes. The features are extracted using as object
boundaries the ones indicated by the units of the EUNIS thematic layer. A number of
texture and spectral layers are derived by the WV-2 satellite image and are expressed
as object attributes through a set of statistic measures. Then, wrapper-based feature
selection is performed to select a small feature set able to be used for the classification
of habitat classes.

- The second stage uses the features of the selected subset to provide a segmentation
of the WV-2 imagery that accurately distinguishes the extent and boundaries of the
habitat patches. Here, the object boundaries dictated by the ground truth thematic
layer are considered unknown and are used solely for final performance evaluation.
Two commonly used approaches are examined, a per-pixel classification and an object-
based segmentation. The former used training sample pixels from the known objects
to reproduce classes and their boundaries, while the latter is utilized and analyzed
solely for its segmentation ability to reproduce classes’ boundaries, not entering to any
classification processing.

Stage 1 EUNIS
thematic layer
Features’ selection from Stage 1

Feature extraction

Texture features
Feature
- Spectral features statistics / \
WV-2 satellite Per pixel Object based
image Classification Segmentation
AN 7
z P Evaluation
eatures’ selection y EEiTER

> vl x
evaluation Original EUNIS
thematic layer Stage 2

Figure 2- Workflow of the applied methodology.
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Texture feature extraction

The texture feature analysis was performed by applying co-occurrence measurements in
ENVI 5. 0 [Zengeya et al., 2012] with the use of co-occurrence filtering. Each feature
was extracted for each band in order to specify a large set of unique characteristics for
each polygon and habitat. They represent extensive differences of gray tone in the image
and provide spatial information by computing several angular relationships and distances
between neighboring resolution cell pairs on the image [Haralick et al., 1973]. The selected
texture features for this study are homogeneity, contrast, the second moment, entropy,
correlation, and variance. The selection was based on related literature for land cover
mapping, among which,

- Adamo et al. [2014] supported that entropy is characterized as the most suitable to
represent the height of the trees, while when it is combined with variance, it can show
the structure of the vegetation;

- Kayitakire et al. [2006] referred to correlation and entropy as the most relevant when
analysing 6m spatial resolution optical images for land cover classification;

- Franklin et al. [2001] showed that homogeneity was more operative than the first-order
variance in distinguishing age classes of some forests;

- Mohanaiah et al. [2013] suggested that the angular second moment is high when the
image has very high homogeneity or when pixels are very similar.

Window sizes of 5x5 and 15x%15 pixels were used for their calculation, shown to perform
well with very high resolution images [Kayitakire et al., 2006].

Spectral indices calculation
Spectral indices aim to highlight certain spectral properties of habitats that may assist their
characterization and discrimination. The following indices were used in this study:

- the Normalized Difference Vegetation Index (NDVI), which is a combination of
band 5 (red band) and band 8 (NIR-2); more specifically it is equal to (band5-band8)/
(band5+band8) of the WV-2 image;

- the Normalized Difference Soil Index (NDSI), a combination of the green (band 3) and
the yellow (band 4) bands, more specifically equal to (band3-band4)/ (band3+band4).
NDSI determines the areas, where the soil is the dominant background or foreground
materi al [Wolf, 2010];

- the Non-Homogeneous Feature Difference (NHFD), which is used to identify areas with
human-made background [Wolf, 2010]. NHFD is calculated by dividing the difference of
the coastal band from the red edge band by their sum ((band6-band1)/ (band6+bandl));

- the Difference Vegetation Index, calculated by subtracting the red from the near infrared
band (band7-band5). In contrast with NDVI, DVI does not deal with the difference of the
reflectance and the radiance caused by the atmosphere and the shadows; however, it is
used to determine the vegetation and differentiate the soil and vegetation [Darvishzadeh
etal., 2006];

- the Simple Ratio Index (SRI) is used, taking high values for vegetation and low ones for
soil, ice and water. It also indicates the amount of vegetation and reduces the effects of
atmosphere and topography (band7/band5) [Darvishzadeh et al., 2006];

- the Normalized Difference Water Index (NDWI) as a measure of water content in
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vegetation canopies [Gao, 1996]. It is less sensitive than NDVI and is calculated by the
ratio of the difference of the NIR-2 from the coastal band to their sum, (band8-band1)/
(band8+band1);

- the Optimized Soil Adjusted Vegetation Index (OSAVI) for agricultural monitoring,
which is calculated as follows: OSAVI = (1.5-(band7-band5))/( band7+band5+0.16)
[Steven, 1998].

