
Neural Networks 143 (2021) 475–488

P
I

m
r
s
p
d
a
p
d
2
c
t
i
s
D
s
i

(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Recurrent neural network pruning using dynamical systems and
iterative fine-tuning
Christos Chatzikonstantinou ∗, Dimitrios Konstantinidis, Kosmas Dimitropoulos,
etros Daras

nformation Technologies Institute, Centre for Research and Technology Hellas, Greece

a r t i c l e i n f o

Article history:
Received 8 February 2021
Received in revised form 24 June 2021
Accepted 2 July 2021
Available online 8 July 2021

Keywords:
Recurrent neural networks
Network pruning
Linear dynamical systems
Regularization

a b s t r a c t

Network pruning techniques are widely employed to reduce the memory requirements and increase
the inference speed of neural networks. This work proposes a novel RNN pruning method that
considers the RNN weight matrices as collections of time-evolving signals. Such signals that represent
weight vectors can be modelled using Linear Dynamical Systems (LDSs). In this way, weight vectors
with similar temporal dynamics can be pruned as they have limited effect on the performance
of the model. Additionally, during the fine-tuning of the pruned model, a novel discrimination-
aware variation of the L2 regularization is introduced to penalize network weights (i.e., reduce the
magnitude), whose impact on the output of an RNN network is minimal. Finally, an iterative fine-
tuning approach is proposed that employs a bigger model to guide an increasingly smaller pruned one,
as a steep decrease of the network parameters can irreversibly harm the performance of the pruned
model. Extensive experimentation with different network architectures demonstrates the potential
of the proposed method to create pruned models with significantly improved perplexity by at least
0.62% on the PTB dataset and improved F1-score by 1.39% on the SQuAD dataset, contrary to other
state-of-the-art approaches that slightly improve or even deteriorate models’ performance.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Deep Neural Networks (DNNs) have revolutionized the field of
achine learning due to their highly discriminative abilities and

obust performance, leading to their wide adoption for providing
olutions to complex problems in numerous fields, such as com-
uter vision (LeCun et al., 2010) and language modelling (Sun-
ermeyer et al., 2012). Nevertheless, their sensitivity to noise
nd missing data has led several researchers to cope with the
roblems of stability (Wei et al., 2021), the presence of missing
ata (Chen et al., 2020), non-Gaussian noise (Stojanovic et al.,
020) and various types of uncertainties, such as polytropic un-
ertainty (Tao et al., 2021). Furthermore, the advances in ICT
echnologies and the broader use of smartphones sparked a grow-
ng demand for implementing such algorithms on embedded
ystems. Despite their effectiveness and robustness, the use of
NNs in both powerful PCs and resource constrained embedded
ystems is governed by serious limitations, due to the signif-
cant demands of DNNs for computational power and energy

∗ Corresponding author.
E-mail addresses: chatziko@iti.gr (C. Chatzikonstantinou), dikonsta@iti.gr

D. Konstantinidis), dimitrop@iti.gr (K. Dimitropoulos), daras@iti.gr (P. Daras).
ttps://doi.org/10.1016/j.neunet.2021.07.001
893-6080/© 2021 Elsevier Ltd. All rights reserved.
consumption. To this end, this work focuses on the compres-
sion and acceleration of deep networks to reduce their memory
requirements and increase their inference speed.

In the literature, most network compression methods tar-
get the acceleration of Convolutional Neural Networks (CNNs)
(Chatzikonstantinou et al., 2020; Ding et al., 2019; Liu et al.,
2019) due to their importance in image processing applications.
Lately, with the advent of Industry 4.0 and the growing de-
mand for sequence processing algorithms, techniques to acceler-
ate Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986)
have gained attention. RNNs and their variants, such as Long
Short-Term Memory (LSTM) networks (Hochreiter & Schmidhu-
ber, 1997) and Recurrent Highway Networks (RHN) (Zilly et al.,
2017) are capable of processing sequences and capturing tem-
poral dependencies between video frames or words in a text
and thus they are particularly useful in action recognition and
language modelling. The high accuracy of recurrent neural net-
works in such tasks is overshadowed by their huge requirements
in run-time memory and their computational complexity that
renders their usage in real-time applications inherently prob-
lematic. Moreover, the increased use of mobile devices has led
several deep learning networks to be implemented in such sys-
tems of decreased computational resources. Therefore, there is

a need towards the reduction of the size and complexity of

https://doi.org/10.1016/j.neunet.2021.07.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.07.001&domain=pdf
mailto:chatziko@iti.gr
mailto:dikonsta@iti.gr
mailto:dimitrop@iti.gr
mailto:daras@iti.gr
https://doi.org/10.1016/j.neunet.2021.07.001

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

c
p
c
p
a
o
t
f
o
m
e
t
o
i
p
o
s
m
r
p

t
Y
c
t
t
w
s
r
s
a
u
a
n
w
t
p
p
t
a
s
o
b
b
o
s

recurrent neural networks, while maintaining their recognition
performance.

Pruning the network parameters is one of the most popular
ompression approaches, based on the assumption that many
arameters in DNNs are often redundant and therefore they
an be removed without significantly affecting the recognition
erformance of the network. Identifying redundant weights in
network, however, can be a challenging task since millions
f mathematical operations are performed inside a network and
he contributions from all weights are merged to produce the
inal output of the network. Existing RNN pruning methods focus
n abruptly pruning entire rows or columns of the RNN weight
atrices based on their magnitude (Lobacheva et al., 2020; Wen
t al., 2018; Yu et al., 2019). However, such approaches do not
ake into consideration the position of the weights in the rows
r columns of the weight matrices, which can carry important
nformation (e.g., the dynamics of the data sequence), for the RNN
erformance. Moreover, magnitude-based pruning entails the risk
f removing erroneously individual high magnitude weights that
ignificantly affect the RNN output. Finally, all existing pruning
ethods remove weights in a single step no matter the pruning

atio, although an aggressive pruning can severely deteriorate the
erformance of RNNs beyond recovery.
Deviating from previous work that filter weights based on

heir magnitudes (Lobacheva et al., 2020; Wen et al., 2018, 2020;
u et al., 2019), the proposed method considers the rows and
olumns of the RNN weight matrices as time-evolving signals. In
his way, the proposed method takes into consideration not only
he magnitude but also the position and the sequencing of the
eights in the weight matrices, leading to a more informative
election of weights to prune and a more robust compressed
epresentation of the weight matrices. Moreover, a novel RNN
tructured pruning method is proposed that iteratively prunes
nd fine-tunes RNN models with increasing pruning ratios. The
se of an iterative pruning scheme is based on the belief that
n aggressive pruning can severely degrade the performance of a
etwork as the remaining weights cannot accurately adapt their
eights to compensate for the loss of the pruned weights. On
he other hand, pruning weights gradually while fine-tuning the
runed model can assist the model to retain or even improve its
erformance with respect to the original model. Finally, during
he fine-tuning of the pruned model, a discrimination-aware vari-
tion of the traditional L2 regularization is proposed, aiming to
hrink network weights based on their contribution to the RNN
utput. The aim is to avoid the uniform weight shrinking achieved
y the traditional L2 regularization, allowing the pruned model to
etter adapt its remaining weights to compensate for the pruned
nes. More specifically, the main contributions of this work are
ummarized as follows:

• A novel pruning method is proposed considering the rows
and columns of the RNN weight matrices as time-evolving
signals modelled by linear dynamical systems. The aim is to
cluster signals, i.e., weight vectors, and prune the ones with
similar temporal dynamics, which have limited effect on the
performance of the model.

• Contrary to the traditional L2 regularization that shrinks
uniformly all weights, this work proposes a discrimination-
aware variation of the L2 regularization, whose purpose is
to shrink redundant weights more strongly than significant
ones during fine-tuning. This is achieved by comparing the
RNN output at different time steps and introducing the
difference as a weight to the L2 regularization, in order to
reduce the magnitude of weights with low discriminative
ability.
476
• A novel iterative fine-tuning scheme is proposed that allows
a pruned model to achieve similar or even improved perfor-
mance with respect to the original one by better adapting its
weights and compensate for the loss of the pruned weights.
Instead of aggressively pruning all weights at once, the
proposed scheme iteratively prunes a model with increasing
pruning ratio and then fine-tunes the current pruned model
using the guidance of the model of the previous iteration.

• The proposed method is evaluated on a language modelling
and a question answering datasets using three different
recurrent models achieving state-of-the-art performance in
all cases.

The remainder of the paper is organized as follows. Rele-
vant previous work is discussed in Section Section 2, while the
proposed method is presented in Section Section 3. Thorough
experimental analysis and extensive comparative evaluation are
provided in Section Section 4. Finally, conclusions are drawn in
Section Section 5.

