Computer Vision and Image Understanding 190 (2020) 102844

9 q o o n
Contents lists available at ScienceDirect

Computer Vision
and Image
Understanding

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

Deep sensorimotor learning for RGB-D object recognition™ "

Check for
updates

Spyridon Thermos ™", Georgios Th. Papadopoulos ?, Petros Daras ?, Gerasimos Potamianos "

a Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
b Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece

ARTICLE INFO ABSTRACT

Communicated by: Yasutaka Furukawa Research findings in cognitive neuroscience establish that humans, early on, develop their understanding of
real-world objects by observing others interact with them or by performing active exploration and physical
interactions with them. This fact has motivated the so-called “sensorimotor” learning approach, where the
object appearance information (sensory) is combined with the object affordances (motor), i.e. the types of
actions a human can perform with the object. In this work, the aforementioned paradigm is adopted, and a
neuro-biologically inspired two-stream model for RGB-D object recognition is investigated. Both streams are
realized as state-of-the-art deep neural networks that process and fuse appearance and affordance information
in multiple ways. In particular, three model variants are developed to efficiently encode the spatio-temporal
nature of the hand-object interaction, while an attention mechanism that relies on the appearance stream
confidence is also investigated. Additionally, a suitable auxiliary loss is proposed for model training, utilized
to further optimize both information streams. Experiments on the challenging SOR3D dataset, which consists
of 14 object types and 13 object affordances, demonstrate the efficacy of the proposed model in RGB-D object
recognition. Overall, the best performing developed model achieves 90.70% classification accuracy, which is
further increased to 91.98% when trained using the auxiliary loss. The latter corresponds to 46% relative error
reduction compared to the appearance-only classifier performance. Finally, a cross-view analysis on the SOR3D
dataset provides valuable feedback for the viewpoint impact on the affordance information.
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1. Introduction

Object recognition is defined as the ability of humans or machines
to perceive 2D and 3D objects based on their visual attributes. Objects
constitute key elements, crucial in scene understanding, action identi-
fication, and interaction prediction. Thus, the process of recognizing
them in the context of an image or video has been an important
research topic over the last decades. Robust object recognition remains
an open challenge though, mainly due to the sole use of appearance-
related information (Liang and Hu, 2015; Hong et al., 2015; Lee et al.,
2018; Kanezaki et al., 2018). In fact, using shape, color, and texture
cannot fully address the shape variation, deformations, occlusions, and
illumination changes that occur in real-world scenarios.

Besides appearance, an object can also be described based on its
supported set of “affordances", i.e. its functionalities or more specifi-
cally the set of actions that humans can perform while interacting with
it. Thus, for example, recognizing a sponge based not only on its shape
and texture, but also on its “graspable" and “squeezable" affordances, is
plausible. The “affordance" term was first defined by Gibson (1977) in
a different context, describing what the environment offers or provides

to animals living in it. Based on this definition, affordance implies
how the environment and animals complement each other. On the
other hand, Minsky (1991) focused on a more specific definition of the
term, arguing for the significance of classifying objects according to
what they can be used for, namely what they can afford. Since then,
several approaches have elaborated the affordance theory, targeting
object recognition by utilizing their functionalities (Rivlin et al., 1995).
The so-called function-based reasoning can be viewed as an approach
applicable to environments in which objects are designed and used for
specific purposes. Sutton et al. (1998) presented three possible ways of
extracting the functional information of an object: (a) “function from
shape", where the shape of the object provides some indication of it,
(b) “function from motion", where an observer attempts to understand
it by perceiving a task being performed with the object, and (c¢) “func-
tion from manipulation", where such is extracted by manipulating the
object.

There is accumulated evidence that humans, at an early stage of
their lives, perceive objects by combining their visual attributes with
the feedback from interacting with them. This process is known as
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“sensorimotor learning" (Piaget and Brown, 1985; Flavell, 1992; Di-
Carlo et al., 2012), due to the parallel processing of the “sensory" and
“motor" information in the human brain. Indeed, it is well established
by cognitive scientists that there are two main streams that process
the aforementioned information (Ungerleider and Haxby, 1994; van
Polanen and Davare, 2015): the ventral stream that runs in the infer-
otemporal cortex is involved in the recognition of objects, while the
dorsal one that projects to the posterior parietal cortex is involved
in the understanding of 3D space and action planning. Research find-
ings indicate that the two streams process information both indepen-
dently and in parallel, utilizing feedback loops and sharing information
through neural connections that exist in multiple stages (Cloutman,
2013; Brandi et al., 2014). These identified interconnections enable the
human brain to fuse sensory and motor information, so as to achieve
robust cognition.

In this paper, motivated by the above facts, we investigate sensori-
motor learning for RGB-D object recognition in the context of “function
from motion", as defined by Sutton et al. (1998). Further, inspired by
the complex neural network of the human brain, we adopt the Deep
Learning (DL) paradigm (LeCun et al., 2015) to form two parallel infor-
mation streams that process object appearance (sensory) and affordance
(motor) information. These streams exploit DL architectures, primarily
convolutional and recurrent neural networks, and are fused in multiple
ways, in order to mimic the complex information exchange between the
brain processing pathways. A schematic of our approach is depicted in
Fig. 1.

The main contribution of this paper is therefore the introduction of
DL-based sensorimotor learning in RGB-D object recognition. Specifi-
cally, three variants of the proposed two-stream sensorimotor modeling
approach are considered that utilize different deep neural networks
to encode the spatial-only or spatio-temporal correlations of suitable
appearance and affordance input representations.

Additionally, inspired by the aforementioned neuro-scientific find-
ings for the human brain complex information exchange at different
levels of granularity, fusion at one or multiple layers of each model
variant is extensively investigated. Regarding spatio-temporal informa-
tion processing, the incorporation of an attention mechanism is also
proposed, which forces the model to selectively attend to the affordance
information, when the appearance one is not discriminative enough, as
indicated by appropriate stream confidence measures.

Further, an auxiliary loss function is introduced, based solely on
affordance predictions. The new loss is combined with the object
prediction one, and the result is used to optimize both streams dur-
ing training. In order to compute the auxiliary loss, a classifier is
added after the last affordance stream layer, but later removed during
inference.

Finally, an extensive quantitative evaluation of the proposed models
is presented, using the challenging SOR3D corpus (Thermos et al.,
2017)" that includes a significantly increased number of affordances
compared to existing works in the literature (see Section 2.2
and Table 1). Besides comparison of the two-stream models with the
appearance-only baseline, the best performing one is further bench-
marked against traditional probabilistic fusion approaches. The evalua-
tion is concluded with a cross-view analysis, providing valuable insights
about how view-dependent is the affordance information and how each
viewpoint affects model performance.

The remainder of the paper is organized as follows: Section 2
overviews related work on affordance-based recognition and sensori-
motor learning; Section 3 presents the visual front-end and the single-
stream models; Section 4 details the proposed two-stream sensorimotor
modeling framework and the investigated fusion schemes; Section 5
presents the experimental results; and finally, Section 6 summarizes the

paper.

