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In this paper, we present an efficient spectral clustering method for large-scale data sets,
given a set of pairwise constraints. Our contribution is threefold: (a) clustering accuracy
is increased by injecting prior knowledge of the data points’ constraints to a small affinity
submatrix; (b) connected components are identified automatically based on the data
points’ pairwise constraints, generating thus isolated ‘‘islands’’ of points; furthermore, local
neighborhoods of points of the same connected component are adapted dynamically, and
constraints propagation is performed so as to further increase the clustering accuracy;
finally (c) the complexity is preserved low, by following a sparse coding strategy of a land-
mark spectral clustering. In our experiments with three benchmark shape, face and hand-
written digit image data sets, we show that the proposed method outperforms competitive
spectral clustering methods that either follow semi-supervised or scalable strategies.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Spectral Clustering (SC) is a popular approach for solving clustering problems in a wide range of non-Euclidean spaces,
linearly non-separable clusters and detecting non-convex patterns (Filippone, Camastra, Masulli, & Rovetta, 2008). SC meth-
ods are used in numerous real-world applications such as image segmentation (Tung, Wong, & Clausi, 2010), face recognition
(Cevikalp & Triggs, 2010), feature fusion (Huang, Chuang, & Chen, 2012), speech recognition (Iso, 2010), 3D shape retrieval
(Tatsuma & Aono, 2009) and protein sequences clustering (Paccanaro, Chennubhotla, Casbon, & Saqi, 2003). The key idea in
SC is to achieve graph partitioning by performing eigendecomposition of a graph Laplacian matrix. The SC approach is for-
mulated as follows: given a set of d-dimensional data points1 fx1;x2; . . . ;xNg 2 Rd, SC methods construct an undirected graph
G ¼ ðV; EÞ, represented by the W 2 Rn�n affinity matrix (or the respective adjacency), where V and E are the sets of vertices and
edges, respectively. The goal is to find a k-way partitioning, i.e. k disjoint data subsets whose union is the whole data set, to
minimize a particular objective. SC methods firstly calculate the degree matrix D ¼

P
jWji 2 Rn�n, a diagonal matrix whose

entries are column (or row, since W is symmetric) sums of W. Then, a Laplacian matrix is constructed and its eigenvectors
are used as the low k-th dimensional representation of the data. Finally, the k-means algorithm is applied to generate the
clusters.

Spectral clustering methods differ in how they define and construct the Laplacian matrix and thus which eigenvectors are
selected to represent the partitioning, aiming to exploit special properties of different matrix formulations (Filippone et al.,
sets (e.g.
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2008; Luxburg, 2007). For the interested reader, Ulrike von Luxburg’s tutorial (Luxburg, 2007) includes examples of different
Laplacians’ constructions. Moreover, different objective functions are used to derive the best cut. For example, Ratio Cut
(Chan, Schlag, & Zien, 1993) tries to minimize the total cost of the edges crossing the cluster boundaries, normalized by
the size of the k clusters, to encourage balanced cluster sizes. Normalized Cut (NCut) (Shi & Malik, 1997) uses the same objec-
tive criterion as Ratio Cut, normalized by the total degree of each cluster, making thus the clusters having similar degrees.

However, irrespective of the selected approach, there are two important factors for applying a SC method to a real world
application: (a) the scalability of the method to large datasets; and (b) the high clustering accuracy.
1.1. Problem definition and current solutions

Baseline SC methods (Chan et al., 1993; Shi & Malik, 1997) require (a) Oðn2Þ time to calculate the W affinity matrix and
consequently to construct the graph G and the Laplacian matrix L; and (b) Oðn3Þ time to calculate the eigendecomposition of
L. Both complexities prohibit the direct application of SC for generating clusters in large-scale data sets. Several accelerated
methods (Cao, Chen, Dai, & Ling, 2014; Chen & Cai, 2011; Fowlkes, Belongie, Chung, & Malik, 2004; Liu, Wang, Danilevsky, &
Han, 2013; Yan, Huang, & Jordan, 2009) have been proposed in the literature trying to reduce the initial problem size of n
data points by selecting p (� n) samples of the data set.2 Accelerated methods in their approximations calculate n� p dis-
tances to construct G and perform the eigendecomposition to a highly reduced L 2 Rp�p Laplacian matrix. Consequently, accel-
erated methods significantly decrease the high complexity of the baseline SC methods (Chung, 1997; Ng, Jordan, & Weiss, 2002).