2. Related work

In the literature, network compression and acceleration tech-
niques can be grouped into six main categories (Cheng et al.,
2018; Gupta & Agrawal, 2020): (a) pruning methods, which aim
at removing redundant network parameters to reduce computa-
tional complexity and storage requirements (Chatzikonstantinou
et al., 2020; Ding et al., 2019; Wen et al., 2018, 2020); (b)
quantization methods that aim to quantize network parameters
(i.e, reduce the number of bits needed to store weights) (Wang
et al., 2018; Xu et al., 2018; Zhang et al., 2018); (c) knowledge-
distillation or teacher–student methods that are based on the
notion of training a shallow student network to mimic a larger
pretrained teacher network (Anil et al., 2018; Bhardwaj et al.,
2019; Zagoruyko & Komodakis, 2016); (d) parameter sharing
methods that reduce the model size by sharing the same weights
between different weight blocks (Li et al., 2016; Ling et al., 2015;
Ullrich et al., 2017); (e) low-rank approximation methods that
make use of decomposition techniques to split the weight matri-
ces into smaller ones in order to reduce the computational com-
plexity of the network (Gusak et al., 2019; Tjandra et al., 2017; Ye
et al., 2018); (f) compact network design strategies that construct
low-complexity network architectures at the expense of a small
classification performance reduction (e.g., replacement of fully
connected layers with global average pooling operators Sandler
et al., 2018, use of depthwise separable convolutions Lin et al.,
2013, etc.).

Pruning the network parameters is one of the most popular
compression approaches aiming at removing network parameters
based on the assumption that many of them are often redundant
and thereby they do not significantly affect the output of the
network. Pruning methods can be further classified as structured
or unstructured depending on the scheme that is followed during
parameter pruning.

2.1. Unstructured pruning methods

Unstructured pruning methods prune individual network pa-
rameters without relying on the structure of weight matrices
(i.e., channels, rank, neurons, etc.). As a result, unstructured meth-
ods achieve a high pruning ratio, but the pruned weight matrices
are irregularly sparse leading to inefficient computations and
diminishing the benefits in run-time memory and speed (Gale
et al., 2020). To overcome this, special software implementa-
tions have been developed to efficiently perform sparse matrix
computations (Kanellopoulos et al., 2019; Lagunas, 2020).

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

u
w
i
e
i
t
f
H
t
f
d
(
i
u
m
e
n
o
(
s
a
s

2

r
m
r
i
h
I
D
d
m
m
t
i
o
s
t
b
i
f
(
c
a

g
i
l
a
L
t
(
m
b
L
w
c
o
m
t
C
i

Early research works were focused on the development of
nstructured pruning methods. Han et al. (2015) trained a net-
ork using the L2 regularization to learn which connections are

mportant and used this information to prune network param-
ters with magnitude lower than a threshold. Then fine-tuning
s applied so as the remaining connections can recompense for
he removed ones. In Han et al. (2017), a three-step compression
ramework was proposed, employing pruning, quantization and
uffman encoding. Weights are pruned based on their magni-
ude. Then, the remaining weights are uniformly quantized and,
inally, Huffman encoding is applied to benefit from the biased
istribution of the remaining weights. Furthermore, Narang et al.
2017) introduced a binary mask for each weight in the network,
nitially set to one. The mask was updated after each iteration
sing different hyperparameters for each layer. Subsequently, this
ask was used to prune redundant network weights. Finally, the
ffect of weight initialization in magnitude-based pruned LSTM
etworks was studied in Yu et al. (2020), concerning the domains
f natural language processing (NLP) and reinforcement learning
RL). The authors proposed the ‘‘winning ticket’’ initialization and
howed that sparsified subnetworks initialized as winning tickets
chieve a better performance compared to randomly initialized
ubnetworks.

.2. Structured pruning methods

Structured pruning methods prune groups of network pa-
ameters after taking into consideration the structure of weight
atrices. Structured pruning methods achieve a lower pruning

atio, which has a direct effect on the computational complex-
ty and memory footprint of the model. Filter-pruning methods
ave been widely employed to structurally prune CNN filters.
n particular, Ding et al. (2019) proposed a Stochastic Gradient
escent (SGD) optimization method that creates identical filters
uring training. All but one identical filters are pruned with
inimum accuracy loss. On the other hand, You et al. (2019)
ultiplied the output of each filter with a trainable parameter,

aking advantage of the Taylor expansion to estimate the change
n the loss function. The less important filters were pruned based
n the modification of the loss function. Furthermore, Chatzikon-
tantinou et al. (2020) proposed a magnitude based approach
hat prunes the filters whose weight follow the Gaussian distri-
ution, considering their contribution to the filter output to be
nsignificant. Moreover, auxiliary MSE losses were used during
ine-tuning to facilitate the convergence of the network. In Li et al.
2020) several subnetworks were extracted based on pre-defined
onstraints. Then, a scheme of adaptive batch normalization was
pplied to choose the best candidate in terms of accuracy.
On the other hand, vector-level pruning methods have lately

ained traction especially for recurrent neural network prun-
ng. Mao et al. (2017) studied the effect of different granularity
evels (i.e., fine-grained, kernel-level, vector-level and filter-level)
t the network’s performance. Wen et al. (2018) used the group
asso regularization to encourage sparsity and pruned the vec-
ors with values lower than a threshold. Furthermore, Yu et al.
2019) handled the imbalance of the information carried by the
emory cell compared to the one carried by the hidden states
y zeroing out the output gates of the hidden states using the
1 norm. In Lobacheva et al. (2020), the rows of the network
eight matrices that fall below a threshold were marked as
onstant and thus were pruned. This method was also applied
n top of the method proposed in Wen et al. (2018). Further-
ore, Wen et al. (2020) introduced two binary ‘‘gate’’ variables

hat control the sparsity of each dimension of each weight matrix.
ontrary to Wen et al. (2018), L0 regularization was used to
nduce sparsity. Yuan et al. (2021) built a discrete space to explore
477
Fig. 1. [Best viewed in colour] Flowchart of the proposed RNN pruning
methodology.

different architectures of various complexities ending up to a final
computationally efficient architecture that was chosen based on
accuracy and sparsity objectives. Finally, Fedorov et al. (2020) em-
ployed structured pruning and quantization to generate speech
enhancement recurrent models that meet specific requirements
to run on microcontroller units. Vectors of weights were pruned
if their magnitude was smaller than a learnable threshold. More-
over, a binary neuron was introduced that controls the update of
the cell and the hidden state of LSTMs.

The method proposed in this paper can be classified as a struc-
tured vector-level pruning method. Unlike previous works that
mainly rely on magnitude-based pruning, the proposed method
treats each vector of the weight matrices (i.e., row or column) as
a time-evolving signal with each weight in the vector playing a
specific and important role for the computation of the temporal
dynamics of the signal.

3. Proposed methodology

The basic steps of the proposed RNN pruning methodology
are illustrated in Fig. 1, where it can be seen that the main
contributions of this work are located in the pruning and fine-
tuning phases, working complementary to improve the efficiency
of the proposed method. More specifically, the pruning phase
is responsible for the modelling, clustering and pruning of RNN
weight vectors, while the fine-tuning phase is responsible for
re-training the pruned model to fine-tune its weights and im-
prove its performance. Finally, the proposed iterative scheme is a
repetition of the pruning and fine-tuning phases with increasing
pruning ratios until a satisfactory pruning ratio is achieved.

3.1. RNN weight matrices as collections of time-evolving signals

The pruning phase of the proposed methodology deals with
the identification of the network parameters that do not con-

tribute significantly to the output of the network. To achieve this,

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488
Fig. 2. [Best viewed in colour] A diagram of the operations performed inside an LSTM. The LSTM receives the input xt at time t and the cell and hidden states ct−1
and ht−1 at time t − 1 and outputs the cell and hidden states ct and ht , respectively, at time t . The forget, input and output gates, as well as the input update step
are represented as ft , it , ot and ut , respectively.
this work considers the rows and columns of the weight matri-
ces of a recurrent neural network as discrete samples of time-
evolving signals. Identifying and discarding signals with similar
dynamics can significantly reduce the size and memory footprint
of a recurrent neural network without affecting its performance.

Although the proposed methodology can be easily adopted
to any type of RNNs, such as Gated Recurrent Units (GRUs)
and Recurrent Highway Networks (RHNs), the analysis below is
mainly concentrated on Long Short-Term Memory (LSTM) units,
which is probably the most widely employed RNNs to date. The
architecture of an LSTM, along with the operations performed
inside the network, are shown in Fig. 2. Moreover, the internal
input, forget, output and update weight matrices of the LSTM are
shown in Eq. (1), along with their correlations with the input and
hidden state vectors of the LSTM.

it = σ (xtWxi + ht−1Whi + bi)
ft = σ (xtWxf + ht−1Whf + bf)
ot = σ (xtWxo + ht−1Who + bo)

ut = tanh(xtWxu + ht−1Whu + bu)

(1)

An LSTM unit consists of three different gates, the input gate
(it), the forget gate (ft) and the output gate (ot) and the cell update
(ut) (Eq. (1)). The forget gate decides which part of the cell state
is important and which can be ignored. The input gate decides
which values of the cell state will be updated and the cell update
creates the vector which will be added to the cell state. Finally,
the output gate defines the parts of the cell state that will be part
of the next hidden state.

From Eq. (1), it can be observed that the sizes of the weight
matrices are correlated with each other in order for the LSTM
equations to hold. More specifically, removing a single row from
a weight matrix of the input vector Wxk, where k ∈ {i, f , o, u}
requires the reduction of the rows of all weight matrices of the
input vector by one. The same holds for the weight matrices of
the hidden state vector Whk, where k ∈ {i, f , o, u}. On the other
hand, removing a single column from a weight matrix of the input
or hidden state vector should be followed by the reduction of the
columns of the corresponding weight matrix of the hidden state
or input vector by one, respectively. In other words, if a column
from the weight matrix of the input vector Wxf is removed, then
a column from the weight matrix of the hidden state vector
Whf needs to be discarded as well. These correlations among the
weights of a weight matrix and among the weight matrices of the

input and hidden state vectors are visualized in Fig. 3.