1 Publicly available at: http://sor3d.vcl.iti.gr/.
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Fig. 1. Schematic of the deep learning (DL) based architecture of the proposed sen-
sorimotor 3D object recognition framework. Following fusion of the object appearance
and affordance processing streams, the object class is predicted.

2. Related work

Object recognition is a fundamental problem in computer vision.
Focusing solely on object appearance attributes, relevant approaches
can be divided into two main categories: methods that represent the
object with hand-crafted features and ones that learn deep object
representations exploiting the DL paradigm. Characteristic works of the
first category are reported in the survey of Andreopoulos and Tsotsos
(2013). Regarding DL-based methods, numerous works appear in the
literature. For example, among others, Liang and Hu (2015) propose a
recurrent Convolutional Neural Network (CNN) framework to classify
objects based on their appearance and the context of the scene; Su
et al. (2015) present a multi-view CNN with a view-pooling layer
to categorize 3D objects; Qi et al. (2016) propose a volumetric CNN
for object point-cloud processing and classification; Yu et al. (2018)
utilize polynomial kernels and bilinear pooling in a CNN to aggregate
local convolutional features in a 3D object representation; and Feng
et al. (2018) propose a group-view CNN that models the hierarchical
correlations among multiple 2D views of a 3D object, leading to a
powerful 3D descriptor.

Besides appearance-based learning, there are extensive studies re-
lated to functional object recognition exploiting object affordances. In
particular, affordance-oriented object recognition is investigated in the
literature from two viewpoints: (a) embodiment and (b) observation.
The former indicates the scenario where there is direct interaction of
the perceiver with the object, while the latter denotes the scenario
where the perceiver observes others interacting with the object.

2.1. Inferring object affordances from embodiment

Regarding the embodiment scenario, object affordances that are
inferred from agent—object interaction have been recently leveraged
in object recognition. In particular, Saxena et al. (2008) concentrate
on robotic grasping of novel objects using a set of 2D object views la-
beled with grasping points. Additionally, Hogman et al. (2016) propose
a Gaussian process to model object-related sensorimotor “contigen-
cies" (O’'Regan and Noé, 2001) and categorize objects by “pushing”
them and observing their displacement. Lyubova et al. (2016) employ
the iCub and Meka robots to categorize objects by combining visual
and proprioceptive knowledge with motion behavior observed during
interaction. Focusing on more composite actions, Fitzpatrick et al.
(2003) utilize robotic “push", “pull", and “poke" actions to further
explore object representations, while Montesano et al. (2008) present
a scenario where a robot with basic motor skills categorizes objects
by observing human-object interactions and subsequently selecting its
own action that will have the same effects on the object. Addition-
ally, Jayaraman and Grauman (2018) propose a system for active visual
recognition through agent-object interaction, where given an initial
view of the object, the system predicts how the choice of motion alters
the environment, and integrates the result of the object manipulation at
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Datasets that consist of “tool-objects" (indoor scenes) and have affordance information available.

Dataset Interaction Format Objects Affordances Subjects Samples Public availability
Kjellstrom et al. (2011) yes RGB 6 3 4 28 no
Castellini et al. (2011) yes RGB 7 5 20 130 no
Kluth et al. (2014) no RGB 8 1 n/a n/a no
TTU (Zhu et al., 2015) yes RGB-D 10 3 1 452 no
ADE-Affordance (Song et al., 2016) no RGB 8 4 n/a 10,360 yes
IIT (Nguyen et al., 2017) no RGB-D 10 9 n/a 8,835 yes
COQE (Mottaghi et al., 2017) no RGB 10 1 n/a 5000 yes
SOR3D (Thermos et al., 2017) yes RGB-D 14 13 105 20,800 yes

Fig. 2. Examples of human-object interactions in the SOR3D dataset (Thermos et al.,
2017), captured by three Kinect sensors.

each time-step to classify the object. The system is trained end-to-end
using reinforcement learning.

Besides recognition, object affordances provide valuable feedback
for numerous tasks in the field of cognitive vision and developmental
robotics, such as gaze control, semantic grasping, and action predic-
tion (Ghadirzadeh et al., 2016; Giagkos et al., 2017; Jang et al., 2017;
Oberlin and Tellex, 2018; Zambelli and Demiris, 2017). However,
further elaboration on this aspect of sensorimotor learning lies outside
the scope of this paper.

2.2. Observation-based sensorimotor learning

Learning to recognize objects by observing others interacting with
them is a challenging machine perception task. However, recent works
on observation-based sensorimotor object recognition mostly rely on
simple fusion schemes (e.g. using simple Bayesian models or the prod-
uct rule), hard assumptions (e.g. naive Gaussian prior distributions),
and simplified experimental settings (e.g few object types and simple
affordances).

For example, Kjellstrom et al. (2011) utilize histograms of ori-
ented gradients to model object appearance, while the global velocity,
orientation, and joint angles of the hand are used to encode the
affordance information. A binary SVM is trained for each stream,
while the predicted object-hand pairs of 3 consecutive frames are
utilized by factorial conditional random fields for the final object
class prediction. This method is evaluated using a dataset of 6 objects
and 3 affordances. Kluth et al. (2014) propose a framework where
GIST-features of object appearance and affordance are used to form
sensorimotor representations. Then, probabilistic reasoning comprised
of a Bayesian network with information gain strategy is used for object
classification, exploiting these representations. The method is evaluated
on a dataset that consists of 8 object classes and a single affordance.
Additionally, Castellini et al. (2011) encode the object appearance as
frequency histograms of 200 bins, while 22 motor features provided by
a motion-capture glove sensor are used as affordance representation.
The appearance and affordance features are fused using positively

Fig. 3. Schematic representation of the SOR3D capturing setup. The three Kinect
sensors (K1-K3) are placed from left to right at 90°, 180°, and 225° with respect
to the subject orientation.

weighted linear combination of Mercer kernels and are used to train a
one-versus-all SVM for object classification. The algorithm is evaluated
on a dataset of 7 objects and 5 affordances. Zhu et al. (2015) propose a
framework aiming at understanding the affordance and the functional
basis (e.g. the part of the hammer that touches a surface when ham-
mering) of tool objects through observing a human, using them for
task-oriented object recognition. They model the object appearance,
action sequence, and physical quantities produced by the interaction
using graphs and train a ranking-SVM classifier to recognize the objects.
The framework is evaluated on a dataset consisting of 10 objects and
3 affordances.

Moving beyond experimental frameworks that rely on hand-crafted
features, simple affordances, and hard assumptions, early work by Ther-
mos et al. (2017) introduces the DL paradigm to sensorimotor object
recognition and presents a large-scale dataset of 14 object types and 13
object affordances. There, two models are proposed: The first utilizes
two CNNs that encode spatial-only information, while the second is
based on a combination of CNNs with a recurrent neural network
(RNN) for spatio-temporal information encoding. The latter is further
optimized in Thermos et al. (2018) with the incorporation of an at-
tention mechanism, which relies on the appearance stream confidence.
Here, we extend these works by introducing new affordance input rep-
resentations, a novel model based on 3D convolutions, and an auxiliary
loss for improved model training. Further, various fusion strategies,
originally introduced in Thermos et al. (2017), are investigated in
conjunction with the newly introduced 3D CNN model.