Nevertheless, with respect to the clustering accuracy, accelerated methods either fail in their approximations for a low
number of p samples, or do not overcome the limited accuracy of the baseline SC methods. Baseline SC methods tend to
unbalanced clusters, i.e. single nodes are separated from the rest of the graph. As a result they are noise-sensitive, i.e. few
isolated points can easily draw the cuts away from the global partitions (Chang & Yeung, 2008). Additionally, baseline SC
methods cannot exploit the information of a set of data points’ pairwise constraints, in order to increase the clustering accu-
racy, since they function in an unsupervised manner. Several works have extended SC in a semi-supervised way (Chen &
Feng, 2012; Kulis, Basu, Dhillon, & Mooney, 2009; Wagstaff, Cardie, Rogers, & Schroedl, 2001), where the goal is to incorpo-
rate prior information into the algorithm, in order to improve the clustering results. This is achieved by adding a preprocess-
ing step, where pairwise must-link (pairs of points that should belong to the same cluster) and cannot-link constraints (pairs
of points that should belong to different clusters) are added to the W 2 Rn�n affinity matrix. Semi-supervised SC methods
achieve higher clustering accuracy compared to conventional SC methods. However, existing semi-supervised SC methods
preserve the high complexity of the baseline SC methods and thus are not scalable.
1.2. Contribution and layout

The contribution of the proposed method is threefold: (a) the clustering accuracy is increased by injecting prior knowl-
edge of the data points’ constraints to a small affinity submatrix; (b) according to the Tarjan’s algorithm (Tarjan, 1972) con-
nected components (CC) are automatically identified from the data points’ constraints, generating thus isolated ‘‘islands’’ of
points. Then, for each CC the local neighborhood of points is adapted dynamically and constraints propagation is performed
so as to increase the clustering accuracy; finally (c) the complexity is preserved low, by following a landmark spectral clus-
tering strategy to ensure scalability. In our experiments with three benchmark face, shape and handwritten image data sets,
we show that the proposed method outperforms state-of-the-art spectral clustering methods that either follow
semi-supervised or scalable strategies in terms of clustering accuracy and computational cost.

The rest of the paper is organized as follows: in Section 2 the proposed method is described in detail. In Section 3 the
experimental results are presented and discussed, finally, in Section 4 the conclusions of this study are drawn.
2. Proposed method

Given a set of p points that participate in the pairwise constraints, the proposed method consists of the following steps:

(a) generate a sparse representation of an affinity submatrix bZ 2 Rp�n, expressing the similarities between the p points that
participate in the pairwise constraints and the whole data set n; (b) compute a temporal p� psimilarity/adjacency matrix
based only on the p points that participate in the pairwise constraints to extract the connected components automatically,

generating thus isolated ‘‘islands’’ of the p points; (c) update the sparse affinity submatrix bZ based on the p points
co-appearances to the same or different connected components; (d) perform dynamical adaptation of the p data points’ local
neighborhood in each connected component; (e) propagate constraints to the local neighboring points in the connected com-
ponent; and (f) perform eigedecomposition of a highly reduced matrix and apply k-means to generate the final k clusters.
2 Additionally, several methods perform parallel SC in distributed systems (Chen, Song, Bai, Lin, & Chang, 2011; Kang, Meeder, Papalexakis, & Faloutsos, 2014)
to reduce the computational time of SC.
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Formally, given a set of d-dimensional data points fx1;x2; . . . ;xng 2 Rd, denoted by a X 2 Rd�n matrix; and a subset T of p
points, with (p� n) denoting the points that participate in the sets of M must-link or C cannot-link constraints (with the
constraints’ pool being equal to M[C), the goal is to partition the n points into k discrete clusters, with the boundaries

of the k clusters lying afar. The final goal is to design the W 2 Rn�n affinity matrix as W ¼ bZT bZ , where bZ 2 Rp�n is the p-th
dimensional representation of the n data points, expressed as similarities/affinities of the n data points to the p points that

participate in the pairwise constraints. The X 2 Rd�n matrix can be approximated as X � UZ, where the columns of matrix
U 2 Rd�p are called basis vectors, i.e. the d-dimensional vectors of the p points. Therefore, the goal is to minimize the approx-

imation error minU;ZkX � UZk2, where k � k denotes the Frobenius norm of a matrix.