Estimation of statistical properties

The statistical analysis was based on the mean, the standard deviation, the minimum (min),
the maximum (max), and the median of the pixels of each polygon. All these statistical
properties were calculated for each polygon of each habitat, each index and each texture
feature in the R programming language. In order to store all these data, matrices of all the
variables were created and in the end were combined in a new data frame. This combination
produced a big table for each polygon, containing all its values from every different band,
band combination and texture feature in order to be used in the following processes. In
total, each polygon is characterized by 555 features: five statistical values for 1) the eight
original WV-2 spectral bands, ii) the seven spectral indices, and iii) the six texture measures
calculated for each band and for two window sizes.

Feature selection

A wide number of dimensionality reduction techniques have been proposed and employed in
remote sensing datasets to decrease the feature space, including both transformation-based
and feature selection techniques. Transformation-based techniques alter the original feature
space, e.g. by applying linear or non-linear re-projections of the features to a new space of
lower dimension than the original one [Gormus et al., 2012; Mahrooghy et al., 2012; Liu et
al.,2014; Petrou et al., 2014b; Falco et al., 2015]. Feature selection methods, on the contrary,
reduce the original feature space by removing entire features, applying no transformation
to the remaining ones. The aim is to identify a high performing subset of features, reducing
in parallel the processing cost of feature extraction and analysis processes. Features may
be selected randomly, intuitively or based on literature review, or by following more
sophisticated filter and wrapper approaches. Although not directly linked to the classification
process, filter feature selection has proven effective in removing redundant information and
provided subsets outperforming the full feature sets in classification accuracies, including
even 3% of the original features [Petrou et al., 2015]. Wrapper approaches can use the
same or similar search algorithms, but, contrary to filter feature selection algorithms, the
evaluation of the feature subsets is linked with the learning scheme applied afterwards, e.g.
is performed by evaluating directly the classification performance of each candidate subset
[Vaiphasa et al., 2005; Chan and Paelinckx, 2008]. Wrapper approaches are usually more
processing resources demanding than filter approaches, but have compared favorably to
filter approaches since they are directly focused on optimizing the learning process outcome
[Kohavi and John, 1997].

In this study, since the aim is to provide a feature subset optimizing the habitat classification
performance, a wrapper feature selection approach is followed to identify subsets of the
full feature set with high habitat classification performance. The wrapper approach consists
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of a search and an evaluation algorithm, the former searching within the full feature set
and forming candidate subsets and the latter evaluating the classification performance of
these subsets. As far as the search method is concerned, exhaustive search would result in
the evaluation of 25%-1 non-empty feature sets. Instead, a heuristic approach is employed,
best-first [Hall, 1999], searching for the optimum subset among a restricted number of
evaluated ones, in order to reduce the computational cost. Best-first performs a greedy
search allowing backtracking, running iteratively and adding or removing one feature
from the formed feature subset at each step. After each step, the feature set is evaluated by
performing supervised habitat classification of the polygons. A random forest [Breiman,
2001] is used as a classifier, whereas the results are evaluated with 10-fold cross validation
[Xu et al., 2014]. The process continues in the same manner, until either the entire feature
set is searched or a termination criterion is met. In this study, the search is terminated, if
no change in best feature subset is applied after a number of consecutive loops of feature
expansion [Petrou et al., 2015].

Per pixel Classification

The per pixel classification took place using the support vector machine (SVM) classifier.
SVMs are a popular choice in remote sensing classification with plethora of works, with
a recent review available [Mountrakis et al., 2011]. Furthermore, SVMs have shown the
highest classification potential, along with backpropagation neural networks, in a meta-
analysis study of 15,000 published works in top tier remote sensing journals [Khatami et
al., 2016]. In this application a range of training sample sizes was tested to allow custom
decision making per application needs. The training and testing samples were selected
using an unstratified random sampling protocol. The SVM algorithm was a collection of
multiple binary SVM classifiers and implemented in Matlab. The parameter C that controls
the maximum penalty imposed on margin-violating observations was optimized using a
grid search. The Kernel scale was optimized using a built-in heuristic search function. The
Kernel function was set to a Gaussian function (also referred as RBF). The classification
product was further processed using a majority filter of varying size (5x5 ,7x7, 9x9, 11x11)
and the best performing algorithm (highest overall accuracy) was selected on a testing
dataset of 20000 points for each training sample size. Accuracy results are reported on the
entire wall-to-wall map. While there is overlap between the calibration datasets and the
wall-to-wall map statistics the influence is negligible due to the large size of the map (>2
million pixels).

Image Segmentation

Image segmentation is the procedure of image object creation, resulting from image
division into spatially continuous, disjoint and homogeneous regions [Blaschke, 2004].
Image objects are intended to be serving as information carriers and building blocks for
classification or further segmentation processes. In this sense, the best segmentation result
is the one that provides optimal information for further processing [Benz et al., 2004].
The current WV-2 image segmentation was examined towards the most possible accurate
reproduction of the EUNIS habitat boundaries, using solely a layer stack of sixteen
texture and spectral features (those resulted from the wrapper feature selection) without
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incorporation of any ancillary data.