The proposed sensorimotor models are evaluated on the SOR3D
dataset (Thermos et al., 2017), which is a publicly available cor-
pus that enables development and evaluation of sensorimotor object
recognition methods. Table 1 reports 8 datasets that consist of tool-
objects captured indoors and include affordance information. From
these datasets, ADE-Affordance (Song et al., 2016), IIT (Nguyen et al.,
2017), COQE (Mottaghi et al., 2017), and the one from Kluth et al.
(2014) include only static objects with no interaction, while the af-
fordance information is represented as pixel-wise annotation of the
object part that enables a specific affordance (e.g the handle of a
cup is annotated as “graspable") followed by the corresponding bound-
ing box. These datasets are mostly used for affordance-part detection
and segmentation tasks. On the other hand, the datasets that include
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Table 2
Supported object and affordance types in the SOR3D corpus (Table from (Thermos et al., 2017)). Considered object-affordance combinations are marked with \/
Object types Affordances
Grasp Lift Push Rotate Open Hammer Cut Pour Squeeze Unlock Paint Write Type
Ball v v v
Boo VoY Voo
Bottle Vv v v/ Vv
Box v v v v v
Brush \/ \/ \/
can v v oo
Cup v v v v
Hammer v Vv v
Key v v v v
Knife Vv Vv Vv
Pen v v YV
Pitcher v v v/ v v
Smartphone Vv v v v
Sponge v v v v v
hand-object interaction sessions, apart from SOR3D, consist of small RGB (1920x1080) Depthmap (512x424)
numbers of samples and are not publicly available (note that the TTU
dataset (Zhu et al., 2015) provides only the colored point clouds of i
A

the objects and not the hand-object sequences). Part of the information
in Table 1 is also reported in the recent survey on visual affordances
by Hassanin et al. (2018).

3. Visual front-end and single-stream models of appearance and
affordance

In this section, the preprocessing framework, as well as the appear-
ance and affordance input representations are detailed. Additionally,
three single-stream models capable of encoding either spatial-only or
spatio-temporal information are presented.

3.1. Classes, input streams, and preprocessing

As discussed in the previous section, the SOR3D dataset is used
in this paper for sensorimotor object recognition. Briefly, it contains
6,943 sessions (samples are depicted in Fig. 2) of 14 object types and
13 affordance types, combined into 54 possible hand-object interac-
tions (see Table 2), since not all object-affordance combinations are
feasible. For each session, RGB and depthmap streams are provided,
captured by three Kinect sensors (see also Figs. 2 and 3, as well as
Section 5.4), thus yielding 20.8k interaction videos that contain the
captured scene (e.g. the subject, object, desk interaction area, and
surrounding background).

Based on the Kinect intrinsic parameters, the RGB frames are
mapped to the corresponding depthmaps, the region that includes
the hand-object interaction is defined, and a centered rectangular
region (300 x 300 pixels) is cropped. Subsequently, using a simple
thresholding method in the HSV color space (Vezhnevets et al., 2003),
the background is removed, and the skin color pixels (i.e. those corre-
sponding to the hand region) are separated from the object ones. As
a result, the hand and object RGB and depthmap frames are provided
separately, as depicted in Fig. 4. Note that the hand—object separation
leads to the two types of information utilized in this work, namely
the object appearance that is related to the object shape, color, and
texture, and the object affordance that is related to the hand movement.
This process aims to remove information that is not relevant to the
interaction (e.g background, tablecloth, etc.), in order to investigate the
true added value of the affordance information. Note also that as this
database is collected in a controlled lab environment (i.e. illumination,
green tablecloth, no long sleeves), traditional segmentation approaches
are very accurate, thus a more sophisticated semantic segmentation
algorithm would offer no substantial gains.

Due to the low object intra-class variance, we choose to ignore the
RGB information and instead encode the depth information using two
different approaches. In the first one, we adopt the depth encoding

/

RGB to depthmap mapping

Object-hand segmentation

A

Hand (affordance information) Object (appearance information)

RGB (300x300) Depthmap RGB (300x300) Depthmap

Fig. 4. Preprocessing overview. The captured RGB and depth raw data (top) are
initially aligned, the 3D volume of interest is cropped (middle), and the hand and
object RGB and depth representations are separated (bottom). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

algorithm introduced by Gupta et al. (2014), which relies on computing
three depth-based features, namely the Horizontal disparity, the Height
above the ground, and the Angle between the surface normals and the
gravity direction of the captured scene (HHA). The three computed fea-
tures are stacked to form a 3-channel representation that has the same
width and height as the original depthmap. The second depth encoding
approach is depthmap “colorization". Motivated by Eitel et al. (2015),
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HHA-AP  HHA-AF

%“ %

t=18
Accumulated COF
(ACOF)

%

Accumulated COFM
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Fig. 5. Example video session “pour from pitcher" from the SOR3D corpus, sampled every 4 frames. The object appearance is depicted as colorized depthmaps and HHA encoding
(only for an example frame, top-down: disparity, height, normals channels are shown), while the affordance information is depicted as colorized depthmaps, HHA encoding (same
example frame and top-down presentation as HHA-AP), 3D optical flow, and 3D optical flow magnitude, as well as the accumulation of the latter two over the sequence of T
frames. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

depth colorization is performed by normalizing all depth values in the
interval [0,255] and then mapping each pixel distance to color values
ranging from red (near) to yellow (far), transforming the one-channel
depthmap to a three-channel color image. Note that the aforementioned
approaches also enable the exploitation of transfer learning by using DL
models pre-trained on large-scale image datasets (Pan and Yang, 2010;
Tommasi et al., 2010; Yosinski et al., 2014).

Besides depth encoding, we further process the original depthmaps
and RGB frames in order to compute the 3D optical flow of the
interaction (relating to object affordance). Due to the development
of affordable RGB-D sensors, several 3D flow computation methods
have been proposed in the literature (Hadfield and Bowden, 2014;
Hornacek et al., 2014; Quiroga et al., 2014). In this work we utilize

POOL

CONV

ACOFM-AF

the primal-dual algorithm proposed in Jaimez et al. (2015) due to its
efficiency. In detail, the 3D motion vectors between two pairs of RGB-
D images, as well as their magnitude are first computed. The 3D flow
and its magnitude are then colorized by normalizing each axis values
in the interval [0, 255], transforming the 3D motion vectors into a three-
channel image. We further choose to encode the 3D flow sequence
into a single motion map, by accumulating the flow over the entire
sequence, as such representations can be very informative (Wang et al.,
2017).