2.1. Sparse representation of the affinity submatrix

Following the sparse coding strategy of (Chen & Cai, 2011), based on the Nadaraya-Watson kernel regression (Härdle,
1992), for any data point xi its bxi approximation is calculated as:
3 Thi
4 The
bxi ¼
Xp

j¼1

zjiuj ð1Þ
where uj is the j-th column vector of U and zji is the ji-th element of Z. Then, to create the sparse representation of the Z

affinity sparse matrix, the zji value is set to 0, if uj is not among the r 6 p nearest points.3 Let hIi 2 Rd�r denote a submatrix
of U, composed of r nearest constrained points of xi. Then, each element zji is computed as:
zji ¼
Uðxi;ujÞP

j02hIiUðxi;uj0 Þ
; i 2 1 . . . n and j 2 hIi ð2Þ
where Uð�Þ is a kernel function with bandwidth r. The Gaussian kernel Uðxi;ujÞ ¼ expð�kxi � ujk=2r2Þ is one of the most
commonly used, where r controls the local scale of each data point’s neighborhood. Therefore, based on (2), the Z 2 Rp�n

sparse representation is calculated. Consequently, for the W affinity matrix it holds that W ¼ bZT bZ , where bZ ¼ D�1=2Z is
the normalized Z by the D ¼

P
jZji degree matrix.

2.2. Connected components’ extraction from pairwise constraints

Next, we retrieve all the p distinct points that participate in theMmust-link and the C cannot-link sets of constraints. We
generate a p� p adjacency matrix, with 1s and 0s for the must-linkM and cannot-link C constraints, respectively. According
the calculated p� p adjacency matrix the Tarjan’s algorithm4 is used to detect the H strongly connected components of the p
points that participate in the pairwise constraints, generating thus H isolated ‘‘islands’’ of the p points. The identified connected

components are used to set the initial constraints to the bZ affinity submatrix.
Let T � fT 1 [ T 2; . . . ;[T a[; . . . ;[T jHjg, where T a is the set of points of the a-th connected component, with

a 2 f1; . . . ; jHjg and jT j ¼ p. Let T 0a be the relative complement of T a in T with T 0a � T n T a � fp0a 2 T jp0a R T ag. Since the
similarities between the pa 2 T a points of the a-th connected component should be maximum and the similarities between

the p0a 2 T
0
a and pa 2 T a points of different connected components should be minimum, we set the jT j

2

� �
constraints to the bZ

affinity submatrix as follows:
bZðpi;pjÞ ¼
1; fpi 2 T ajpj 2 T ag
0; pi 2 T ajpj 2 T 0a

� �(
ð3Þ
In other words, we set the affinity matrix elements to 1 when points belong to the same connected component or 0 if points
are in different connected components.

2.3. Constraints propagation to points’ local neighborhoods

Then, we generate jHj different adjacency submatrices LT a 2 Rl�jT a j, where for each distinct connected component a each
submatrix LT a contains a subset jT aj < p of points that participate in the pairwise constraints and the l neighbors of the jT aj
points based on the affinity submatrix bZ . Then, 8 LT a we calculate the appearances (freqi) of each neighbor i, with
i 2 f1; . . . ; lg. The calculated freqi frequencies are sorted in ascending order to create a m-th dimensional vector
degreeVec ¼ ðfreq10 ; freq20 ; . . . ; freqm0 Þ, with freq10 6 freq20 6 � � � freqm0 , where m is the number of unique frequencies of the
neighbors of LT a and freqi0 is a sorted freqi frequency. The neighbors in LT a with high appearances in the local neighborhood
s holds because zji should be larger if xi is closer to uj .
Tarjan’s algorithm (Tarjan, 1972) generates connected components automatically from an affinity/adjacency matrix.
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should be the closest neighbors of the pa 2 T a points of the a-th component. Following a linear interpolation strategy, we
generate a m-th dimensional vector lookupVec as follows:
lookupVeci0 ¼
minþfreqi0 � max�min

m�1 ; m – 1
max; m ¼ 1

(
ð4Þ
where min and max are the minimum and maximum similarities in LT a , respectively and i0 2 f1; . . . ;mg. Neighbors of low
appearances should lie far (min) from the pa 2 T a points of component a and close (max) in case of high appearances.