There are several approaches in categorising image segmentation algorithms [Dey et al.,
2010], with the following being the most prevalent [Ohlander et al., 1978; Haralick and
Shapiro, 1985]:

- Point-based algorithms, where a histogram is computed from all the image pixels and the
peaks and valleys in the histogram are used to locate the clusters; e.g. k~-means method
[Barghout and Sheynin, 2013] or histogram thresholding [Shapiro and Stockman, 2001].
Point-based algorithms are known to be -by default- quite simplified approaches for
mapping ecosystems, which are characterized by a big variety of biophysical parameters;

- Region-splitting algorithms, where large segments are divided into smaller units when the
segments are not homogeneous enough, e.g. Quadtree methods [Horowitz and Pavlidis,
1974]. These methods are expected to bias the shape of the objects in homogeneous
areas, therefore they are not always appropriate for large scales (in comparison to
the pixel size). If smaller scales are opted, then segments need a round of manual or
automated merging. If not used as an automated mapping process, it can be seen as
supportive to visual interpretation;

- Edge-detection algorithms, where edges are regarded as boundaries between image
objects located where changes in values of representativeness occur. Among the edge-
detection methods [Kimmel, 2003], watershed algorithms alone are reported to result in
over-segmentation [Gonzalez and Woods, 2008]. This is not desirable for ecosystems,
which are used to contain large amount of heterogeneity. In addition to that, smoothing
the image before applying a watershed algorithm, in order to reduce the local minima,
thus avoiding over-segmentation, is considered to be a prerequisite. Generally, they are
complicated methods, efficient when a single class is targeted;

- Region-growing algorithms, which aggregate pixels starting with a set of seed points,
while the neighbouring pixels are joined through a continuous process until a certain
threshold is reached. These algorithms [Blaschke, 2004] seem more efficient to achieve
realistic shapes -but normally, they are quite intuitive and need a lot of trials; also,
under-segmentation is a common problem in region-growing.

Aregion-growing algorithm, namely the Multiresolution Segmentation (also known as Fractal
Net Evolution Approach, FNEA), supported by eCognition Developer software ®, was used
for the segmentation of the WV-2 image. The most determining parameter influencing
the desired object size in Multiresolution Segmentation is the scale parameter, while the
object’s geometry is influenced by the ratio of the shape to colour factor and the ratio of
compactness to smoothness factor [Baatz et al., 2002].

Generally, the accuracy of produced objects fitting with reference EUNIS polygons, is
expected to improve as scale decreases; the far extreme of this assumption is the production
of one-pixel-sized objects, which would not be split between EUNIS polygons. On the
other hand, an increased number of objects will also increase required post processing
efforts in the framework of a following classification task. It is obvious, therefore, that an
‘ideal segmentation’ would be that of producing a number of objects equal to the number of
reference objects, provided that they would also fit them geometrically.

For assessing the discrepancy between mapped and reference objects, the fuzzy set theory
was employed [Kosko, 1993]. Hofmann et al. [2011] consider fuzzy logic theory appropriate
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for object-based image analysis methodologies. Dey et al. [2010] suggest use of fuzzy
models to represent ambiguity of region boundaries. Moreover, other more conventional
measures (see for example Clinton et al. [2010]), were not found appropriate for irregular
objects such as habitats. Fuzzy set theory follows a multivalued logic incorporating all
possible outcomes in an observation, beyond the standard bivalent logic (i.e. a Boolean
logic), common in conventional computing [Dutta et al., 2012].

Among several measures (or indicators) available for comparing segmentation and
reference objects (polygons), volume similarity is considered to be easy in implementation
and intuitive in meaning, as it is based on summing up true/false positives and negatives
through overlap scores [Konukoglu et al., 2012]. Here, the segmentation object extent was
employed as a volume similarity index, in order to provide a quantitative value of fuzzy
membership of every object belonging to a single EUNIS reference polygon. Precisely,
every object was assigned its full extent as a score (value=1) when belonging to a single
reference polygon, whereas only the largest part of its extent was assigned to a single
reference polygon when it was split between more than one polygons (value<l). The exact
fuzzy scoring function was defined as follows:

M: score of object O in fitting a reference polygon in the interval [0,1], O;: extent of object
O found inside a single reference polygon, O,: extent of the entire object O. Correct extents
were summed up for the entire area and per class, to provide score values in terms of extent
percentages. M score could be seen as equivalent to ‘SimSize’ measure, introduced by
[Zhan et al., 2005], only when the mapped object is completely within a reference object.
Especially for the ‘ideal segmentation’ case, geometric accuracy of the objects was assessed.
Considering that every object was expected to fit a single reference polygon, the following
object properties were employed as geometric measures of the targeted fitness [Definiens,
2004]: Length; Width; Length/width; Asymmetry (as a measure of being invariant to a
transformation); roundness (as a measure of how closely the shape of an object approaches
that of a circle); elliptic fit; rectangular fit; shape index (as a measure of object’s outline
complexity ranging from 1 to +oo, with the smallest value [1] corresponding to an ideal
square shape).