To summarize, the information streams that are utilized as input to
the proposed models are: (a) HHA encoding, (b) colorized depthmaps
(CDM), (c) colorized 3D optical flow (COF) along with the accumu-
lated colorized 3D optical flow (ACOF), and (d) colorized 3D optical

P (Object/Affordance Class)
FCé FC7_ softmax

A /,

(a) VGG16

VGG16

/77

FC6 FC7 ]
-7 EB- /-

P (Object/Affordance Class)

Softmax

P (Object/Affordance Class)

%@\t (b) VGG16-LSTM
e
o
CDM-AP
FCe FC7_ Softmax
. OR
& o -
i /
CDM-AF

(c) C3D

Fig. 6. Detailed architecture of the adopted single-stream models: (a) VGG16 that is capable of encoding spatial information; (b) VGG16-LSTM that utilizes a VGG16 and an LSTM
to encode spatio-temporal information; and ¢) C3D that exploits 3D convolutions to encode spatio-temporal information. The CDM-AP or HHA-AP can be used as input appearance
representations, while various affordance input representations of Fig. 5 can be used, as evaluated in Table 3 of Section 5.1.
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FC6: 4096
FC7: 4096
(b) SPL_conv
& FCG P (Object Class) | g1 224 X 224 X 64
R > FUS B2: 112 X 112 X 128
FC7 Softmax B3: 56 X 56 X 256
CDM-AP B4: 28X 28 X 512
&7 dad B5: 14 14 X 512
FUS (CONV): 14 X 14 x 1024
L FC6: 4096
FUS (FC): 8192
ACOFM-AF (c) SPyy, ECT: 4096

Fig. 7. Detailed architecture of the SP model for: (a) late fusion at the FC layer; (b) late fusion at the CONV layer; and (c) multi-layer fusion. Each block (B1-B5) corresponds to
a CONV-RL-POOL sequence of VGG16, while FUS indicates feature fusion (concatenation). At the right side of each fusion scheme, the dimensionality of the activation matrix for
each CONV block is reported as “height X width X channels" and for each FC layer as the number of neurons. The CDM-AP or HHA-AP representations can be used as input to the
appearance stream, whereas the ACOF-AF and ACOFM-AF as input to the affordance stream.

flow magnitude (COFM), coupled with the corresponding accumulated
one (ACOFM). Fig. 5 depicts an example of two appearance and six
affordance input representations of a “pour from pitcher" session. For
the sake of clarity, the information stream that processes the object
appearance is denoted as the “appearance stream", while the one that
processes the hand-object interaction is denoted as the “affordance
stream". Additionally, the notation {AP, AF} is used to state that a
specific input is received from the appearance or the affordance stream
(e.g. CDM-AP denotes that the appearance stream receives colorized
depthmaps as input).

3.2. Single-stream models

For the appearance and affordance information processing, three
single-stream models are proposed, as detailed next.

The first model, depicted in Fig. 6(a), is the VGG16 (Simonyan
and Zisserman, 2015) network, which encodes the spatial-only infor-
mation of an input image. It consists of 5 blocks (B1-B5) of con-
volutional (CONV) layers and 2 Fully Connected (FC) ones, while
each CONV group is followed by a pooling (POOL) layer. A Rectified
Linear unit (RL) is used as activation function after each CONV and
FC layer. Note that VGG16 can efficiently learn complex spatial fea-
ture representations and has been widely used for visual recognition
purposes.

The second model is capable of encoding both spatial and tempo-
ral information, by processing sequences of 2D frames. As shown in
Fig. 6(b), the model consists of a VGG16 network followed by a Long—
Short Term Memory (LSTM) one (Hochreiter and Schmidhuber, 1997).
(Finally, the C3D network Tran et al., 2015), which is also capable of
encoding spatio-temporal information, is used as the third model. The
C3D, depicted in Fig. 6(c), consists of 8 3D convolutional (3DCONV), 5
POOL, and 2 FC layers. Note that this model processes groups of video
frames, stacked along the RGB-channel axis to form 3D representations.

The aforementioned models are separately trained for object and
affordance recognition, using the 14 object and 13 affordance classes
as ground truth, respectively. Note that all models use a Softmax layer
for class prediction. Additionally, HHA encoding and CDM are used as
input representations of object appearance, whereas all six affordance
input representations reported in Section 3.1 are utilized to investigate
their impact on RGB-D object recognition.

Regarding the VGG16 model, which predicts classes for individual
images, the video-level object prediction is obtained by averaging
all frame-level predictions. However, this process is not effective for
affordance recognition. Intuitively, object affordances are explicitly
described by hand motion, which is time-evolving. Thus, using the
VGG16 model to predict the affordance class of a sequence would
be inconsistent. This intuition is confirmed in Section 5.1 (see also
Table 3), hence for most of the paper we utilize only the ACOF and
ACOFM representations as input to the affordance VGG16, as they
summarize the entire motion of the sequence accumulated within a
single frame.

4. Two-stream models fusing appearance and affordance

Motivated by the two-stream hypothesis of the human brain senso-
rimotor learning process, the aforementioned single-stream models are
fused in multiple ways in order to achieve robust object recognition.
Three sensorimotor models are presented, where the appearance and af-
fordance information exchange between the two streams is extensively
investigated.

4.1. Two-stream spatial-only model (SP)
The two-stream spatial-only model (SP), depicted in Fig. 7, utilizes

two VGG16 networks, one for appearance and the other for affordance
information processing. The appearance VGG16 receives HHA-AP or
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Fig. 8. Detailed architecture of the ST2D model for: (a) late fusion and (b) intermediate fusion. Blocks B1-B5, FC6, and FC7 correspond to the VGG16 network, while FUS indicates
feature fusion. At the right side, the internal structure of the LSTM, as well as the input x and output  vector dimensionality for each fusion scheme are depicted. The appearance
stream processes HHA-AP or CDM-AP inputs, while the HHA-AF, CDM-AF, COF-AF, and COFM-AF representations can be used as input to the affordance stream.

CDM-AP input, while the affordance one processes either ACOF-AF or
ACOFM-AF representations, similarly to the single-stream affordance
VGG16 described in Section 3.2. Three fusion schemes of the two
streams are investigated: (a) late fusion at the FC layer level (SP;_r¢);
(b) late fusion at the CONV layer level (SP; _cony); and (c) multi-layer
fusion (SP,,;) that combines the aforementioned approaches.

Late fusion at the FC layer level (Fig. 7(a)) is realized by concate-
nating the activations of FC6 (i.e. the sixth VGG16 layer, which is a FC
one) of each stream, after the RL non-linearity. After fusion, a single
stream of a 4096-dimensional (dim) FC layer and a Softmax layer is
formed.

Regarding late fusion at the CONV layer level (Fig. 7(b)), the
activation maps after RL5 (non-linearity of CONV5) are concatenated
along the channel dimension. In more detail, if X***? represents each
activation matrix, where s € {AP, AF,FUS} and h, w, d correspond to
the height, width, and number of channels, then X 114312y 14x14x512
are the inputs and X 7Xi>19% is the output of the fusion. The latter is
further convolved with 512 filters of 1 X 1 size and downsampled using
a max-pooling layer (2 x 2 size), thus resulting in a X 27¥%!2 activation
matrix. Similarly to the FC layer late fusion, a single processing stream
is formed that consists of 2 FC layers (4096-dim) and a Softmax layer.