Let Lpi and Lpj be respectively the set of the l nearest neighbors of pi and pj, with pi; pj 2 T a and i; j 2 f1; . . . ; jT ajg. Due to

the extreme sparsity in the bZ affinity submatrix, the following problem arises: in many cases it holds Lpi \ Lpj � ;, i.e. points
pi and pj of the same a-th connected component do not have common neighbors. Therefore, 8 pi 2 T a we propagate the
neighbors of the rest pj 2 T a points as follows:
Lpi ¼ fLp1 [ Lp2 [ . . . [ LpjT ajg; with i 2 1; . . . ; jT aj ð5Þ
Then, based on (4) and (5) we propagate the constraints to the bZ affinity submatrix as follows:
bZði;pjÞ ¼ lookupVeci0 ð6Þ
where i 2 Lpj; pj 2 T a and freqi ¼ freqi0 , with i being neighbor of pj; point pj belonging to the a-th connected component
according to the M[ C constraints pool; and frequency (freqi) of neighbor i (lying into the local neighborhood of points
pj 2 T a) being equal to the sorted frequency freqi0 , stored in vector degreeVec.

Next, we present an example of the constraints propagation method. Let T a ¼ fp1; p2g be a connected component, withbZðp1; p2Þ ¼ 1 and jT aj ¼ 2. Also, let Lp1
¼ fx1; x2g and Lp2

¼ fx1; x3g be the sets of neighbors of p1 and p2, with l = 2. GivenbZðx1; p1Þ ¼ 0:4, bZðx2; p1Þ ¼ 0:6 and bZðx1; p2Þ ¼ 0:5, bZðx3; p2Þ ¼ 0:7, we have 3 unique neighbors in the connected component
T a, with x1 appearing 2 times and x2; x3 1 time. In this example, we have m = 2 unique frequencies, generating thus vector
degreeVec ¼ ð1;2Þ. Then, based on degreeVec and (4) with min = 0.4 and max = 0.7, i.e. the minimum and the maximum
similarities of the neighbors of p1 and p2 in the connected component T a, we generate the lookupVec vector as follows:
lookupVec ¼ 0:4þ degreeVec1 �
ð0:7� 0:4Þ

2� 1
; 0:4þ degreeVec2 �

ð0:7� 0:4Þ
2� 1

� �
() lookupVec ¼ ð0:7;1Þ
According to (5), we propagate the neighbors of p1 and p2 as follows: Lp1 � Lp2 � fx1; x2; x3g. Finally, based on the new sets of

neighbors Lp1 ;Lp2 and Eq. (6), the bZ affinity submatrix is updated: bZðx1; p1Þ ¼ 1, bZðx2; p1Þ ¼ 0:7, bZðx3; p1Þ ¼ 0:7 andbZðx1; p2Þ ¼ 1, bZðx2; p2Þ ¼ 0:7, bZðx3; p2Þ ¼ 0:7.

2.4. Clusters’ generation

Let the Singular Value Decomposition (SVD) of bZ ¼ ARBT , where R ¼ diagðr1; . . . ;rpÞ and r1 P r2 P . . . P rp P 0 are the

singular values of bZ ;A ¼ ½a1; . . . ; ap� 2 Rp�p and ai’s are called left singular vectors, B ¼ ½b1; . . . ;bp� 2 Rn�p and bi’s are called

right singular eigenvectors. It is easy to verify that B are the eigenvectors of matrix bZT bZ and A are the eigenvectors of matrixbZbZT . Since the size of bZbZT is p� p, we can compute A in Oðp3Þ and then B can be computed as B ¼ R�1AT bZ . The overall time is
Oðp3 þ p2nÞ, significantly reduced than Oðn3Þ since p� n. In order to obtain the final k clusters the traditional k-means
method is applied to the n right singular eigenvectors bi’s, i.e. the rows of B.

2.5. Complexity analysis

The algorithmic steps of the proposed Spectral Clustering method based on Pairwise Constraints (SC-PC) are described in
Algorithm 1 with reference to the corresponding equations.