478
3.2. Network pruning

Developing an optimal weight pruning technique is crucial as
the network size reduction should not be accompanied by a large
performance degradation. To this end, the proposed network
pruning method considers the modelling of rows and columns of
RNN weight matrices as time-evolving signals. The aim is to dis-
card similar sequences of weights, i.e., columns or rows, as they
do not offer any novel knowledge to the RNN network. In other
words, these sequences of weights do not affect significantly the
performance of the network. To model the sequences of weights,
a linear dynamical system (LDS) (Doretto et al., 2003; Ravichan-
dran et al., 2012), which can be considered as a first order ARMA
process with white zero mean independent and identically dis-
tributed Gaussian input, is employed. LDSs have been successfully
employed in several video classification applications that require
the modelling of time series (Dimitropoulos et al., 2014, 2016a,
2016b), but this is the first time they are leveraged in RNNs for
the task of modelling the temporal dynamics of the sequences of
weight parameters that comprise the RNN weight matrices.

The number of weight matrices can vary based on the type of
RNNs, with LSTM units consisting of 8 matrices, while RHN and
GRU units consisting of 6 matrices. To model the weight matrices
as a collection of time-evolving signals, one can either consider
each matrix individually (Fig. 3(a)) or stack them together in 3D
blocks. The motivation behind the stacking of matrices in blocks
lies in the relationship among the weight matrices, as described
in the previous section. In the case of LSTM units, one can either
consider two blocks of sizes N × H × 4 and H × H × 4 (Fig. 3(b))
by stacking the weight matrices of the input and hidden state
vectors, respectively, or consider a single block of size H ×H × 8
(Fig. 3(c)) by stacking all weight matrices together given that the
size of the input vector N equals the number of LSTM hidden units
H . In this work, stacking all matrices together is proposed due to
the inherent interactions among the weight matrices. However,
all weight matrix stacking options are experimentally evaluated
in Section 4.3.1.

From the previous analysis and based on the selected weight
matrix stacking, the block of the LSTM weight matrices can be
described as follows:

W ∈ RN×H×D,D ∈ {1, 4, 8} (2)

After having defined the structure of matrix W , the goal is
to reduce the number of weight parameters and increase the
training and inference speed of LSTMs, as shown in Fig. 4. More
specifically, initially each row Wri ∈ RH×D of the block W (plane

if D > 1) with i ∈ [0,N] is treated as a signal with a temporal

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

d
w
s
R
a
t
o
e
a

a

Fig. 3. [Best viewed in colour] Correlations among the shapes of the LSTM weight matrices. The removal of rows or columns from a single weight matrix should be
followed by the removal of rows or columns from other weight matrices as well. The rows and columns in case of single matrices are transformed to planes when
the matrices are stacked together.
Fig. 4. [Best viewed in colour] The proposed technique for the pruning of RNN weight matrices from N × H to Kr × Kc .
imension of H and feature space D. This means that each column
rc ∈ RD×1 of Wri is considered as a temporal instance of the
ignal that evolve in time. In a similar fashion, each column Wcj ∈
N×D of the block W with j ∈ [0,H] is treated as a signal with
temporal dimension of N and feature space D. From now on,

he indices i and j from the row Wri and column Wcj of the block
f weight matrices W are dropped for a clearer presentation. For
ach row or column of the blockW , an ARMAmodel is formulated
nd modelled with a LDS using the equations below:

z(t + 1) = Az(t) + Bv(t) (3)

wrc = w̄rc + Cz(t) + s(t) (4)

w̄rc =

{
1
H ΣH

k=1Wr (k), if row of W
1
N ΣN

k=1Wc(k), if column of W
(5)

In Eqs. (3)–(5), z(t) ∈ RD×1 refers to the hidden state of the LDS
t time t , while the quantities s(t) and Bv(t) are the measurement

and process noise, respectively and they are considered to be
equal to zero in this case. The quantities used to describe the LDS
are the matrix A ∈ RD×D that models the dynamics of the hidden
state of the LDS and the matrix C ∈ RD×D that maps the hidden
state to the output of the system.

In this way, every row or column of the block of weight matri-
ces W can be described by a pair of matrices M = (A, C), which is
a descriptor that incorporates information on the dynamics and
the values of the signal incorporated in the row or column of W ,
respectively. To estimate the parameters of the LDS descriptor
479
(i.e., pair of matrices M) a principal component based approach
was proposed by Doretto et al. (2003). Based on this approach, a
matrix Y is formed as shown below:

Y =

{
[Wr (1) − w̄rc ,Wr (2) − w̄rc , . . . ,Wr (H) − w̄rc], if row of W
[Wc (1) − w̄rc ,Wc (2) − w̄rc , . . . ,Wc (N) − w̄rc], if column of W

(6)

The average quantity w̄rc is defined as in Eq. (4). Then, a
singular value decomposition of the matrix Y is performed as
Y = USV T . The matrix C is easily computed as C = U , while, given
that Z = [z(1), z(2), . . . , z(M)] = SV T and M = H or M = N for
a row or column of the block of weight matrices W , respectively,
the matrix A is computed using least squares as:

A =

{
[z(2), z(3), . . . , z(H)][z(1), z(2), . . . , z(H − 1)]+, if row of W
[z(2), z(3), . . . , z(N)][z(1), z(2), . . . , z(N − 1)]+, if column of W

(7)

The symbol + in Eq. (7) is used to define the pseudoinverse
of the matrix that is applied to. After the modelling of the rows
and columns of the block of weight matrices W using time-
evolving signals, a way to identify signals with similar dynamics
is required. To this end, a k-medoid algorithm is employed to
cluster signals based on their dynamics and identify the most
representative signals, which are the medoids of the clusters. In
this way, the aim is to discard all signals of a cluster, except
its medoid that it is assumed to hold enough information to

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

a
t

c
m
r
s

p

w

Fig. 5. Outline of the proposed network fine-tuning method with all losses, including the proposed discrimination-aware L2 regularization, visualized. The blue
rrows depict the forward propagation, whereas the red arrows depict the backward propagation computations. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)
o
d
R
i
r

haracterize the entire cluster. The purpose of retaining just the
edoids of the k-medoid clustering procedure is to significantly

educe the size and memory footprint of an RNN network without
acrificing accuracy.
To achieve this, the rows are fed to a k-medoid algorithm with

redefined Kr classes. In a similar fashion, the columns are fed
to another k-medoid algorithm with predefined Kc classes. The
number of classes is determined by the percentage of network
pruning that needs to be achieved, as the rows and columns of
the weights matrices are replaced by the Kr and Kc medoids of the
clusters, respectively. This means that the weight matrices of the
input and hidden state vectors are pruned to the sizes of Kr × Kc ,
hile it holds that Kr = Kc in the case of the weight matrices that

refer to the hidden state vector. To perform k-medoid clustering,
a similarity metric to compare LDS descriptors and measure their
distances is required. However, the LDS descriptors do not lie in
the Euclidean space as each descriptor M is defined by a pair of
matrices. To overcome this problem, one family of distances that
is usually employed in the literature is based on subspace angles.
Given two LDS descriptors, M1 = (A1, C1) and M2 = (A2, C2), the
subspace angles between them are computed by first solving for
P the Lyapunov equation ATPA − P = −CTC , where

P =

[
P11 P12
P21 P22

]
∈ R2D×2D (8)

A =

[
A1 0
0 A2

]
∈ R2D×2D (9)

C =
[
C1 C2

]
∈ RD×2D (10)

After solving the above Lyapunov equation, the distance be-
tween the two LDS descriptors is defined using the Martin’s
distance dM , as shown below:

dM (M1,M2)2 = −ln

(
D∏

i=1

cos2θi

)
,

where cos2θi = ith eigenvalue
(
P−1
11 P12P−1

22 P21
) (11)

Other similarity metrics have also been employed in the litera-
ture, such as the Geodesic distance (Chikuse, 2012) and the Grass-
mannian distance (Dimitropoulos et al., 2016b). These distances
are based on the projection of the LDS descriptors to the Grass-
mann manifold. Experimental results with different distances are
presented and discussed in Section 4.3.2.
480
3.3. Discrimination-aware L2 regularization

After the network pruning phase, the pruned network requires
a fine-tuning phase in order to recover its initial performance.
Auxiliary losses are often employed at this step to improve the
convergence of the neural network (Chatzikonstantinou et al.,
2020), as shown in Fig. 5. One such loss is the L2 regulariza-
tion that prevents the network from overfitting by shrinking the
network parameters uniformly (Merity et al., 2018). This work
proposes a discrimination-aware variation of the L2 regularization
that is based on the assumption that if certain rows of the RNN
weight matrices produce similar output at different time steps,
these rows have low discriminative ability. Consequently, these
rows do not affect the network convergence and their impact
to the output should be reduced more aggressively than those
whose impact on the RNN output is significant. The traditional L2
regularization term is defined as:

LL2 = fL2 ·

Cin∑
i=1

·

Cout∑
j=1

(wij)2, (12)

where w are the filters of the output layer, fL2 is a factor that
defines the effect of the L2 regularization to the total loss and Cin
and Cout are the input and output dimensionalities of the output
layer, respectively. To examine which rows have low discrimina-
tive ability, a differential vector Odiff ∈ R1×H , where H is equal
to the RNN hidden size, is defined. Given an input sequence x =

[x1, x2, . . . , xt−1, xt] and the corresponding hidden state vectors
computed from a RNN, h = [h1, h2, . . . , ht−1, ht], each element
of the vector Odiff is equal to the absolute difference between the
consecutive RNN hidden states of the input sequence, averaged
over time, as shown below:

Odiff =

∑
rows

⎡⎢⎣ |h2 − h1|

|h3 − h2|

· · ·

|ht − ht−1|

⎤⎥⎦ /#rows (13)

In this way, each value of the vector Odiff contains the mean
utput difference of a single hidden state. A small mean output
ifference indicates a low discriminative ability of the row of the
NN weight matrices responsible for computing the correspond-
ng hidden state. During backpropagation, the gradients of the LL2
egularization term are multiplied by 1 ⊘ O , where ⊘ denotes
diff

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

w

w

w
i

3

p
t
n
p
s
i
f
t
s

p
a
e
i
b
w
m
i
u
m
t
p
f
p
w
f
u
u

the elementwise division, as shown below:

(
∂LL2
∂Wx∗

)′ = 1 ⊘ Odiff ⊗

N∑
i=1

∂LL2
∂Wx∗

[:, i], (14)

(
∂LL2
∂Wh∗

)′ = 1 ⊘ Odiff ⊗

H∑
i=1

∂LL2
∂Wh∗

[:, i], (15)

(
∂LL2
∂Wb∗

)′ = 1 ⊘ Odiff ⊗
∂LL2
∂Wb∗

, (16)

here Wx∗ are the input matrices, Wh∗ are the hidden matrices,
Wb∗ are the bias matrices, ∗ can be any of {f , i, u, o}, N is the
input size, H is the hidden size of the RNN and ⊗ denotes
the elementwise multiplication. With this operation, the rows
of the RNN weight matrices producing hidden states with small
mean output difference in the vector Odiff and thus considered
insignificant for the RNN output, generate large gradients. Due
to the effect of the L2 regularization, large gradients lead the
corresponding weights of the RNN weight matrices to shrink,
zeroing out their effect on the output of the RNN. Experimental
results presented in Section Section 4.3.5 demonstrate that the
proposed discrimination-aware variation of the L2 regularization
outperforms the original one.

Moreover, a mean squared error (MSE) term is inserted after
the output layer. The MSE loss can be defined as:

LMSE =
1

CinCout
· (Sp − Sb)2, (17)

here Sp denotes the output of the pruned network and Sb is
the output of the baseline network. After considering all losses
(shown in Fig. 5), the total loss becomes:

Lf = Ls + fMSE ∗ LMSE + LL2, (18)

here Ls is the softmax loss and fMSE is a factor that weights the
mpact of the MSE loss to the total loss.

.4. Iterative network fine-tuning

In this section, a novel iterative fine-tuning approach is pro-
osed to improve the convergence of the pruned network and
hus its performance on a given task. As the performance of a
etwork usually drops after the pruning, a fine-tuning phase is
roposed in the literature to guide the pruned network to recover
ome of its lost accuracy or even improve the accuracy of the
nitial ‘‘unpruned’’ network that is called baseline. However, en-
orcing a large pruning ratio on a network may lead the network
o never fully recover its initial performance and thus achieve
ub-optimal classification results.
Leveraging on this, an iterative fine-tuning approach is pro-

osed that aims to make the transition between a baseline and
highly pruned network smoother, as shown in Fig. 6. To this
nd, the proposed network pruning technique of Section 3.2
s employed to create n pruned models, all starting from the
aseline model. Pruned model m1 has the lowest pruning ratio,
hile model mn has the highest pruning ratio. Then, the baseline
odel is used to fine-tune model m1, the fine-tuned model m1

s used to fine-tune model m2 and the same procedure continues
ntil the fine-tuned model mn−1 is employed to fine-tune model
n. In this way, the proposed approach aims to steadily decrease
he number of weights of the baseline model, while allowing the
runed model to progressively adapt its weights and compensate
or the loss of the pruned weights. This approach allows the
runed model to achieve similar or even better performance
ith respect to the baseline model. As shown in Section 4, the

inal pruned network achieves a better classification performance
sing the proposed iterative fine-tuning procedure rather than
sing a single fine-tuning step.
481
4. Experimental evaluation

This section initially presents the datasets used for the eval-
uation of the proposed RNN pruning method. Then, an abla-
tion study of the impact of different parameters on the perfor-
mance of the proposed method is presented. Finally, the proposed
method is compared against other state-of-the-art RNN pruning
methodologies.

4.1. Datasets and metrics

Two well-known publicly available datasets on natural lan-
guage processing are employed for the experimental evaluation
of the proposed pruning method. These datasets are selected due
to being large in size and widely employed in the literature for
RNN pruning, rendering them crucial for the training and the
comparative evaluation of the proposed method.

Penn Treebank (PTB): The PTB dataset (Taylor et al., 2003)
consists of a vocabulary of 10k words, without capital letters,
numbers, and punctuations extracted from 2,499 stories in a
three-year Wall Street Journal collection. The dataset exists in
both a word-level and a character-level form and in this work, the
word-level form is utilized. The dataset consists of 929k training,
73k validation and 82k test words.

SQuAD: The Stanford Question Answering Dataset (SQuAD) 1.1
dataset (Rajpurkar et al., 2016) consists of over 100k questions–
answers pairs that were asked by coworkers on a set of 500
Wikipedia articles. The dataset tests the ability of a system to not
only answer reading comprehension questions, but also abstain
when presented with a question that cannot be answered. The
dataset consists of 87.6k training and 10.57k validation examples.

For the evaluation of the performance of the proposed method,
the metrics of perplexity, pruning ratio and mult–add reduction
are mainly employed. Perplexity measures the prediction error
and it is defined as the exponential of the average loss function,
i.e., eloss, for all samples of the test set. A smaller perplexity
indicates a better model and it is widely employed as an evalua-
tion metric for language models. On the other hand, the pruning
ratio is equal to the total number of network parameters pruned
from the baseline model divided by the total number of net-
work parameters of the baseline model. The mult–add reduction
calculates the reduction in the number of arithmetic operations
performed inside the model and is computed by dividing the
total number of the multiplies and additions of the baseline
model with the total number of the multiplies and additions
of the pruned model. Finally, other important metrics for the
comparison between pruned and baseline models are the model
parameters, the model size that is the size of the model when
saved in a hard disk, the memory size that refers to the size
of run-time memory the model uses during inference and the
inference time that refers to the time needed for the model to
infer results for the entire test set. Regarding the comparison with
other SoTA methods, the metrics chosen for the evaluation of the
performance of the proposed method are the perplexity for the
PTB dataset and the F1 and EM metrics for the SQuAD dataset,
following the practice of previous literature works in order to
ensure a fair comparison with them.

4.2. Implementation details

To train, validate and test the proposed method, the following
experimental protocols were employed. The PTB dataset provides
predefined data splits, while the SQuAD dataset has no test set.
To this end, 10% of the SQuAD training set was kept aside for
validation and the initial validation set was used as test set,
a protocol commonly used by other pruning methods in the

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488
Fig. 6. [Best viewed in colour] Proposed iterative approach for the fine-tuning of an increasingly smaller model in each iteration based on the result of the previous
iteration.
literature. The best model for each dataset is selected based on
the metric of perplexity achieved on the test set.

Regarding the PTB dataset, the big and small PTB benchmark
models are selected for pruning. Both models are composed of a
word embedding layer, 2 LSTM layers and an output linear layer
with a dimension of 10000 that is equal to the vocabulary size
of the PTB dataset. However, the big PTB model has embedding
and hidden sizes of 1500, while the small PTB model has em-
bedding and hidden sizes of 200. Furthermore, both PTB models
are evaluated with and without pruning their embedding layers.
Finally, a RHN model that was initially proposed by Zilly et al.
(2017) and implemented by Cruz (2019) with a width of 830
and a depth of 10 is selected for pruning and evaluation on the
PTB dataset, while a variation of the Bi-Directional Attention Flow
(BiDAF) model (Kim, 2018), initially proposed by Seo et al. (2017),
is used for the evaluation in the SQuAD dataset. In this way, the
ability of the proposed method to optimally prune any type of
RNNs (i.e., LSTM, RHN and BLSTM) is stretched out.

The PTB and RHN models are trained with an initial learning
rate of 20, divided by 4 each time the loss is not reduced, without
using any optimizer algorithm. Gradient clipping is applied in
order to avoid exploding gradients with threshold equal to 0.25.
The big PTB and the RHN models are trained for 40 epochs, while
the small PTB model is trained for 20 epochs. A sequence length
of 35 and a batch size of 20 are used for all PTB and RHN models.
The dropout value varies based on the size of the model and in
particular, the baseline big PTB model is trained with a dropout
of 0.65, the pruned big PTB model without its embedding layer
pruned uses a dropout of 0.4, whereas the pruned big PTB model
with its embedding layer pruned is trained with a dropout of 0.35.
On the other hand, the small PTB model does not use dropout
during training, while the RHN model is trained with a dropout
of 0.3 for the hidden units and 0.65 for the output activations.
The BiDAF model is trained for 12 epochs with a learning rate of
482
0.5 and the adadelta optimizer, a batch size of 20 and a dropout
for the BLSTMs equal to 0.2. An exponential moving average
algorithm is employed to smooth the weight values. Furthermore,
the parameters of every model are initialized with values drawn
from the uniform distribution. The values vary from −0.1 to 0.1
for the PTB models, from −0.04 to 0.04 for the RHN model and
from −0.001 to 0.001 for the BiDAF model.