The results of all geometric measures derived from all the segmented objects and the
reference polygons were compared statistically per geometric measure (namely, for mean,
standard deviation, coefficient of variation, minimum, and maximum values). Ratio of
statistical values of segmented objects over the same statistic of reference polygons was
used as an index of similarity.

Results and discussion

Feature evaluation

The selection of the highest performing feature subsets was done by considering in the
wrapper approach the entire study area, i.e. 760 polygons belonging in 21 EUNIS habitat
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classes. A number of two and five loops without change in the best feature subset provided
the best results among the tested best-first termination criterion parameters. In classification,
random forests with 100 trees provided higher performance compared with random forests
with less trees and comparable performance to random forest with more trees, with less
processing requirements.

Table 2 reports the achieved classification accuracies of the feature subsets selected by
best-first with five (‘BF5’) and two (‘BF2’) consecutive loops of no change to the best
feature set as the termination criterion. They are compared with the accuracy from the full
feature set (‘ALL’). All feature sets were classified with the random forest with 100 trees
and assessed with 10-fold cross-validation. BF5 set was selected as the one with the highest
overall accuracy (OA) in classification - i.e. the ratio of correctly classified polygon to the
total number of polygon - of nearly 65.5% and Cohen’s kappa coefficient [Cohen, 1960]
for 21 classes. BF2 was selected as a high performing subset with almost the minimum
number of features among all experiments. The difference in OA between BF2 and BF5
is around 2%; however, BF2 set employs less than half the number of features employed
in BF5, thus, it provides an even further gain in processing requirements for both feature
extraction and classification. Both feature sets outperformed the accuracy achieved by the
full feature set, employing 6.1% and 2.9% of the number of features of the full feature sets.
The result suggests that a large amount of redundant and irrelevant information exists in the
full feature set and has been successfully removed under the feature selection.

Table 2 - Best habitat classification performance of two
features subsets selected by the wrapper approach.

Feature set | Number of feature OA% | kappa

BF5 34 65.39% | 0.6019
BF2 16 63.16% | 0.5764
ALL 555 61.05% | 0.5515

The features included in the subsets resulting from the BF5 and BF2 high performing
approaches are listed in Table 3. As observed, there is a wide heterogeneity on the type
of selected features. All categories of features, i.e. reflectance bands, spectral indices,
and texture values, are represented in the two subsets, as well as both texture estimation
windows - 5x5 and 15x%15 pixels - and all statistics measures. This suggests that the selection
process favors feature heterogeneity, where each feature offers separate discriminatory
characteristics. As shown in previous studies [Topouzelis and Psyllos, 2012; Petrou et
al., 2015], the derived subsets from a feature selection process do not necessarily include
the highest performing individual features, but instead, favor features whose information
is supplementary with little correlation. It is noteworthy that even though solely optical
satellite image extracted features are employed in this study, the classification accuracies
achieved are comparable to studies embedding ancillary data sources. For instance, rule-
based habitat classifiers employing a limited number of remote sensing-derived features
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but land cover prior knowledge and LIDAR data [Adamo et al., 2014; Petrou et al., 2014a],
achieved overall accuracies around 70%, when applied in the same area. This demonstrates
the potential of very high resolution optical data in habitat discrimination and the importance
of the selection of appropriate features.

Table 3 - Features included in the selected high performing feature subsets. (The first part of each
feature name represents the statistics measure (e.g. median, mean, minimum), followed by the type
of feature, i.e. a reflectance band, e.g. ‘B1’, a spectral index, e.g. ‘DVD’, or a texture feature, e.g.
‘B2Entr5’ representing entropy calculated in band 5 with a 5x5 pixels window).

Feature set Selected features

medianB4, meanB5, medianDVI, meanNDWI, medianNDWI, meanNHFD,
sdNHFD, medianB1SecMom5, minB1SecMom5, medianB2Varian5, minB2Entr5,
medianB5Varian5, maxB5Cor5, minB8SecMomS5, maxB8Cor5, minB1Contrl5,

BF5 medianB1SecMom15, sdB2Contrl5, minB2Varian15, sdB3SecMom15,
meanB3Entr15, minB3Hom15, medianB4Varian15, minB4Hom15, maxB5Contrl15,
sdB5SecMom15, medianB5Cor15, sdB6Contrl5, meanB6Corl5, minB7SecMom15,
maxB7Entr15, meanB8Contrl5, sdB8Entr15, medianB8Hom15

meanB5, medianDVI, medianNDWI, medianNHFD, meanB1Hom5, minB2Entr5,
medianB7Entr5, maxB8Cor5, medianB2SecMom15, medianB4Varian15,
medianB5Entr15, maxB5Entrl5, minB5Cor15, maxB5SHom15, sdB6Contrl5,
meanB6Entr15