Given n data points with dimensionality d, we use p� n pairwise-constrained points that form jHj different connected
components based on the constraints poolM[ C. The total complexity of the proposed method is the sum of: (a) OðjMj þ jCjÞ
to compute the connected components of the p points participating in the jMjmust-link and jCj cannot link constraints; (b)

OðpndÞ to compute the bZ affinity submatrix (graph construction); (c) OðljHjÞ to create the jHj adjacency submatrices and to
perform the constraints propagation to the local neighborhoods of each component; (d) Oðp3 þ p2nÞ to compute the eigen-
vectors of B; and (e) OðtknpÞ to perform the traditional k-means to the n right singular p-dimensional eigenvectors bi’s, where
t is the number of iterations in k-means.
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Algorithm 1. SC-PC algorithm

Require: dataset X 2 Rd�n, set of pairwise constraints M[ C, points p 2 T that participate in the pairwise constraints
(p� n)

Ensure: k clusters

Compute bZ 2 Rp�n (Eqs. (2) and (3))
Compute Connected Components (CC) of points p 2 T 	 X
for each CC do

Generate the respective adjacency submatrix LT a for the a-th CC
Build lookup table with neighbor frequencies (Eq. (4))
Constraints propagation to points of the same CC (Eq. (5))

Update of bZ matrix with lookup table values (Eq. (6))
end for

Compute the first k eigenvectors of ZbZ , denoted by A ¼ ½a1; . . . ; ap� 2 Rp�p

Compute B ¼ ½b1; . . . ;bp� 2 Rn�p

Each row of B is a data point and apply k-means to get the clusters
3. Experimental results

3.1. Data sets

In our experiments we used three high-dimensional benchmark data sets,5 including a shape image data set (COIL100,
Nene, Nayar, & Murase, 1996), a face data set (CMU PIE, Bsat, Baker, & Sim, 2001) and a handwritten digit data set (MNIST,
Cun, Bottou, Bengio, & Haffner, 1998). Table 1 summarizes the details of the data sets.

3.2. Compared algorithms

The proposed Spectral Clustering method based on Pairwise Constraints (SC-PC), was compared against (a) the baseline
NCut method (Ng et al., 2002); (b) the semi-supervised method of Near Strangers or Distant Relatives (NSDR) (Chen & Feng,
2012); the accelerated methods of (c) Nyström approximation-based SC (Fowlkes et al., 2004); (d) LSC-K (Chen & Cai, 2011);
(e) LSC-R (Chen & Cai, 2011); and (f) LSC-WPR (Rafailidis et al., 2014).

In (Chen & Feng, 2012), Chen and Feng proposed the semi-supervised method of NSDR. Provided a set of per class
must-link and cannot-link constraints to a n� n affinity matrix, distortion measures were defined to measure the closeness
of the data with the criteria that l neighbors of dissimilar data are dissimilar, while l neighbors of similar data are also similar.
Then, in the calculated n� n affinity matrix, the NCut (Shi & Malik, 1997) method was applied to generate the final k clusters.
Despite the fact that NSDR’s clustering accuracy is high, scalability is not ensured since NSDR preserves the high complexity
of the NCut method.

In (Fowlkes et al., 2004), p sample points/landmarks were selected randomly out of the initial n data points and eigende-
composition was performed to a highly reduced p� p submatrix. Then, the calculated p eigenvectors were used to estimate
the original n eigenvectors based on the Nyström method (Nyström, 1930). In (Chen & Cai, 2011), the Landmark-based rep-
resentation SC method (LSC) was proposed. By selecting p landmarks, a n� p affinity submatrix was created based on a sparse
coding technique (Section 2.1), expressing the pairwise similarities between the p landmarks and the n data points. Two vari-
ations of LSC were proposed, LSC-R with the p landmarks being randomly selected; and LSC-K, where the preprocessing step of
k-means is added into LSC, selecting thus p centroids as landmarks. In (Rafailidis et al., 2014), the Weighted PageRank algo-
rithm was considered as a landmark selection strategy for LSC (LSC-WPR), outperforming LSC-R and LSC-K, by selecting more
representative landmarks. However, all the accelerated methods work in an unsupervised way, by not exploiting pairwise
constraints and thus preserving the accuracy of the unsupervised baseline methods, e.g. (Ng et al., 2002).