The proposed iterative fine-tuning approach is applied to all
PTB and RHN models. However, it is not applied to the BiDAF
model since its BLSTMs are not aggressively pruned. Six pruned
models are created from the baseline big PTB model with hidden
sizes of 1000, 700, 500, 400, 340 and 280, respectively. Two
pruned models are created from the baseline small PTB model
with hidden sizes of 130 and 92. Finally, three pruned models
are created for the RHN model with hidden sizes of 580, 450 and
370.

For the training and testing of the implemented deep learning
models, the Python 3.5 and PyTorch (Paszke et al., 2017) (version
1.4.0) environments are employed. For the computation and clus-
tering of LDSs, the Matlab platform (version 2017a) is employed.
The PC used for the experiments has an Intel Core i7-6700K with
4 GHz CPU, 32 GB RAM and a GeForce GTX 1070 GPU with 8 GB
VRAM and CUDA version 10.2.

4.3. Ablation study

The ablation study showcases the importance of the nov-
elties proposed in this work, as well as the effect of all im-
portant hyperparameters of the proposed RNN pruning method.
Each novelty affects different phases of the proposed method
(i.e., weight matrix modelling as temporal signals affects the
pruning phase, discrimination-aware L2 regularization affects the
fine-tuning phase, while the iterative scheme affects the entire
method) and thus their impact on the proposed RNN pruning

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

w
t
t
m
a
H
m
c
a
(
b
t

n
o
t
t

s
a
e
t
t
o
m
o
o
m
m
t
w
t

4

c
s
m
w
n
t
G
r
i
M
s

e
p
s
M
d
t
i
d
a

Table 1
Impact of pruning strategies on the perplexities of the big PTB and the BiDAF
models.
Pruning strategy Perplexity

Big PTB model (Baseline
perplexity: 77.63)

BiDAF model (Baseline
perplexity: 35.61)

1 84.11 31.23
4 83.71 31.17
8 83.57 n/a

method is complementary. This study is performed on the test set
of the PTB dataset using the big PTB model with the LSTM pruned
from the size of 1500 to the size of 340 and without pruning its
embedding layer and on the validation set of the SQuAD dataset
using the BiDAF model. Every experiment is conducted 5 times
and the mean perplexity is computed and reported.

4.3.1. Impact of pruning strategies
As it was previously discussed, for the RNN pruning, the

eight matrices can be considered either individually or stacked
ogether in 3d blocks. Due to the internal interactions among
he weight matrices of an RNN, the belief is that stacking weight
atrices in a single block carries the most descriptive information
s it allows the modelling of their in-between dependencies.
owever, this work evaluates all logical combinations of weight
atrix stacking to find the most beneficial one. Therefore, in the
ase of LSTMs of the PTB model, 3 different pruning strategies
re tested: (i) Each weight matrix is considered individually
Fig. 3(a)). (ii) The weight matrices are stacked together in two
locks of 4 (Fig. 3(b)). (iii) The weight matrices are stacked
ogether in one block of 8 (Fig. 3(c)).

In the case of BLSTMs of the BiDAF model, the third strategy is
ot applicable due to the fact that the input and the hidden sizes
f the BLSTMs differ, i.e., the input and hidden state matrices of
he BLSTMs are not equal in size and thus they cannot be stacked
ogether, as it has been discussed in Section 3.2.

Based on the experimental results presented in Table 1, the
tacking of the weight matrices in the fewer possible blocks
chieves the best results, whereas the individual modelling of
ach weight matrix achieves the worst. This experiment validates
he belief that there are correlations among the weight matrices
hat should be taken into consideration for the selection of an
ptimal pruning strategy. Considering each entry of a weight
atrix as a feature in a unified space formed by the same entries
f all weight matrices (i.e., feature space of 8 values in the case
f LSTMs), it is possible to achieve a more accurate and robust
odelling of the dynamic information present on the weight
atrices, while simultaneously respecting the correlations among

he features. For the remaining experiments of the ablation study,
e consider the optimal choices of a single block of 8 matrices for
he PTB model and two blocks of 4 matrices for the BiDAF model.

.3.2. Impact of LDS similarity metrics
The LDS descriptors used for the modelling of the rows and

olumns of the RNN weight matrices do not lie in the Euclidean
pace and thus specialized similarity metrics are required to
easure the distances among them. Three similarity metrics are
idely employed in the literature, namely Martin’s, Grassman-
ian and Procrustes distances (Lipman et al., 2011). The last
wo are based on the projection of the LDS descriptors to the
rassmann manifold. All three metrics are evaluated and the
esults are illustrated in Table 2. From the experimental results,
t can be observed that the best results are achieved using the
artin’s distance, while the use of the other two metrics leads to
lightly deteriorated results.
483
Table 2
Impact of LDS similarity metrics on the perplexities of the big PTB and the BiDAF
models.
LDS similarity metric Perplexity

Big PTB model (Baseline
perplexity: 77.63)

BiDAF model (Baseline
perplexity: 35.61)

Grassmannian 83.75 31.65
Procrustes 83.78 31.97
Martin’s 83.57 31.17

4.3.3. Impact of pruning ratios
Two important hyperparameters of the k-medoid algorithm

are the number of clusters used to divide the input data and
the number of iterations for the convergence of the k-medoid
algorithm. The k-medoid algorithm is executed with different
number of iterations, ranging from 50 to 400 with a step of 50.
The pruned big PTB and BiDAF models are then evaluated on the
PTB and the SQuAD dataset, respectively. The experiments are
inconclusive with no significant difference observed for different
number of iterations. Slightly better results are achieved when
the k-medoid algorithm is executed for 200 iterations and this
value is adopted for all experiments.

On the other hand, the number of clusters has a direct effect
on the performance of the pruned model as it significantly affects
the weight pruning ratio. More specifically, Table 3 illustrates the
impact of the number of clusters on the pruned model perplexity,
model size, memory size, inference time, floating point operations
(FLOPs) and iteration time that refers to the average time required
for a single iteration of the k-medoid LDS clustering.

From the experiments, it can be observed that the model
and memory size of the pruned model, as well as the itera-
tion time of the k-medoid clustering decrease linearly with the
decrease of the number of clusters whereas the inference time
of the pruned model demonstrates an exponentially decreasing
behaviour as the number of clusters decreases. On the other hand,
the perplexity of the pruned model increases as the number of
clusters decreases, showing that the model struggles to maintain
its performance when the number of pruned weights increases.
The selection of an appropriate number of clusters depends on the
pruning ratio that needs to be achieved and the memory, speedup
and performance specifications of each application.

In this work, the optimal number of clusters is determined by
the pruning ratio achieved by the literature works with which the
proposed method is compared. For the rest of the experiments
of the ablation study, the number of clusters is equal to 340 for
the PTB dataset. Regarding the SQuAD dataset, the same hidden
sizes for all three BLSTMs of the BiDAF model were used for
simplicity in all experiments of Table 3. In all other experiments
of the ablation study and the comparative evaluation, the hidden
sizes of the 3 BLSTM layers are chosen to be equal to 26, 39
and 24 respectively, as illustrated in Table 13 for fair comparison
with the state-of-the-art approaches (i.e., in order to keep similar
pruning ratio).

4.3.4. Impact of the MSE loss factor
This section evaluates the effect of the MSE loss factor fMSE

mployed during network fine-tuning to the perplexity of the
runed big PTB and BiDAF models. According to the results pre-
ented in Table 4, it can be concluded that the introduction of the
SE loss term significantly improves the model performance as it
ecreases perplexity. As the value of the MSE loss factor increases,
he performance of the model keeps improving. However, there
s a threshold over which the performance of the model starts
eteriorating. It is experimentally found that a value between 0.5
nd 1.25, depending on the model architecture, for the MSE loss

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

m
g
d
a

p
d
i
b
m
o
m

Table 3
Number of parameters, pruning ratio, perplexity, model size, memory size, inference time, FLOPs and iteration time for the big PTB and the BiDAF
models using different number of clusters.
No. of
clusters

Model
Parameters (M)

Pruning
ratio (%)

Perplex-
ity

Model
size (MB)

Memory
size (MB)

Inference
time (s)

FLOPs
(M)

Iteration
time (s)

Big PTB model (Baseline perplexity: 77.63)

360 22.33 66.18 83.42 89 190 0.86 44.63 119.88
340 21.84 66.92 83.57 87 185 0.77 43.65 112.84
320 21.36 67.65 84.24 86 182 0.66 42.70 106.63
300 20.89 68.36 84.35 84 179 0.63 41.76 103.83
280 20.44 69.04 84.76 82 174 0.6 40.84 97.26
260 19.99 69.73 85.45 80 170 0.58 39.94 90.85
240 19.55 70.39 86.43 78 167 0.54 39.06 84.73

BiDAF model (Baseline perplexity: 35.61)

80 1.59 26.5 29.07 52 2805 0.240 1.74 18.83
60 1.09 49.76 32.03 50 2632 0.220 1.17 17.16
40 0.65 69.76 35.65 48 2436 0.214 0.69 15.15
20 0.29 86.50 43.81 46 2242 0.209 0.30 13.19
Table 4
Impact of the MSE loss factor on the perplexity of the big PTB and the BiDAF
models.
MSE loss factor Perplexity

Big PTB model
(Baseline perplexity:
77.63)

BiDAF model
(Baseline perplexity:
35.61)

0 83.57 31.17
0.25 77.58 28.25
0.5 76.68 26.98
0.75 76.82 26.33
1 76.96 25.49
1.25 77.35 23.9
1.5 77.77 24.67

Table 5
Impact of regularization techniques and the proposed differential vector Odiff on
the perplexity of the big PTB and the BiDAF models.
Regularization Perplexity

Big PTB model
(Baseline
perplexity: 77.63)

BiDAF model
(Baseline
perplexity: 35.61)

No regularization 76.68 23.9
L1 regularization 76.06 23.15
Discrimination-aware L1
regularization

76.23 22.79

L2 regularization 76.24 22.64
Discrimination-aware
L2 regularization

75.7 22.34

factor fMSE produces optimal results as far as the perplexity of the
model is concerned.