BF2

Table 4 draws the confusion matrix for the classification of the BF2 feature set. High
accuracies were achieved by 6 classes, namely class B1.1 (4) (100% accuracy), class B1.31
(5) with 21 polygons, class B1.63 (6) with 23 polygons, class D5.24 (10) with 144 polygons,
class F5.514 (14) with 120, and class X03 (21) with 29 correctly classified polygons. As
may be generally inferred, classes with a large number of polygons have resulted in high
producer’s and user’s accuracies. Average to low accuracies were reached by 3 classes,
namely A2.551 (3), G2.91 (16), and G3.F1 (17), with more than half of the polygons
correctly classified. Aforementioned show the discriminatory potential of remote sensing
for the specific area and conditions in reproducing maps originally generated by experts.
The limitations become obvious for classes, where remote sensing failed to perform at all,
such as in cases of classes A2.526 (2), C2 (7), C3.421 (8) and 11.3 (18), or partially for the
rest 8 classes with accuracies ranging from 8.3% to 42.5%.
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Table 4 - Confusion matrix from the classification of the BF2 feature subset, as reported in Table 3.

Prediction

112131456789 10111213 |14|15|16/| 17|18 |19 |20 |21 PA%

1 17 1 212 315 112 5 2 42.5

2 0 1 1 2 1 0.0

3 1 10 4 12 1 1 |52.6

4 5 100

5 1 2 1121 3 1 72.4

6 1 3123 4 1|1 1 67.6

7 0 2 11 1 0.0

8 0 2 1 0.0

9 3 18 | 13 4 47.4

"g 10 1 2 1 1 5 |144 31217 1 2 1 1852
:é 11 3 0 1 5 4 1 |35.7
S 12 2 116 173|723 1| 1] 1386
13 6 1|1]4 8.3

14 2 1 4 6 1 120 1 1 3 1 1 |85.1

15 2 1 1 1 151 8 2 26.7

16 1 7 2 5 17 1 51.5

17 3 1 20 33 57.9

18 3 1 1 0.0

19 1 21 2 4 2 1333

20 212 1 8 2 1 8 1 32.0

21 3 1 2 214 0 |29 70.7

UA(%)|48.6/ 0.0 |71.4|83.3|58.3148.9| - | 0.0 |60.0|73.8|71.4/48.6/16.7|57.1|66.7/68.0{86.4| - [50.0(50.0|78.4
0A(%):63.16; k:0.5764

Classification per pixel

The per pixel classification took place on the BF2 feature subset at varying training sample
sizes. The results are reported in Figure 3. The optimal majority filter was identified as
11x11 for all sample sizes.

Results indicate a progressive increase in overall accuracy, reaching up to 76%, as the training
sample increases. It is also evident that the majority filter offers accuracy improvements and
it is suggested to incorporate this post-filtering process.
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Figure 3 - Obtained accuracy for different training sample sizes.

Table 5 - User’s and Producer’s accuracies for a 6000 training sample size with majority filter.

User | Producer A User | Producer qen
Class (%) (%) Description Class (%) (%) Description
1| 66.8 29.9 Mediterranean (Medt.) 11 - 0.0 Medt. annual shallow soils
salt marshes
2 - 0.0 | Medt.saltmarsh scrubs 20 719 | 735 Subnitrophilous annual
grassland
S.S.S. pioneer Thermo Medt. brushes,
3 0.0 0.0 saltmarshes 13| 293 17 thickets
41 812 72.9 Sand beach driftlines 14| 489 39.7 Lentisc brush
51 425 78.7 Embryonic shifting 15| 76.1 46.0 Eastern Erica garrigues
dunes
6| 48.8 2.1 Dune thickets 16 | 74.9 86.5 Olea europaea groves
71 79.6 10.5 Surface running waters 17| 683 88.2 Native conifer plantations
3 ) 0.0 Short .Medt. 18 1 100.0 0.1 Arable land with unmixed
amphibious crops
9| 552 475 | Reedbeds wiout 19| 942 24 Scattered buildings
standing water
10 | 67.3 81.3 Fen beds 20| 443 1.0 Road networks
21| 883 92.8 Brackish coastal lagoons
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The training sample size of 6000 with majority filtering was examined further as it strikes
a balance between accuracy and reference data creation effort. Table 5 indicates large
accuracy variability between classes, most notably the underperformance in salt marshes.
Possible reasons of misclassifications may originate from the size and density of the
spatial distribution of the polygons representing a class. For example, for class A2.551 the
polygons are too small and really close to each other. Based on that it can be hypothesized
that there are not polygons from this category included in the 6000 training sample size,
however there were features, which were able to identify correctly this class. In the same
way worked the classification of the road network (J4.2), which is basically many lines
spread all over the area and since in the sample only a small part of these lines selected, it
was impossible to have high accuracy. Furthermore, this category misclassified mostly with
the F5.514 class, which is Lentisc brush, and this might have happened due to the fact that
the Lentisc brush is widespread and abundant in thermo-Mediterranean and coastal meso-
Mediterranean zones of the entire Mediterranean basin and the selection of such samples
might be close to rail network and that’s why they have been misclassified.