Finally, in order to allow more complex information exchange at
different levels of granularity between the two streams, a multi-layer
fusion scheme is also investigated (Fig. 7(c)). In particular, the two
streams are initially fused after the last CONV layer (RL5) and then
fused again after FC6 (RL6). The appearance FC6 layer receives as
input the fused activations, while the affordance FC6 receives the
activations from POOL5 (POOL layer after CONV5) of the affordance
stream only. Subsequently, the activations after RL6 of both streams are
concatenated forming a 8192-dim feature, followed by a 4096-dim FC
layer and a Softmax layer. Note that, in the multi-layer fusion case only,
the weights of the affordance B1-B5 layers are not updated from the
gradients computed at the CONV fusion level during back-propagation.
In that way, the affordance stream contributes to the appearance one in
multiple levels, without being particularly affected by the appearance
information.

For the video-level object class prediction, the object probabilities
for each frame of the sequence are averaged. Note that the affordance
input representation remains unaltered, as it includes the aggregated
information of the entire sequence.

4.2. Two-stream spatio-temporal 2D model (ST2D)

Another approach for modeling the dynamic nature of the affor-
dance information is realized with the proposed two-stream Spatio-
Temporal 2D model (ST2D). As shown in Fig. 8, we adopt the VGG16-
LSTM structure to model the spatio-temporal nature of the hand-object
interaction. Two fusion approaches are considered, namely intermedi-
ate (ST2D;,,) and late fusion (ST2D,).

Regarding the ST2D;,, model, the 4096-dim spatial feature vectors
extracted by each VGG16 model (i.e. the activations after the RL7 layer)
are concatenated and then processed by the LSTM at every time instant,
namely at every frame of the input sequence. The LSTM encodes the
temporal correlations of the interaction, while its internal state vector
[A(t)] (4096-dim) is further processed by a Softmax layer for the object
class prediction.

On the other hand, ST2D; adopts the VGG16-LSTM structure only
for the affordance information processing, since the appearance VGG16-
LSTM performs significantly worse than VGG16 as a single-stream
object classifier (see Section 5.1 and Table 3). Thus, for this model, the
RL7 activations of the appearance stream (4096-dim) are concatenated
with the internal state vector [A(f)] (4096-dim) of the affordance
VGG16-LSTM at every time instant. The outcome of the concatenation
is further processed by a Softmax layer.

Regarding the final prediction, two approaches are investigated
for both fusion schemes. These approaches aggregate the frame-level
prediction to yield a video-level classification decision. Given a series
of frame-level posteriors DPres where t = 1,...,T is the frame number
and ¢ = 1,...,C the object class, the video-level classification decision
¢ is given either by:

T
o 1

Cavg = argznax T ; Dic > 1
employing the averaging (AVG) approach, or by:

T
v = argmax% th,‘c , 2)
¢ =1

using the weighting (W) approach, respectively. Clearly, (1) indicates
that all frame-level predictions contribute equally to the video-level
one. However, the LSTM weights are updated after every processed
frame, thus the affordance features prior to fusion should be more
discriminative at the end of the sequence. Thus, we utilize (2) to force
the model to focus more on the frame-level predictions over the last
video frames.



attention mechanism

S. Thermos, G.T. Papadopoulos, P. Daras et al.

FUS
. /?/#
S Y Softmax

Fig. 9. Detailed architecture of the ST2D, model with an attention mechanism
incorporated. The attention mechanism follows the final FC layer of the appearance
VGG16 (top), which selectively attends to the affordance stream output (bottom).
Symbols @ and © represent normalization and frame-level multiplication, respectively.

P (Object Class)

CDM-AF

t\

4.3. Two-stream ST2D model with attention

Since our experiments in Section 5.2.2 indicate that neither of the
ST2D fusion approaches exhibit satisfactory results in object recog-
nition (see Table 5), we argue that the affordance information does
not equally contribute to each frame-level prediction. For example,
as shown in Fig. 5(top), the object can be easily identified at the
first and the last frames of the video based only on its appearance.
On the contrary, at the middle of the sequence, the object cannot be
confidently identified due to the “handle" occlusion from the hand.
Motivated by this observation, we utilize the attention mechanism
proposed in Thermos et al. (2018), in order to incorporate the affor-
dance information when it is truly needed, i.e. when the appearance
features are not discriminative enough. Additionally, since fusing the
two information sources prior to the LSTM leads to significantly inferior
performance compared to the appearance VGG16 (see Tables 3 and 5),
we choose to apply the attention only to the ST2D; model.

As depicted in Fig. 9, the attention mechanism consists of a Softmax
classifier added after the last FC layer of the appearance CNN and a
module that measures the appearance-based classifier confidence for
each frame. The latter is used to selectively attend to the affordance
features extracted from the LSTM, prior to fusion.

For this purpose, three confidence metrics are investigated. Denot-
ing by ¢,,,n = 1,..., N the ranked N—best object class predictions of
the appearance CNN classifier and by p, , the corresponding posteriors
at frame ¢, the first metric is the entropy 7, 5, computed as:

c

Lp=- Z Pinlog(p,,) - 3)
n=1

Clearly, 7, p values that are close to zero indicate strong confidence,

while larger values indicate difficulty in discrimination. The second

investigated metric is the average N-—best log-likelihood difference,

computed as:

N
L= o D02 by, log (p,,) )
n=2

where N > 2. In contrast to entropy, larger values of 7, , indicate
high-confidence predictions. Finally, the last metric measures the log-
likelihood dispersion among the N —best class predictions, and is given
by:

N-1 N
2
Lo=YN=T ; mglaog (Pe) =108 (Pr) ®)

where N > 2. Similarly to (4), larger Z, ;, values indicate high classifi-
cation confidence. The aforementioned metrics have also been used in
the context of audio—visual speech recognition (Potamianos and Neti,
2000; Adjoudani and Benoit, 1996).
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Following the appearance classifier confidence measurement, the 7,
values of all frames are normalized to [0, 1] by:

1,-1,
w, = ———mn 6)
Zma)( - Imin
where I, T,,, are calculated over the entire video, and w € [0, 1] is

the resulting confidence vector over all T video sequence frames. The
last step of the attention mechanism is given by:

g JwoH if (3)
(1-w)oH if(4) or(5)

where © indicates the frame-level multiplication of confidence values
with the LSTM output matrix H™M (M = 4096 in our case, see
also Fig. 8). Note that by multiplying w, with h,, the impact of the
affordance information on the final prediction changes, since A7>*M is
concatenated with the appearance feature vector, as depicted in Fig. 9.
The outcome of the concatenation is then followed by a Softmax layer,
used to compute the object class posteriors.

4.4. Two-stream spatio-temporal 3D model (ST3D)

An alternative approach for modeling the spatio-temporal nature of
time-evolving interactions is by incorporating the 3D CNN structure
in a two-stream model. The two-stream Spatio-Temporal 3D model
(ST3D) consists of two C3D ones, one for appearance and the other
for affordance information processing. Note that we choose to process
the appearance information using a C3D instead of a VGG16 model,
as we observed that despite its slightly inferior performance as single-
stream classifier for object recognition (see Section 5.1 and Table 3),
it performs better when it is combined with the affordance C3D.
Additionally, since its structure is very similar to VGG16, we investigate
the same three fusion schemes as for the SP model (i.e. ST3D;_p(,
ST3D; _cony> ST3Dy, ). The aforementioned fusion schemes are de-
picted in Fig. 10.