The implementation of NCut is publicly available.6 By extending NCut we implemented the semi-supervised SC method of
NSDR. Note that for the NSDR method, given a set T of p ¼ jT j points in the pairwise constraints, the number of must-link and
cannot-link constraints equals ðjMj þ jCjÞ. For the Nyström approximation based SC we choose the Matlab implementation with
orthogonalization, which is publicly available.7 The matlab codes of LSC-K and LSC-R are also publicly available8 by the authors of
5 All data sets were downloaded in the.mat format, publicly available at http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
6 http://vision.ucsd.edu/
sagarwal/clustering.html.
7 alumni.cs.ucsb.edu/
wychen/sc.html.
8 http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html.
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Table 1
Data set description.

Data set Size (n) Dimensions (d) Classes

COIL100 7200 1024 100
CMU PIE 11,554 1024 68
MNIST 70,000 784 10

Table 2
Methods comparison in terms of Acc (%).

p = 5% p = 10% p = 15% p = 20%

COIL100
Accelerated
SC-PC 54.73 ± 1.47 66.32 ± 1.33 70.12 ± 0.92 75.78 ± 0.96
Nyström 45.53 ± 2.10 46.18 ± 1.96 46.53 ± 1.89 46.92 ± 1.78
LSC-R 44.58 ± 2.07 49.88 ± 1.92 51.14 ± 1.78 52.80 ± 1.69
LSC-WPR 48.05 ± 1.12 53.83 ± 0.69 55.64 ± 0.88 59.36 ± 0.73
LSC-K 47.87 ± 1.23 52.20 ± 1.36 53.92 ± 1.25 55.59 ± 1.12

Baseline
NCut 61.59 ± 1.29 61.41 ± 1.24 61.46 ± 1.12 61.09 ± 1.07
NSDR 62.31 ± 1.38 63.22 ± 1.46 65.98 ± 1.37 67.45 ± 1.28

CMU-PIE
Accelerated
SC-PC 26.87 ± 1.42 41.60 ± 1.04 51.00 ± 0.89 56.99 ± 0.92
Nyström 18.69 ± 2.43 20.56 ± 1.91 23.54 ± 2.07 25.51 ± 1.79
LSC-R 16.78 ± 1.99 17.61 ± 1.71 18.88 ± 1.69 20.07 ± 1.51
LSC-WPR 27.58 ± 1.42 28.01 ± 1.34 29.94 ± 0.95 30.34 ± 0.68
LSC-K 25.87 ± 1.54 26.01 ± 1.25 27.87 ± 1.33 28.51 ± 1.38

Baseline
NCut 31.90 ± 1.24 32.09 ± 1.47 31.98 ± 1.36 32.07 ± 1.37
NSDR 6.82 ± 1.43 6.91 ± 1.38 6.22 ± 1.34 4.99 ± 1.41

p = 300 p = 600 p = 900 p = 1200

MNIST
Accelerated
SC-PC 75.21 ± 0.44 82.54 ± 0.68 85.85 ± 0.42 87.11 ± 0.31
Nyström 47.94 ± 0.96 54.35 ± 0.97 54.72 ± 0.81 60.36 ± 0.86
LSC-R 60.63 ± 1.24 64.78 ± 1.07 65.02 ± 0.94 66.06 ± 0.77
LSC-WPR 71.20 ± 0.46 73.46 ± 0.54 76.24 ± 0.41 77.81 ± 0.34
LSC-K 70.54 ± 0.54 72.98 ± 0.63 74.54 ± 0.58 75.37 ± 0.45

Baseline
NCut N/A
NSDR N/A

Bold values represent the highest scores.
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(Chen & Cai, 2011). For LSC-WPR, we used the Gephi toolkit9 to calculate the weighted PageRank values for the landmark selection
step.

Regarding the parameter tuning, in k-means we set the default value of t = 100 iterations, for all methods. Following
(Chen & Feng, 2012), for the NSDR method the l number of nearest neighbors is set to 5. For the proposed SC-PC method

we also set l to 5, i.e. the l neighbors of the jT aj points based on the affinity submatrix bZ (Section 2.3). Finally, following
(Chen & Cai, 2011; Rafailidis et al., 2014) for LSC-K, LSC-R, LSC-WPR and SC-PC, we varied the number of r nearest landmarks
(Section 2.1) from 2 to 10, where we concluded to 6, 4 and 3 for COIL100, CMU PIE and MNIST, respectively, with the excep-
tional case of r = 3 for LSC-K and LSC-R in CMU-PIE.