Segmentation

First, the trend of produced object number vs. scale and colour/shape ratio was examined
for scales ranging from 75 to 300 and two different colour/shape ratios: 0.1 and 0.3). The
tests indicated a power-based function between scale and produced number of objects in
both cases of colour/shape ratio (Fig. 4); in their work on a mixed agro-natural environment
of Crete Island (Greece), Karydas et al. [2014] indicated a quadratic relation between scale
and object size. Finally, a 0.3 shape/colour value was selected as most appropriate for the
segmentation, as is considered to express better linear features in the habitat map, such
as paths, channels, long transitional zones, or coastlines. Similarly, Karydas and Gitas
[2011] have used a 0.2 shape/colour ratio for capturing linear features in Mediterranean
agricultural landscapes.

1200
1000 -
] [ ]
o %
oy 800 E
2 shape: 0.1
0 600 8. y = 249107x 1304
o] e 2=0.9571
£ 400 %.
= shape: 0.3 B ..
- -1.33 Tl
200 y = 265143x g4
R?=0.9882
0
0 50 100 150 200 250 300 350
Scale
® shape: 0.3; compactness: 0.3 A shape: 0.1; compactness: 0.3

Figure 4 - Trend of number of objects vs. scale and shape/ colour ratio
for different trials of the 16-feature layer stack.
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From the object size vs. scale trend-graph, it is derived that a scale between 120 and 130
would result in a number of objects close to the number of reference polygons, thus, should
be considered as ‘ideal segmentation’. Actually, the output of the 128-scale segmentation
after removal of noisy objects (all objects smaller than 200 m?), was 408, which is very close
to 417, i.e. the number of reference polygons. This number (417) results from the original
760 EUNIS polygons after spatially merging according to the EUNIS nomenclature. The
threshold of 200 m?was determined visually, as the target of image segmentation is always
to produce meaningful objects.

Mapping discrepancy of segmentation at the ‘ideal’ scale parameter (128) resulted in an
overall accuracy of 76.9%, or 0.769 in terms of membership value in the range [0,1] (Fig.
5, Tab. 6). When scale parameter was decreased at 100, accuracy was increased to 80.4%;
finally, at a 75 scale parameter, accuracy raised to 82.6%. These figures can be considered as
encouraging, provided that good segmentation performance is a prerequisite for successful
classification procedures.

247

0 20 40 Meters
L

Figure 5 - A small subset of the Scale-128 segmentation layer with
the reference polygons: polygon 211 is taken as correct by default;
whereas polygon 227 will be taken as correct if its share inside
J2.1 polygon is the largest share of this object, otherwise as wrong.

Going into more detail in the per-class accuracy figures, most classes show to improve
their accuracy with lowering of the scale parameter, except class A2.551, which shows a
significant decrease (from 60.8% to 48.8%). Notice, however, that the specific class contains
only two polygons of quite limited extent. Another particular EUNIS class is B1.63, which
shows null accuracy at 128 scale parameter, while raising to 50.9% accuracy at 75 scale.
This fact can be explained by the extremely narrow polygons of the class.
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Table 6 - Accuracy figures of object segmentation per EUNIS class at 128 scale parameter.