4.3.5. Impact of regularization techniques
The purpose of regularization techniques is to make small

odifications to the learning algorithm, enabling the model to
eneralize better and improve its performance. In this work, two
ifferent regularization techniques are evaluated, namely the L1
nd the L2 regularization. Furthermore, the discrimination-aware

variations of the regularization terms, as defined in Section 3.3
with the introduction of the differential vector Odiff are evaluated.

According to Table 5, all tested regularization techniques im-
rove the model perplexity. Moreover, the introduction of the
ifferential vector Odiff , along with the L2 regularization further
mproves the results by decreasing the perplexity of the pruned
ig PTB model to the value of 75.7 and the perplexity of the BiDAD
odel to the value of 22.34. These results demonstrate that 9.96%
f the total improvement in perplexity of the pruned big PTB
odel and 17.67% of the total improvement in perplexity of the
484
Table 6
Impact of the regularization loss term factor on the perplexity of the big PTB
and the BiDAF models.
Regularization loss
factor

Perplexity

Big PTB model (Baseline
perplexity: 77.63)

BiDAF model (Baseline
perplexity: 35.61)

10−3 94.61 24.96
10−4 79.85 22.34
10−5 75.7 25.11
10−6 76.51 26.08
10−7 76.92 26.21

pruned BiDAF model is attributed to the proposed discrimination-
aware L2 regularization. Thus, this experiment validates the im-
portance of shrinking weights, whose effect to the output of a
network is considered negligible. In addition, experiments are
conducted, concerning the value of the factor fL2 that controls
the impact of the regularization loss term. Based on the results
of Table 6, the optimal value for the regularization loss term
factor fL2 is equal to 1e−5 and 1e−4 for the big PTB and the BiDAF
model, respectively. Higher or smaller values for the regulariza-
tion loss term factor significantly deteriorate the performance of
the pruned models.

4.3.6. Evaluation of the proposed iterative network fine-tuning ap-
proach

In this section, the proposed iterative fine-tuning approach is
evaluated on the big PTB model. Five pruned models are created,
all starting from the baseline model with hidden sizes of 1000,
700, 500, 400, and 340, respectively. Normally, the baseline model
of size 1500 guides directly or in a single step the fine-tuning of
the targeted pruned model, which in this case has a size of 340.
However, in the proposed iterative approach, the baseline model
is used to guide the model with the lowest pruning ratio and then
every model guides the smaller one until the target pruning ratio
is achieved.

As it is illustrated in Table 7, the proposed approach achieves
a smaller perplexity of almost 2 with respect to the single-step
fine-tuning approach. It is also worth noting that the pruned
model using the iterative fine-tuning approach achieves a smaller
perplexity even compared to the perplexity of the baseline model.
This experiment validates the claim of this work that the pruning
procedure should be iterative with larger and larger pruning
ratios until the target is reached. Enforcing a large pruning ratio
aggressively to a model can significantly deteriorate its perfor-
mance beyond any recovery. Finally, Table 8 performs a direct
comparison between the baseline and the pruned model in terms

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

i
2
a
e
c
(
t

r
p
O
a
o
t
i
d
a

Table 7
Evaluation of single-step vs iterative fine-tuning on the big PTB model.
Fine-tuning approach Steps Pruned model

perplexity

Single-step 1500 → 340 75.7
Iterative 1500 → 1000 → 700 → 500 → 400 → 340 73.73
Table 8
Comparison of baseline and pruned big PTB models in terms of perplexity, size, memory size, inference time and FLOPs.
Model Hidden size Perplexity Model

Parameters
(M)

Model size
(MB)

Memory
size (MB)

inference
time (s)

FLOPs (M)

Baseline 1500 77.63 66.03 264 539 6.97 132.00
Pruned 340 73.73 21.84 87 185 0.77 43.65
Table 9
Evaluation of methods on the big PTB model without pruning its embedding layer.
Method Baseline

perplexity
Pruned
perplexity

Difference Pruning
ratio (%)

Hidden size Mult–add
reduction

Wen et al. (2018) 78.57 78.65 +0.08 66.89 [373, 315] 7.48×
Lobacheva et al. (2020) 78.57 77.82 −0.75 68.94 [252, 394] –
Yu et al. (2019) 78.57 78.37 −0.20 – [63, 375] 8.63×
Yuan et al. (2021) 78.57 78.67 +0.10 68.3 [319, 285] 7.81×
Proposed (block size: 4) 77.63 75.86 −1.77 68.3 [319, 285] 8.7×
Proposed (block size: 8) 77.63 75.25 −2.38 69.04 [280, 280] 9.41×
Table 10
Evaluation of methods on the small PTB model without pruning its embedding layer.
Method Baseline

perplexity
Pruned
perplexity

Difference Pruning
ratio (%)

Hidden size Mult–add
reduction

Lobacheva et al. (2020) 114.41 105.64 −8.77 32.89 [64, 115] –
Proposed (block size: 4) 113.87 101.42 −12.45 28.84 [64, 115] 2.03×
Proposed (block size: 8) 113.87 102.51 −11.36 33.33 [92, 92] 2.82×
of perplexity, model size, memory size, inference time and FLOPs.
The pruned model can generalize better (smaller perplexity) and
run much faster due to its smaller size, storage size and run-
time memory size, as well as its fewer floating operations (FLOPs).
More specifically, the pruned model has three times less param-
eters, storage size, run-time memory size and FLOPs and nine
times smaller execution time, compared to the baseline model.
This conclusion verifies the ability of the proposed network prun-
ing method to select and remove weights that are not only
unnecessary but also frequently detrimental to the performance
and generalization ability of the model.

4.4. Comparison with state-of-the-art methods

The proposed method is comparatively evaluated against var-
ous state-of-the-art RNN pruning methods (Lobacheva et al.,
020; Wen et al., 2018, 2020; Yu et al., 2019; Yuan et al., 2021)
nd the results are presented below. The compared baseline mod-
ls are the same and any differences in their baseline perplexity
an be attributed to the different implementation framework
i.e., PyTorch vs Tensorflow) and the stochastic nature of the
raining process.

Initially, a comparison is made with methods that provide
esults in the PTB dataset, using the big PTB model without
runing its embedding layer. Two different models are evaluated:
ne model employing weight matrices stacked in one block of 8
nd hidden size of 280 to achieve comparable pruning ratio with
ther approaches and one model with two blocks of 4, employing
he same hidden size with the best approach. From Table 9,
t can be concluded that the best proposed model achieves a
ecreased perplexity by 2.38 compared to the baseline model,
lthough with a much smaller number of parameters. Moreover,
485
the proposed method achieves a larger decrease to the model per-
plexity with respect to other methods that achieve a perplexity
close to the baseline model. In addition, the proposed method
manages to prune a larger percentage of network parameters
than the other methods. Even by using block size of 4, that is
not optimal based on our ablation study, the model pruned by
the proposed method achieves a larger decrease to the model
perplexity compared to the other methods. Similar observations
can be made by comparing the proposed method with another
method that prunes the small PTB model, as shown in Table 10.
These experiments demonstrate the superiority of the proposed
method in identifying and pruning parameters without affecting
the overall performance of the PTB models.

Contrary to the majority of the literature methods that do
not prune the embedding layer, Wen et al. (2020) apply their
pruning method to the embedding layer too. For fair comparison,
a weight pruning method was also applied in this work by remov-
ing the weight parameters of embedding vectors starting from
those with the smallest magnitude. The comparison is shown
in Table 11 and reveals that the pruned model derived from
the proposed method achieves a lower perplexity with a slightly
larger pruning ratio than the pruned model of Wen et al. (2020).
Furthermore, the proposed method achieves a larger reduction
in the multiplications and the additions of the baseline model. A
second model pruned by the proposed method is evaluated using
the same hidden size and pruning ratio with Wen et al. (2020)
that achieves an improved performance in connection with the
compared method.