3.3. Results

In our experiments we varied the number of p ¼ jT j points that participate in the pairwise constraints from 5% to 20% at a
5% step, expressed as a percentage of the n total size. The main reasons for limiting our p variation are (a) for the accelerated
methods it must hold p� n to preserve the computational cost low; and (b) in real-world applications it is easy to acquire
raw data, while pairwise must-link and cannot-link constraints are expensive to generate (and thus to retrieve the respective
9 http://gephi.github.io/.

http://gephi.github.io/


Table 3
Methods comparison in terms of NMI (%).

p = 5% p = 10% p = 15% p = 20%

COIL100
Accelerated
SC-PC 73.58 ± 1.79 80.71 ± 1.38 83.85 ± 1.08 86.76 ± 0.99
Nyström 71.60 ± 2.14 72.14 ± 1.79 73.44 ± 1.64 73.59 ± 1.53
LSC-R 70.56 ± 1.98 72.66 ± 1.81 73.54 ± 1.72 74.61 ± 1.64
LSC-WPR 74.79 ± 1.27 78.21 ± 1.11 78.94 ± 0.97 80.31 ± 0.78
LSC-K 72.64 ± 1.42 76.18 ± 1.37 76.32 ± 1.38 76.45 ± 1.24

Baseline
NCut 82.34 ± 1.54 82.37 ± 1.52 82.54 ± 1.44 82.23 ± 1.28
NSDR 83.40 ± 1.34 84.78 ± 1.48 85.74 ± 1.23 86.66 ± 1.35

CMU-PIE
Accelerated
SC-PC 32.26 ± 1.26 45.35 ± 1.08 54.11 ± 1.03 59.83 ± 0.97
Nyström 36.49 ± 2.45 37.15 ± 1.81 40.80 ± 2.24 42.80 ± 1.76
LSC-R 25.51 ± 2.41 27.49 ± 2.29 28.02 ± 1.96 31.09 ± 1.74
LSC-WPR 40.72 ± 1.47 42.81 ± 1.17 44.89 ± 0.98 46.72 ± 1.07
LSC-K 32.63 ± 1.46 34.26 ± 1.38 35.27 ± 1.12 38.61 ± 1.11

Baseline
NCut 49.50 ± 2.11 49.71 ± 2.41 49.66 ± 1.78 49.93 ± 1.66
NSDR 14.91 ± 1.95 14.93 ± 1.74 12.54 ± 1.82 8.79 ± 1.34

p = 300 p = 600 p = 900 p = 1200

MNIST
Accelerated
SC-PC 62.58 ± 0.47 70.39 ± 0.51 73.50 ± 0.52 75.07 ± 0.43
Nyström 45.55 ± 1.03 48.30 ± 1.11 48.40 ± 0.82 50.76 ± 0.96
LSC-R 56.16 ± 1.14 61.92 ± 1.04 64.21 ± 0.94 65.26 ± 0.97
LSC-WPR 70.23 ± 0.53 73.45 ± 0.47 74.69 ± 0.38 75.99 ± 0.41
LSC-K 69.11 ± 0.51 72.37 ± 0.49 74.38 ± 0.53 75.55 ± 0.47

Baseline
NCut N/A
NSDR N/A

Bold values represent the highest scores.

Table 4
Methods comparison in terms of computational cost (s).

Accelerated Baseline

SC-PC Nyström LSC-R LSC-WPR LSC-K NCut NSDR

COIL100
p = 5% 5.6 6.46 5.33 6.19 6.16 429.41 456.33
p = 10% 6.61 10.5 5.93 6.76 8.1 429.41 460.08
p = 15% 8.16 28.4 6.84 7.67 9.51 429.41 463.39
p = 20% 10.43 56.92 8.21 9.03 11.84 429.41 466.84

CMU-PIE
p = 5% 5.77 8.16 5.28 6.84 7.57 2023.93 2125.66
p = 10% 7.69 33.88 6.45 8.01 10.97 2023.93 2139.66
p = 15% 11.33 101.93 7.48 9.04 14.76 2023.93 2151.87
p = 20% 14.04 235.81 8.56 10.12 18.64 2023.93 2165.21