Class Scale 128 76.9% 100 80.4% 75 82.6%

Reference | Correct | Accuracy | Correct | Accuracy | Correct | Accuracy
A2.522 185,102 85,505 46.0% 100,468 54.3% 110,928 60.1%
A2.526 1,229 0 0.0% 0 0.0% 0 0.0%
A2.551 13,997 5,323 60.8% 5,052 36.1% 6,742 48.8%
BI1.1 78,919 55,668 70.5% 58,278 73.8% 60,846 77.1%
B1.31 104,231 74,487 71.3% 66,975 64.3% 67,530 65.1%
B1.63 26,436 0 0.0% 5,405 20.4% 13,194 50.9%
C2 77,287 30,382 38.9% 29,841 38.6% 33,372 43.5%
C3.421 8,986 680 7.6% 680 7.6% 3,516 40.3%
D5.1 684,480 445,445 65.1% 480,350 70.2% 519,382 76.1%
D5.24 1,070,161 873,346 81.0% 912,615 85.3% 915,600 85.0%
E1.313 7,856 0 0.0% 0 0.0% 0 0.0%
El.6 724,784 591,180 81.5% 616,906 85.1% 640,553 88.5%
F5.51 66,999 27,719 41.3% 28,904 43.1% 29,626 44.4%
F5.514 781,148 379,478 48.5% 421,867 54.0% 458,078 58.9%
F6.2C 632,451 530,368 83.8% 557,918 88.2% 556,769 88.1%
G2.91 585,279 545,183 93.1% 543,383 92.8% 545,470 93.4%
G3.F1 1,608,086 | 1,419,808 88.1% | 1,437,796 89.4% | 1,456,274 90.8%
1.3 44,901 7,581 16.9% 10,270 22.9% 20,709 46.2%
J2.1 24,337 19,196 78.8% 17,867 73.4% 18,180 75.1%
J42 87,549 41,831 47.4% 47,905 54.7% 48,718 56.9%
X03 1,117,558 977,180 87.3% | 1,032,053 92.3% | 1,031,539 92.4%

Higher accuracies can generally be linked with EUNIS classes covering large extents
through logarithmic equations with acceptable R? (0.5968, 0.7446, and 0.7290 for 128,
100, and 75 scale parameter, respectively) (Fig. 6).
For scales 128, 100, and 75, the produced number of objects was divided by the number
of habitat polygons, i.e. 417 (segmentation objects/reference polygons), thus resulting in a
measure of under- or over-segmentation (Fig. 7):

- Scale 128, resulting 408 objects; segmentation ratio: 0.97 (slight under-segmentation;

the closest to ‘ideal’);
- Scale 100, resulting 590 objects; segmentation ratio: 1.41 (moderate over-segmentation);
- Scale 75, resulting 951 objects; segmentation ratio: 2.28 (significant over-segmentation).
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Figure 6 - Accuracy-extent figures for the different EUNIS classes
per segmentation scale factor.

1000 ]
°
o....

v O ® ° o o o
5 100
[T
ey
©°5
o %% 10
3 c
£¢
g '&,ﬂ 1
Z n

0.1

0 50 100 150 200 250 300 350
Scale
® Number of objects Segmentation ratio

Figure 7 - A graph of segmentation ratio per scale factor - in
parallel with the produced number of objects per scale.

Considering that scale 75 results in an accuracy increase by 5.7%, compared to the ‘ideal
scale’, one could suggest this scale for implementation, provided that post-processing of
the output polygons could be supported. Therefore, the ‘ideal scale’ should be considered
as such, only by taking into account that no-processing is allowed.

Comparison of the shape statistics derived from the segmented objects and the reference
data, demonstrate significant average geometric similarity between segmentation results
and EUNIS polygons (Tab. 7). More specifically, Roundness, Elliptic fit, Rectangular fit,
and Shape index give very close Mean figures for the segmentation and the reference data
(ratios of means of segmented objects over reference polygons, between 1.0 and 1.07),
whereas Asymmetry shows to be little smaller for the segmentation outputs (ratio: 0.85).
On the other hand, segmentation outputs seem to be longer and wider than the reference
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polygons (ratios: 1.21 and 1.45, respectively), but cannot reach the correct Length/Width
ratio, as this is found to be quite lower than in the reference polygons (ratio: 0.71). Finally,
the Coeflicient of Variation (CV) for the segmented objects shows to be quite lower that the
reference for the simpler measures (Length, Width, and Length/Width), whereas is almost
similar (or slightly higher) for the more complex measures (Asymmetry, Roundness,
Elliptic fit, Rectangular fit, and Shape index).

Table 7 - Accuracy figures of object segmentation per EUNIS class at various scale parameters.

e 2 = | = b

2 g = 5 =

= g = 2 2 =

o 2] ) = g £ = = 2

2 £ g 2 | B | 5| 3 | & 8| &

= & 3 S 5 < & 3 | 2= @
Reference MEAN 140.38 | 47.64 3.58 | 0.71 1.47 | 0.44 0.67 2.65
STD 226.16 | 60.37 392 | 0.23 1.05 | 0.27 0.2 1.63
CvV 161% | 127% | 109% | 32% 71% | 61% 30% 62%
MIN 11.76 2.94 1| 0.07 0.15 0 0 1.1

MAX 1988.53 573 | 34.14 | 099 | 10.19 | 0.93 0.96 | 15.67
Scale 128 MEAN 170.45 | 69.18 2.55 0.6 1.58 | 0.45 0.67 2.81