Moreover, the proposed method is evaluated on the PTB
dataset using the RHN model. The results, shown in Table 12,
demonstrate the ability of the proposed method to accurately
prune parameters from various types of recurrent neural net-
work. More specifically, the pruned model derived from the

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

a
r
t
p
T
f
o
a
s
e
l
r
T
o
c

p
m
o
O
s
a
i
s
s
r

Table 11
Evaluation of methods on the big PTB model with its embedding layer pruned.
Method Baseline

perplexity
Pruned
perplexity

Difference Pruning
ratio (%)

Hidden size Embedding
size

Mult–add
reduction

Wen et al. (2020) 78.57 78.08 −0.49 90.64 [296, 247] 251 13.96×
Proposed (block size: 4) 77.63 77.01 −0.62 90.64 [296, 247] 251 13.96×
Proposed (block size: 8) 77.63 76.00 −1.63 90.68 [255, 255] 255 14.21×
Table 12
Evaluation of methods that employ the RHN model on the PTB dataset.
Method Baseline

perplexity
Pruned
perplexity

Difference Pruning
ratio (%)

Width Mult–add
reduction

Wen et al. (2018) 65.4 67.7 +2.3 67.66 403 –
Wen et al. (2020) 65.4 65.1 −0.3 69.36 389 –
Proposed (width 389) 60.55 58.26 −2.29 69.36 389 2.87×
Proposed (width 370) 60.55 58.39 −2.16 75.13 370 3.07×
Table 13
Hidden sizes of the forward and backward modelling layers (ModFwd and ModBwd) and the forward and backward output layer
(OutFwd and OutBwd) of the BiDAF model.
Method ModFwd1 ModBwd1 ModFwd2 ModBwd2 OutFwd1 OutBwd1 Parameters (M)

Baseline 100 100 100 100 100 100 2.16
Wen et al. (2018) 20 33 40 38 31 16 0.41
Wen et al. (2020) 26 33 36 36 33 15 0.43
Proposed 26 26 39 39 24 24 0.40
Table 14
Evaluation of methods on the SQuAD dataset using the BiDAF model.
Method Baseline EM/F1 Pruned EM/F1 Difference Pruning ratio (%) Perplexity Bleu Rouge

Wen et al. (2018) 67.98/77.85 65.36/75.78 −2.62/−2.07 81.29 – – –
Wen et al. (2020) 67.98/77.85 65.67/75.69 −2.31/−2.16 80.36 – – –
Proposed 65.28/76.08 63.40/74.69 +1.88/+1.39 81.30 22.34 21.67 45.92
proposed method achieves the lowest perplexity and the largest
improvement in perplexity with respect to the baseline model,
while also achieving the largest pruning ratio, in comparison with
the other pruning methods. Even lower perplexity but with a
smaller pruning ratio achieves the pruned model with the same
width as the model of Wen et al. (2020).

Finally, the proposed method is applied to the BiDAF model
nd evaluated on the SQuAD dataset. This model has four bidi-
ectional LSTM layers, namely the contextual embedding layer,
wo modelling layers and the output layer. In compliance with the
revious methods, the contextual embedding layer is not pruned.
able 13 presents the hidden sizes of the baseline and pruned
orward and backward modelling and forward and backward
utput BLSTM layers and the total number of parameters of the
forementioned layers. The implementation used in this work is
lightly different from the one used by Wen et al. (2018) and Wen
t al. (2020) in that different word and character embedding
ayers are employed. Therefore, only the parameters and the pa-
ameter reduction ratio of the pruned layers are demonstrated in
ables 13 and 14 for fair comparison, along with the performance
f the models measured in F1-score and Exact Match (EM) that
omputes the percentage of the correctly recognized sentences.
Table 14 shows that the pruned model derived from the pro-

osed method achieves a better performance than the baseline
odel (increased F1-score and increased EM) with less than 19%
f the number of parameters that the initial baseline model has.
n the other hand, the pruned models computed from the other
tate-of-the-art methods demonstrate a larger drop in F1-score
nd EM (i.e., more than 2%) with respect to the correspond-
ng baseline models. As a result, the proposed method can be
uccessfully employed for the pruning of BLSTM layers as well,
ignificantly reducing the number of parameters without dete-
iorating the performance of the pruned model with respect to
486
the baseline model. The pruned model is also evaluated using
additional commonly employed metrics (i.e., perplexity, bleu and
rouge) in order to encourage new works on this field to evaluate
their models on them.

At this point, a few advantages and limitations of the proposed
method can be mentioned. The proposed method is appropriate
for either small or large datasets as the time and space complexity
of the method does not scale with the size of the dataset, but
only with the size of the RNN weight matrices (i.e., input, hidden
state and output sizes) and the predetermined number of clusters.
This also means that the higher the pruning ratio, the faster the
proposed network pruning method runs. On the other hand, the
proposed method is not end-to-end, meaning that the model is
initially trained and the RNN weight matrices are extracted using
PyTorch, then the matrices are modelled using LDSs and pruned
in Matlab and finally the pruned RNN matrices are loaded to the
pruned model, which is fine-tuned using PyTorch. In addition,
since the speed of the proposed network pruning procedure
depends on the size of the RNN weight matrices, it can end up
being computationally heavy for large matrices. Nevertheless, the
proposed pruning procedure does not affect the execution speed
of the pruned model at all.

5. Conclusion

This paper proposes a novel structured pruning method for the
compression of RNN networks. Differently from other approaches
that prune weights based on their magnitudes and without tak-
ing into consideration the position of the weights in the RNN
matrices, the proposed method treats the rows and columns of
the RNN matrices as time-evolving signals that can be modelled
using LDS descriptors. In this way, signals with similar temporal
dynamics can be pruned without affecting the performance of
the pruned model. During fine-tuning, a discrimination-aware

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

m
a
m
a
o

D

c
t

A

E
G

R

A

B

C

C

C

C

C

D

D

D

D

F

G

K

K
L

L

L

L

L

L

L

L

L

M

M

N

P

R

R

R

S

S

S

S

variation of the L2 regularization is introduced to shrink the
magnitude of weights that show limited contribution to the RNN
output. Finally, a novel iterative fine-tuning scheme is proposed,
in which bigger models guide increasingly smaller ones as a way
to bypass the problem of performance degradation when network
pruning is performed in a single step.

Directions for future work include the use of the proposed
ethod to prune other well-known deep learning architectures
nd models, such as CNNs and Transformer networks, the assess-
ent of performance gains of pruned models in real-life mobile
pplications and the pruning of models that process other types
f sequence data, such as video and audio.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgement

The work leading to these results received funding from the
uropean Commission’s H2020 Research Project PROTEIN under
rant Agreement No. 817732.

eferences

nil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G. E., & Hinton, G. E. (2018).
Large scale distributed neural network training through online distillation.
In International conference on learning representations.

hardwaj, S., Srinivasan, M., & Khapra, M. M. (2019). Efficient video classification
using fewer frames. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 354–363).

hatzikonstantinou, C., Papadopoulos, G. T., Dimitropoulos, K., & Daras, P. (2020).
Neural network compression using higher-order statistics and auxiliary
reconstruction losses. In 2020 IEEE/CVF conference on computer vision and
pattern recognition workshops (pp. 3077–3086).

hen, Z., Zhang, B., Stojanovic, V., Zhang, Y., & Zhang, Z. (2020). Event-based
fuzzy control for TS fuzzy networked systems with various data missing.
Neurocomputing, 417, 322–332.

heng, J., Wang, P.-s., Li, G., Hu, Q.-h., & Lu, H.-q. (2018). Recent advances in
efficient computation of deep convolutional neural networks. Frontiers of
Information Technology & Electronic Engineering, 19(1), 64–77.

hikuse, Y. (2012). Statistics on special manifolds (vol. 174). Springer Science &
Business Media.

ruz, L. (2019). PyTorch language modeling. GitHub, https://github.com/
jcblaisecruz02/PyTorch-Language-Modeling.

imitropoulos, K., Barmpoutis, P., & Grammalidis, N. (2014). Spatio-temporal
flame modeling and dynamic texture analysis for automatic video-based
fire detection. IEEE Transactions on Circuits and Systems for Video Technology,
25(2), 339–351.

imitropoulos, K., Barmpoutis, P., & Grammalidis, N. (2016). Higher order
linear dynamical systems for smoke detection in video surveillance appli-
cations. IEEE Transactions on Circuits and Systems for Video Technology, 27(5),
1143–1154.

imitropoulos, K., Barmpoutis, P., Kitsikidis, A., & Grammalidis, N. (2016).
Classification of multidimensional time-evolving data using histograms of
grassmannian points. IEEE Transactions on Circuits and Systems for Video
Technology, 28(4), 892–905.

Ding, X., Ding, G., Guo, Y., & Han, J. (2019). Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 4943–4953).

oretto, G., Chiuso, A., Wu, Y. N., & Soatto, S. (2003). Dynamic textures.
International Journal of Computer Vision, 51(2), 91–109.

edorov, I., Stamenovic, M., Jensen, C., Yang, L.-C., Mandell, A., Gan, Y., Mat-
tina, M., & Whatmough, P. N. (2020). TinyLSTMs: Efficient neural speech
enhancement for hearing aids. In Proc. interspeech 2020 (pp. 4054–4058).

ale, T., Zaharia, M., Young, C., & Elsen, E. (2020). Sparse GPU kernels for
deep learning. In 2020 SC20: International conference for high performance
computing, networking, storage and analysis (pp. 219–232). IEEE Computer

Society.