Note that, unlike ST2D, the C3D models used as appearance and
affordance streams can selectively attend to both appearance and mo-
tion information. To support this hypothesis, Tran et al. (2015) use
the deconvolution method proposed in Zeiler and Fergus (2014) to
visualize the patterns learned by the C3D weights over video samples.
They report that based on observations, the C3D starts by focusing on
appearance in the first few frames and tracks the salient motion in the
subsequent ones. Thus, unlike ST2D, no extra attention mechanism is
incorporated to the model.

4.5. Auxiliary loss function

The training objective for the proposed two-stream models is to
minimize the cross-entropy loss between the predicted object class and
the ground truth. This loss is used to compute the gradients and update
the weights of both streams. However, besides incorporating affordance
information to improve object class prediction, further optimization of
the models weights using an auxiliary loss function based solely on the
affordance stream performance can be beneficial. In order to compute
the auxiliary loss, the affordance features prior to fusion are used to
train a Softmax classifier. The training objective of the new classifier
is to minimize the cross-entropy loss between the predicted affordance
class and the affordance ground truth. The two loss functions can be
combined and used to optimize both streams. This aggregated loss is
computed as:

K

1

Lag=—% Z(yo,k 102(Po i) + Yk 10g(pa,k)) , )
k=1

where K is the total number of training samples, y,, and p,, are the
object ground truth and predicted probability, and y,, and p,, are
the affordance ground truth and predicted probability of sample k. The
auxiliary loss can be applied to the affordance stream of any two-stream
model, except for the ST2D;,, where the two streams are fused before
the LSTM. Fig. 11 depicts an example of the auxiliary loss applied to
the SP,,, model.
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Fig. 10. Detailed architecture of the ST3D model for: (a) late fusion at the FC layer; (b) late fusion at the CONV layer; and (c) multi-layer fusion. At the upper right side the
dimensionality of the activation matrix for each CONV block is reported as “height X width X channels" and for each FC layer as the number of neurons. The appearance stream
processes HHA-AP or CDM-AP inputs, while the HHA-AF, CDM-AF, COF-AF, and COFM-AF representations can be used as input to the affordance stream.

Aggregated Loss

]‘\\
N
N
N
~

Object IR
Recognition Loss \\

S
~

FC (4096) Auxiliary Loss

Fusion (FC) ——— Forward Propagation

Fusion (CONV)
K]

D

Appearance Affordance

1
1
1
]
i
Forward Propagation
(Auxiliary)

Gradient Flow
(Aggregated Loss)

Fig. 11. Example of the auxiliary loss application on the SP,,, model. The auxiliary
loss is computed based on the affordance classifier and then combined with the object
recognition loss.

5. Experimental results

The presented single-stream and fusion models were evaluated using
the SOR3D dataset for the task of object recognition. The data captured
from the three viewpoints (see also Fig. 3) were accumulated into a
unified (i.e. all-viewpoint) dataset, which was then split into training,
validation, and test sets (25%, 25% and 50%) that correspond to
approximately 5k, 5k and 10k hand-object interaction videos, respec-
tively. For all 300 x 300 pixel extracted video frames, a 224 x 224
patch was randomly cropped and used as input to the models. All
models were trained with the negative log-likelihood criterion, whereas
for back-propagation, Stochastic Gradient Descent (SGD) with 0.9 mo-
mentum was used. The standalone VGG16 network was pre-trained on
ImageNet (Deng et al., 2009), while the VGG16-LSTM and the C3D
were pre-trained on Sports-1M (Karpathy et al., 2014). Subsequently,
all models were fine-tuned on the SOR3D dataset with learning rate set

to 51073, decreased by a factor of 5x10~! when the validation accuracy
curve plateaued. For fusion models training, L2 regularization (Ng,
2004) was incorporated in order to prevent over-fitting. All models
were implemented using the Torch7 framework®? on an Nvidia Titan
X GPU.

5.1. Single-stream model evaluation

The first set of experiments deals with the evaluation of the single-
stream models presented in Section 3.2. The results are reported in
Table 3 in terms of overall object and affordance recognition accuracy.
For each video sequence, a set of 20 uniformly selected video frames
was provided to each single-stream model, while due to computational
and memory restrictions the input sequence length for the C3D model
was set to 8 frames. For the latter, a sliding window of 8 frames
was applied to each sequence and the window-level predictions were
averaged to provide a video-level one. The aforementioned setup was
used during both training and testing. The frame-level predictions of
the VGG16 were also averaged to provide a single prediction for each
video.

Regarding object recognition, VGG16 yielded the best overall accu-
racy compared to the VGG16-LSTM and C3D models for both CDM-AP
and HHA-AP input representations. From the aforementioned represen-
tations, CDM-AP performed slightly better than HHA-AP (i.e. 85.12%
over 84.98%), mainly due to the nature of the captured data, i.e. height
and disparity are more informative in outdoor scenes, or indoor ones
that consist of large objects (e.g. furniture). Based on the reported
results, the VGG16 model that processes CDM-AP input representation
was considered as the appearance-only baseline for the rest of the
experiments. Further, due to the CDM-AP superiority over HHA-AP,
the former was considered as appearance input representation for all
two-stream models evaluation.

In order to truly understand the impact of the affordance informa-
tion on object recognition, we firstly evaluated the affordance encoding
efficiency of each single-stream model. For this experiment only the
affordance information was utilized providing the target labels, with
the experimental framework remaining unaltered. However, the last
layer of each network was restructured to predict probabilities based
on the 13 affordance classes. From the results reported in Table 3,

2 http://torch.ch.
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Table 3

Recognition accuracy of the three single-stream models of Section 3.2 on the test
set of the SOR3D database for various appearance and affordance input stream
representations. Object recognition accuracy (%) is reported in the upper part of the
table (appearance stream) and affordance recognition accuracy (%) in the lower part
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Table 5

Object recognition results using the ST2D,,, and ST2D,; models in conjunction with
the averaging (AVG) and weighting (W) video-level prediction approaches for various
affordance input representations and CDM-AP input.

Input Stream ST2D,,,-AVG ST2D,,,-W ST2D, -AVG ST2D, -W
(affordance stream).
HHA-AF 79.33 80.17 86.12 86.53

Input Stream VGG16 VGG16-LSTM C3D CDM-AF 79.65 80.43 86.50 86.87

HHA-AP 84.98 73.96 84.45 COF-AF 78.98 79.94 86.30 86.64

CDM-AP 85.12 74.33 84.67 COFM-AF 79.08 80.04 86.38 86.72

HHA-AF 56.89 67.44 79.12

CDM-AF 57.28 69.27 81.44 Table 6

ggil\iFAF ggi; Zzgg Zg?g Object recognition results using different ST2D-based fusion and training schemes and

ACOF-AF 30.84 wa wa affordance inputs (in conjunction with CDM-AP input).