STD 143.23 47.5 2.02 0.3 1.22 | 0.35 0.24 1.93
Cv 84% 69% 79% | 50% 77% | 78% | 36% 69%
MIN 1 1 1] 0.01 0 0 0 0
MAX 1029.57 231 | 17.01 | 0.99 8.54 1 1 9.37
Ratio MEAN 1.21 1.45 0.71 | 0.85 1.07 | 1.02 | 1.00 1.06
(Segm/Ref) | STD 0.63 0.79 0.52 | 1.30 1.16 | 1.30 1.20 1.18
Ccv 0.52 0.54 0.72 | 1.54 1.08 | 1.27 1.20 1.12
MIN 0.09 0.34 1.00 | 0.14 0.00 | 1.00 1.00 0.00
MAX 0.52 0.40 0.50 | 1.00 0.84 | 1.08 1.04 0.60

Concluding remarks and outlook

Summarizing the results (Tab. 8), one may notice that given the best discriminating remote
sensing extracted features (Tab. 3), a segmentation of the habitat classes may be successful
for 9 classes (over 70% fit to reality and 420 polygons), the per pixel classification with no
further information may be satisfactory for 7 classes (over 72% compliance with the real
situation on the ground, and 378 polygons), whereas the initial expert knowledge may be
supported well for 6 classes (over 67% validation accuracy and 342 polygons). One may
directly realize that around and more than half of the polygons could be identified as such
with high accuracy. Looking closer at the possible drawbacks of the lower performing
classes, at most low performing or failing cases, except for the Mediterranean Juncus
maritimus and Juncus acutus salt marshes, the number of the polygons representing the
class in the area (the training sample set respectively) and the area they cover for is pretty
low. In addition to that, long features show low accuracy as well (0.71 ratio of segmented
over reference polygons for length/width parameter). It may be inferred that - at least - the
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benefit of the doubt may be shared, which means that more experiments for the lower
performing classes shall be conducted at areas, where an adequate number of polygons per
habitat class exists.

Table 8 - Segmentation and classification ranking of performance for the different classes, prioritizing
in sequence the ranking of segmentation, per pixel classification and object re-classification solely
by remote sensing extracted features according to Producer Accuracies at scale 128 (see Tab. 6), for
6000 training sample size (see Tab. 5) and from the BF2 feature subset (see Tab. 4), respectively.

=<
g S s 5
. N R
% = ‘& = : S § =8
sl 2| Te| 5 R
2 g |38 3 < 2 L E St
2 ] =8 2 = & REFE |
16 G291 33 147003 | Olea europaea groves 93.1 86.5 51.5
17 | G3.F1 57 406081 | Native conifer plantations 88.1 88.2 57.9
21 X03 41 281609 | Brackish coastal lagoons 87.3 92.8 70.7
15 | F6.2C 30 159006 | Eastern Erica garrigues 83.8 46 26.7
12 | EL6 44 | 182154 | Subnitrophilous annual 81.5 735 | 386
grassland
10 | D5.24 169 268267 | Fen Cladium mariscus beds 81 81.3 85.2
19 121 12 6273 | Scattered residential buildings 78.8 24 333
B1.31 29 26600 | Embryonic shifting dunes 71.3 78.7 72.4
4 B1.1 5 20081 | Sand beach driftlines 70.5 72.9 100
9 | Ds.1 38 | 172007 | Reedbeds normally without free | s | 475 | 474
standing water
3 A2.551 19 3543 Sghcomla, Suaeda and Salsola 60.8 0 526
pioneer saltmarshes
14 | F5.514 141 197704 | Lentisc brush 48.5 39.7 85.1
20 J42 25 22983 | Road networks 47.4 1 32
Mediterranean Juncus
1 A2.522 40 | 6946526 | maritimus and Juncus acutus 46 29.9 42.5
salt marshes
13 | F5.51 12| 16915 | Thermo Mediterrancan brushes, | ) 5 17| 83
thickets and heath garrigues
7 C2 4 20155 | Surface running waters 38.9 10.5 0
Arable land with unmixed
18 11.3 5 11370 | crops grown by low intensity 16.9 0.1 0
agricultural methods
8§ | C3421 3 2371 | Short Mediterranean 7.6 0 0
amphibious communities
6 B1.63 34 6882 | Dune Juniperus thickets 0 2.1 67.6
11 | E1313 14 2298 | Mediterranean annual 0 0| 357
communities of shallow soils
2 | A2.526 5 392 | Mediterranean saltmarsh scrubs 0 0 0
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Even with the lack of expert knowledge existing remote sensing products and methods
seem to have high discriminatory information content, which may be utilized and possibly
synthesized to standardized procedures for habitat mapping. A further step to examine
could be the provision of multiple class assignments as options to the expert to decide
from. This may be considered upon agreement for its added value with the experts. After all
decision making processes require for objective and quantitative support. Latter is driven
by the need to support sustainable development towards the Biodiversity Targets for 2020,
i.e. the need for development and implementation of relevant policies on water, climate,
agriculture, forest, and regional planning [European Commission, 2014] in an as objective
way as possible.
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