487
Gupta, M., & Agrawal, P. (2020). Compression of deep learning models for text:
A survey. arXiv preprint arXiv:2008.05221.

Gusak, J., Kholiavchenko, M., Ponomarev, E., Markeeva, L., Blagoveschensky, P.,
Cichocki, A., & Oseledets, I. (2019). Automated multi-stage compression
of neural networks. In Proceedings of the IEEE international conference on
computer vision workshops (pp. 0–0).

Han, S., Mao, H., & Dally, W. J. (2017). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. In
International conference on learning representations.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and
connections for efficient neural network. In Advances in neural information
processing systems (pp. 1135–1143).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

anellopoulos, K., Vijaykumar, N., Giannoula, C., Azizi, R., Koppula, S., Ghiasi, N.
M., Shahroodi, T., Luna, J. G., & Mutlu, O. (2019). Smash: Co-designing
software compression and hardware-accelerated indexing for efficient sparse
matrix operations. In Proceedings of the 52nd annual IEEE/ACM international
symposium on microarchitecture (pp. 600–614).

im, T. (2018). BiDAF-pytorch. GitHub, https://github.com/galsang/BiDAF-pytorch.
agunas, F. (2020). Fast block sparse matrices for pytorch. GitHub, https://github.

com/huggingface/pytorch_block_sparse.
eCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and

applications in vision. In Proceedings of 2010 IEEE international symposium on
circuits and systems (pp. 253–256).

i, X., Qin, T., Yang, J., & Liu, T.-Y. (2016). LightRNN: Memory and computation-
efficient recurrent neural networks. In Advances in neural information
processing systems (pp. 4385–4393).

i, B., Wu, B., Su, J., & Wang, G. (2020). Eagleeye: Fast sub-net evaluation for
efficient neural network pruning. In European conference on computer vision
(pp. 639–654). Springer.

in, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:
1312.4400.

ing, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., &
Luís, T. (2015). Finding function in form: Compositional character models for
open vocabulary word representation. In Proceedings of the 2015 conference
on empirical methods in natural language processing (pp. 1520–1530).

ipman, Y., Al-Aifari, R., & Daubechies, I. (2011). The continuous procrustes
distance between two surfaces. arXiv preprint arXiv:1106.4588.

iu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2019). Rethinking the value of
network pruning. In International conference on learning representations.

obacheva, E., Chirkova, N., Markovich, A., & Vetrov, D. P. (2020). Structured
sparsification of gated recurrent neural networks. In AAAI .

ao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., & Dally, W. J. (2017).
Exploring the granularity of sparsity in convolutional neural networks. In
2017 IEEE conference on computer vision and pattern recognition workshops
(pp. 1927–1934).

erity, S., Keskar, N. S., & Socher, R. (2018). Regularizing and optimizing LSTM
language models. In International conference on learning representations.

arang, S., Elsen, E., Diamos, G., & Sengupta, S. (2017). Exploring spar-
sity in recurrent neural networks. In International conference on learning
representations.

aszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in
PyTorch. In NIPS-W .

ajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250.

avichandran, A., Chaudhry, R., & Vidal, R. (2012). Categorizing dynamic textures
using a bag of dynamical systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(2), 342–353.

umelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533–536.

andler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 4510–4520).

eo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2017). Bidirectional attention
flow for machine comprehension. In International conference on learning
representations.

tojanovic, V., He, S., & Zhang, B. (2020). State and parameter joint estimation
of linear stochastic systems in presence of faults and non-Gaussian noises.
International Journal of Robust and Nonlinear Control, 30(16), 6683–6700.

undermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM neural networks for
language modeling. In Thirteenth annual conference of the international speech
communication association.

http://refhub.elsevier.com/S0893-6080(21)00264-1/sb4
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb4
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb4
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb4
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb4
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb5
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb5
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb5
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb5
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb5
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb6
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb6
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb6
https://github.com/jcblaisecruz02/PyTorch-Language-Modeling
https://github.com/jcblaisecruz02/PyTorch-Language-Modeling
https://github.com/jcblaisecruz02/PyTorch-Language-Modeling
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb8
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb9
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb10
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb12
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb12
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb12
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb14
http://arxiv.org/abs/2008.05221
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb18
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb18
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb18
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb18
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb18
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb19
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb19
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb19
https://github.com/galsang/BiDAF-pytorch
https://github.com/huggingface/pytorch_block_sparse
https://github.com/huggingface/pytorch_block_sparse
https://github.com/huggingface/pytorch_block_sparse
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb24
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb24
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb24
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb24
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb24
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb25
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb25
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb25
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb25
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb25
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1106.4588
http://arxiv.org/abs/1606.05250
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb36
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb36
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb36
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb36
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb36
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb37
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb37
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb37
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb40
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb40
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb40
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb40
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb40

C. Chatzikonstantinou, D. Konstantinidis, K. Dimitropoulos et al. Neural Networks 143 (2021) 475–488

T

T

U

W

W

W

W

X

Y

Y

Y

Y

Y

Z

Z

Z

Tao, H., Li, X., Paszke, W., Stojanovic, V., & Yang, H. (2021). Robust PD-
type iterative learning control for discrete systems with multiple time-
delays subjected to polytopic uncertainty and restricted frequency-domain.
Multidimensional Systems and Signal Processing, 32(2), 671–692.

aylor, A., Marcus, M., & Santorini, B. (2003). The penn treebank: An overview.
In Treebanks (pp. 5–22). Springer.

jandra, A., Sakti, S., & Nakamura, S. (2017). Compressing recurrent neural
network with tensor train. In 2017 international joint conference on neural
networks (pp. 4451–4458). IEEE.

llrich, K., Meeds, E., & Welling, M. (2017). Soft weight-sharing for neural
network compression. In International conference on learning representations.

ang, P., Xie, X., Deng, L., Li, G., Wang, D., & Xie, Y. (2018). Hitnet: Hybrid
ternary recurrent neural network. In Advances in neural information processing
systems (pp. 604–614).

ei, T., Li, X., & Stojanovic, V. (2021). Input-to-state stability of impulsive
reaction–diffusion neural networks with infinite distributed delays. Nonlinear
Dynamics, 103(2), 1733–1755.

en, W., He, Y., Rajbhandari, S., Zhang, M., Wang, W., Liu, F., Hu, B., Chen, Y.,
& Li, H. (2018). Learning intrinsic sparse structures within long short-term
memory. In International conference on learning representations.

en, L., Zhang, X., Bai, H., & Xu, Z. (2020). Structured pruning of recurrent neural
networks through neuron selection. Neural Networks, 123, 134–141.

u, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z., & Zha, H. (2018). Alternat-
ing multi-bit quantization for recurrent neural networksg. In International
conference on learning representations.
488
e, J., Wang, L., Li, G., Chen, D., Zhe, S., Chu, X., & Xu, Z. (2018). Learning com-
pact recurrent neural networks with block-term tensor decomposition. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 9378–9387).

ou, Z., Yan, K., Ye, J., Ma, M., & Wang, P. (2019). Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. In
Advances in neural information processing systems (pp. 2130–2141).

u, H., Edunov, S., Tian, Y., & Morcos, A. S. (2020). Playing the lottery with
rewards and multiple languages: Lottery tickets in rl and. In International
conference on learning representations.

u, N., Weber, C., & Hu, X. (2019). Learning sparse hidden states in long short-
term memory. In International conference on artificial neural networks (pp.
288–298). Springer.

uan, X., Savarese, P., & Maire, M. (2021). Growing efficient deep networks by
structured continuous sparsification. In International conference on learning
representations.

agoruyko, S., & Komodakis, N. (2016). Paying more attention to attention:
Improving the performance of convolutional neural networks via attention
transfer. arXiv preprint arXiv:1612.03928.

hang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the
European conference on computer vision (pp. 365–382).

illy, J. G., Srivastava, R. K., Koutnık, J., & Schmidhuber, J. (2017). Recurrent
highway networks. In International conference on machine learning (pp.
4189–4198). PMLR.

http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb42
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb43
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb43
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb43
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb44
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb44
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb44
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb44
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb44
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb46
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb46
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb46
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb46
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb46
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb47
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb47
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb47
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb47
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb47
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb49
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb49
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb49
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb52
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb52
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb52
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb52
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb52
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb54
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb54
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb54
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb54
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb54
http://arxiv.org/abs/1612.03928
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb58
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb58
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb58
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb58
http://refhub.elsevier.com/S0893-6080(21)00264-1/sb58

	Recurrent neural network pruning using dynamical systems and iterative fine-tuning
	Introduction
	Related work
	Unstructured pruning methods
	Structured pruning methods

	Proposed methodology
	RNN weight matrices as collections of time-evolving signals
	Network pruning
	Discrimination-aware L2 regularization
	Iterative network fine-tuning

	Experimental evaluation
	Datasets and metrics
	Implementation details
	Ablation study
	Impact of pruning strategies
	Impact of LDS similarity metrics
	Impact of pruning ratios
	Impact of the MSE loss factor
	Impact of regularization techniques
	Evaluation of the proposed iterative network fine-tuning approach

	Comparison with state-of-the-art methods

	Conclusion
	Declaration of competing interest
	Acknowledgement
	References