ACOFM-AF 81.92 n/a n/a Input Stream (Regularization). ST2D,,,-W ST2D,-W ST2D,-W

(attention)
HHA-AF 80.17 86.53 89.14

Table 4 CDM-AF 80.43 86.87 89.84
Object recognition results (in accuracy, %) on the SOR3D test set, using different SP- COF-AF 79.94 86.64 89.91
based fusion and training schemes and affordance inputs (in conjunction with CDM-AP COFM-AF 80.04 86.72 90.02
input). COFM-AF (aux. loss) n/a 86.86 90.18

Input Stream (Regularization) SP; _pc SP;_conv SPy; COFM-AF (L2) 80.42 86.78 90.09

ACOF-AF 87.03 87.93 89.10 COFM-AF (aux. loss, L2) n/a 86.95 90.31

ACOFM-AF 87.40 88.24 89.43

ACOFM-AF (aux. loss) 88.37 89.63 90.79

ACOFM-AF (L2) 87.92 88.55 89.95

ACOFM-AF (aux. loss, L2) 88.54 89.81 91.12 observed that this fusion scheme boosts recognition performance of all

we can conclude that when processing individual frames (i.e. HHA-AF,
CDM-AF, COF-AF, and COFM-AF) the VGG16 model cannot implicitly
capture the temporal information of the affordance. Additionally, we
observe that the VGG16-LSTM model cannot efficiently encode the
temporal correlations of the sequence, mainly due to the short and
fine-grained interaction. On the other hand, the C3D model yields
satisfactory results for all affordance input representations, while the
VGG16 one performs considerably well when using accumulated 3D
flow as input.

5.2. Two-stream model evaluation

In this section, the fusion models evaluation is detailed. It should
be noted that for all fusion model experiments the appearance stream
receives CDM input (CDM-AP), as discussed in Section 3.1. Thus, the
appearance input is not reported in Tables 4-8 for simplicity.

5.2.1. SP model evaluation

Table 4 shows the performance of the SP model, in terms of object
recognition accuracy. From the presented results, it can be seen that
using the ACOFM input representation is advantageous compared to
the ACOF one. Thus for the rest of the SP model evaluation, the former
representation is utilized. Further, the late fusion of CONV features
(i.e. fusion after RL5) appears to perform better compared to the late
fusion at the FC layer level. Note that at the FC layers the spatial
information is lost, thus fusing CONV layer activations leads to more
discriminative post-fusion features. Interestingly, SP,,; outperforms
the aforementioned late fusion schemes. Using this fusion approach,
the model learns both mid-level and high-level feature representations,
without losing the spatial correspondence due to the feature-flattening
at the FC layers.

Additionally, significant performance improvement can be observed
when the auxiliary loss (see Section 4.5) is incorporated. This result
reflects the importance of the affordance modeling optimization in
parallel with the overall object recognition task. Further, regularization
with the L2 norm leads to higher accuracy. In fact, the SP,,; model
trained using the auxiliary loss and the L2 norm outperforms the
appearance-only VGG16 by an absolute 6%.

Fig. 12(b) visualizes the confusion matrix of the best performing
SP,,; model (ACOFM-AF, aux. loss, L2) on the SOR3D test set. It can be
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supported objects over the appearance-only VGG16 with CDM-AP input
(see Fig. 12(a)), demonstrating the additional discriminative power of
affordance information.

5.2.2. ST2D model evaluation

Experimental results of the ST2D-based fusion evaluation are re-
ported in Tables 5-7. In all cases, as in Section 5.1, a set of 20 uniformly
selected frames was provided as input to the respective networks.

Table 5 reports the comparative evaluation of the averaging and
weighting video-level prediction for the ST2D,; and ST2D,;,, models.
It can be observed that, for both fusion schemes and all affordance
input representations, the weighting approach leads to better overall
accuracy than the averaging one. Thus, for the rest of the ST2D experi-
ments reported in Tables 6 and 7, the weighting video-level prediction
is adopted.

Table 6 shows that the ST2D;,, performs worse than the
appearance-only VGG16 (i.e. 80.43% over 85.12%). Thus, we conclude
that the LSTM cannot efficiently encode the time-evolving object ma-
nipulation, using a sequence of fused representations as input. Note
that the latter is the result of fusing the two information streams at
the FC layer-level, where the spatial correspondence is lost; thus, the
LSTM has difficulty learning temporal correlations for both appearance
and affordance. In contrast, the ST2D,; fusion scheme outperforms the
appearance-only VGG16 for all affordance input representations. In
detail, the ST2D; scheme with HHA-AF input yields an absolute im-
provement of 1.41% compared to the appearance-only VGG16, which is
further improved by CDM-AF, COF-AF, and COFM-AF to 1.75%, 1.52%,
and 1.6% boosts, respectively.

The performance of ST2D; is further improved when the atten-
tion mechanism is incorporated. Based on Table 7, the N—best log-
likelihood dispersion metric (N = 3) is selected as it yields the best
overall accuracy. The inclusion of the attention mechanism leads to a
performance boost for all affordance input representations (see right-
most column of Table 6). Note also that the attention-based model
using COFM-AF slightly outperforms the ones that use HHA-AF and
CDM-AF as input representations. One plausible reason is that the 3D
optical flow of the hand movement, prior to and after the interaction,
may not contain significant affordance information, thus its impact to
the final prediction should be small for the corresponding frames. The
application of the auxiliary loss to the attention-based ST2D; model
with COFM-AF input, in combination with L2 regularization, yields a
90.31% object recognition accuracy.
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Table 7

Object recognition results of the ST2D, — W model with CDM-AP and CDM-AF inputs
using attention in conjunction with the following confidence estimation metrics: (a) the
entropy, (b) the average N—best log-likelihood difference (N = 3), and (c) the N—best
log-likelihood dispersion (N = 3).

Confidence Metric Test Acc. (%)

Entropy 88.91
N-best difference 89.27
N-best dispersion 89.84

Table 8
Object recognition results using different ST3D-based fusion schemes and affordance
inputs. CDM-AP is used as appearance input representation.

Input Stream (Regularization) ST3D; _rc ST3D; _conv ST3D,,,
HHA-AF 87.12 87.92 88.76
CDM-AF 87.97 88.32 89.23
COF-AF 88.06 88.65 89.79
COFM-AF 88.49 89.14 90.47
COFM-AF (aux. loss) 89.12 90.02 91.44
COFM-AF (L2) 88.86 89.58 90.70
COFM-AF (aux. loss, L2) 89.67 90.88 91.98

The confusion matrix of the attention-based ST2D; (COFM-AF, aux.
loss, L2) model on the SOR3D test set is given in Fig. 12(c). It can
be seen that it confuses objects that are very small or thin and their
manipulation is very similar (e.g. small-size ones, like “Key", “Pen",
etc.).

5.2.3. ST3D model evaluation

For the ST3D model evaluation, we used sequences of 20 uniformly
selected frames as input for each stream combined with an 8-frame
sliding window, similarly to the single-stream C3D experiment (see
Section 5.1). Note that in contrast to the LSTM learning process (see
Section 4.2), the window-level predictions of the C3D model are inde-
pendent from each other, thus for the final prediction the averaging
approach was used.

Table 8 reports the overall accuracy of the ST3D models. Similarly
to the SP evaluation, ST3D,,; outperforms ST3D; for all affordance
inputs, due to the information sharing at different levels of granularity.
Additionally, training both schemes with the auxiliary loss and L2
regularization leads to additional performance improvement. From the
reported results, it can be observed that using 3D flow information
instead of colorized depthmaps is advantageous. The latter is in accor-
dance with the results presented in Table 3 for affordance recognition.
Furthermore, it must be noted that ST3D,,; with COFM-AF input,
which is the best performing approach in this paper, outperforms the
appearance-only VGG16 by 6.86% (i.e. 91.98% over 85.12%), which
corresponds to an approximately 46% relative error reduction.

From a practical perspective, the ST3D model handles both the lack
of temporal information modeling of the SP model and the difficulty
of the ST2D one to learn the spatio-temporal correlations of fine-
grained interactions. Additionally, it can better exploit 3D optical flow
information, which explicitly describes the motion between sequential
frames, thus making the recognition easier as the network does not
need to estimate motion implicitly.

Finally, the confusion matrix of the ST3D,,; model (COFM-AF,
aux. loss, L2) on the SOR3D test set is depicted in Fig. 12(d). Notice
that this model boosts recognition performance of all objects, while
further improving it for the most challenging ones (e.g. “Key", “Knife",
and “Pen"), by modeling the affordance information more efficiently.

5.3. Comparison with probabilistic fusion
The best performing fusion model, namely ST3D,,; that utilizes

COFM-AF as input and is trained with auxiliary loss and L2 regulariza-
tion, is also comparatively evaluated against typical probabilistic fusion
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Table 9

Comparative evaluation of the ST3D,,, (CDM-AP, COFM-AF, aux. loss, L2) model,
three probabilistic fusion methods, and the appearance-only VGG16 baseline. In all
cases, object recognition accuracy (%) is reported.

Model Fusion Layer Test Acc. (%)
Appearance-only VGG16 baseline no fusion 85.12
Product Rule Softmax 77.91
SVM (Kjellstrom et al., 2011) RL7 84.77
Bayes (Hogman et al., 2016) RL7 80.63
ST3D,,, RL5, RL6 91.98
Table 10
Cross-view object recognition results using the appearance-only VGG16 and

ST3D,,, (COFM-AF, aux. loss, L2) models. The last row reports the results using the
original SOR3D training and test sets.

Training Set Test Set VGG16 ST3D,,,
K, K,, Ks 51.74 55.13
K, K|, K; 53.28 57.80
K, K|, K, 49.42 53.96
Ky, K, K, 62.43 69.74
K,.K; K, 66.14 72.86
K, K, K 78.65 85.33
K, Ky, K K, Ky, Ky 85.12 91.98

approaches of the literature. To perform a fair comparison, two C3D
models are trained following the process presented in Section 5.1, using
CDM-AP and COFM-AF as input representations. The product rule for
fusing the appearance and the affordance C3D output probabilities is
adopted as the first probabilistic approach. Additionally, after remov-
ing both Softmax classifiers, the concatenated FC7 activations of the
appearance and affordance C3D models are used to train a one-versus-
all SVM classifier with RBF kernel (Castellini et al., 2011; Kjellstrom
et al., 2011), as well as a naive Bayes classifier (Hogman et al., 2016).
From the results presented in Table 9, it can be observed that the
evaluated probabilistic fusion approaches fail to increase object recog-
nition accuracy compared to the appearance-only VGG16 baseline.
On the contrary, the proposed ST3D,,; model exhibits a significant
performance increase.

5.4. Cross-view analysis

In this section, we perform a cross-view analysis on the SOR3D
data, in order to evaluate the contribution of each viewpoint to the
performance of the appearance-only VGG16 and the ST3D,,; model.
For this analysis, the three viewpoints of the SOR3D capturing setup,
depicted in Fig. 3, are denoted as K,, K,, and K;. For each K;,i € V =
{1,2,3}, the evaluated model is initially trained using the K; data and
tested on the Ky,_; set, and then trained with K _;, data and tested
on the K; one. It must be noted that no viewpoint fusion is considered
for any of the experiments. The appearance-only VGG16 employs the
CDM-AP input representation, while the ST3D,,,; utilizes CDM-AP and
COFM-AF inputs, auxiliary loss, and L2 regularization.

Intuitively, the affordance information should be significantly more
viewpoint-dependent, since the starting point of the hand movement
is different from each viewpoint and the actual interaction may not
always be visible (e.g. the handle of the cup might be from the opposite
side of the RGB-D sensor). From the results presented in Table 10,
it can be observed that both models perform worse when trained on
one or two viewpoints and tested on the rest. Additionally, it can be
seen that, contrary to the aforementioned intuition, the starting point
of the hand does not significantly affect the models performance, and
the affordance information is discriminant even if some parts of the
interaction are not entirely visible. We can further conclude that K| and
K, are the most critical viewpoints for both appearance and affordance
exploitation, as their absence from the training set leads to inferior
overall classification accuracy.
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Fig. 12. Object recognition confusion matrices of the appearance-only VGG16 and the best performing fusion scheme of each two-stream model. Training parameters, such as
affordance input and regularization of each model, are reported inside the parentheses. In all cases, CDM-AP is used as the appearance stream representation.

6. Conclusion

In this paper, the application of sensorimotor learning in RGB-D
object recognition was investigated, following the observation learning
scenario. Three DL-based models that fuse appearance and affordance
information by adopting multiple fusion schemes were presented. Fur-
ther, six alternative representations were used as input to the affor-
dance stream in order to maximize the information gain by incor-
porating affordance information. An attention mechanism based on
appearance stream confidence was developed, and an auxiliary loss for
fusion model optimization based on the affordance stream performance
was also introduced. The 3D convolution based two-stream model
with multi-layer fusion was experimentally shown to significantly im-
prove the appearance-only baseline and outperform the rest of the
proposed models, as well as alternative probabilistic fusion methods
of the literature. A cross-view analysis concluded the study, providing
intuition concerning viewpoint contribution to model performance and
viewpoint-dependency of the affordance information.

Our future research goals regarding sensorimotor learning are to
evaluate the proposed algorithms on more challenging data and to
experiment with more lightweight models. Regarding the former, the
SOR3D dataset will be enhanced by adding more object types coupled
with higher intra-class variance, as well as new interaction sessions
combining multiple affordances and objects in a more cluttered and
close to real-world setup (e.g using multiple objects to cook in a
kitchen). The enriched dataset will enable the development of senso-
rimotor algorithms applicable in real-world scenarios such as smart
homes (Poland et al., 2009; Alam et al., 2012). A state-of-the-art se-
mantic segmentation method will be added to address the hand-object
separation in these scenarios. Further, the exploitation of shallower
models with less parameters will be investigated, aiming at lightweight
two-stream architectures with close to state-of-the-art performance that
will be embedded in artificial agents for real-world applications.
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