MNIST
p = 300 9.58 9.76 8.27 22.13 14.05 N/A N/A
p = 600 13.75 22.12 9.96 23.82 21.39 N/A N/A
p = 900 17.02 41.03 11.75 25.61 29.03 N/A N/A
p = 1,200 23.33 63.44 16.78 30.64 39.69 N/A N/A

Bold values represent the highest scores.
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p points that participate in the pairwise constraints). In the MNIST data set, to preserve the computational cost low we varied
the p points from 300 to 1200, using a step of 300 points. Since in the NSDR and the proposed SC-PC methods, additional
information is used by considering the set T , with p ¼ jT j of the points that participate in the pairwise constraints, in all
experiments the set T is considered as training set, whereas the remaining set of n-p unconstrained points in the data set
are considered as test set. To ensure fair comparison, for each method the same training/test sets were used. Following



Table 5
Methods Comparison in MNIST for p = 1500 and p = 1800.

Acc (%) NMI (%) Comp. Cost (s)

p = 1500
SC-PC 88.14 ± 0.42 77.42 ± 0.39 27.47
LSC-WPR 78.78 ± 0.44 76.54 ± 0.37 32.11
LSC-K 77.06 ± 0.52 76.69 ± 0.48 46.62

p = 1800
SC-PC 89.21 ± 0.49 79.33 ± 0.44 33.57
LSC-WPR 81.48 ± 0.61 77.63 ± 0.54 36.19
LSC-K 80.72 ± 0.54 77.54 ± 0.47 56.35

Bold values represent the highest scores.
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the evaluation protocol of (Chen & Cai, 2011; Chen & Feng, 2012), all experiments were repeated 10 times, where the means
of (a) Acc (Cai, He, & Han, 2005), (b) Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002) and (c) computational cost
(in seconds) are reported. Additionally, for all experiments, we applied statistical pairwise t-tests, where the calculated dif-
ferences of means between the runs were insignificant at 0.05 level. The direct comparison of our proposed method with the
other accelerated methods in terms of Accuracy, NMI and computational cost are presented in Tables 2–4 and the best score
is highlighted. Moreover, in the same tables the baseline methods of NCut and NSDR are presented for coherency. It should
be noted, however, that the baseline methods are not directly compared to the accelerated ones due their computational
complexity (they require significant larger processing times), while they do not always outperform the latter methods in
terms of accuracy and NMI.

All experiments were performed on a Windows 7 PC with Intel core i5-2430M CPU @ 2.4 GHz with 8 GB RAM, using
Matlab 2010a.

3.4. Discussion

With respect to the clustering accuracy, the proposed SC-PC method outperforms the competitive accelerated methods.
By dynamically adapting and propagating the constraints to the local neighborhood, SC-PC clearly has higher Acc and NMI
than the accelerated methods of Nyström and LSC-R on the three evaluation data sets. Compared to LSC-K, the proposed
SC-PC method achieves higher clustering accuracy in terms of Acc and NMI in all datasets except for the MNIST data set.
Even in this case, SC-PC’s NMI performance is comparable to LSC-K, while the computational cost is significantly reduced
(Table 4). Moreover, SC-PC achieves higher Acc and NMI than LSC-K in COIL100 and CMU PIE. The proposed SC-PC also out-
performs LSC-WPR in most cases. However, for a small number of landmarks e.g. p = 5% in COIL100 and CMU PIE, as wel as
for all p variations in MNIST, with p � 1:71% (where p = 300, 600, 900 and 1200 correspond to p = 0.42%, 0.85%, 1.28% and
1.71%), LSC-WPR achieves higher NMI score than SC-PC, whereas for larger p values (>5%) SC-PC is more accurate than
LSC-WPR in COIL100 and CMU-PIE. This happens because for a small number of landmarks, LSC-WPR identifies more impor-
tant landmarks based on the weighted PageRank algorithm; however, by increasing the number of landmarks, LSC-WPR con-
siders less important data points as landmarks, limiting thus the clustering accuracy, compared to SC-PC. To verify this, we
conducted the following experiment; we increased the number of the p landmarks in the MNIST data set, considering
p = 1500 and p = 1800 landmarks, corresponding to p = 2.14% and p = 2.57%, respectively. As presented in Table 5, for both
p variations SC-PC achieves higher Acc and NMI in less computational time compared to LSC-WPR and LSC-K. Finally, a very
interesting finding of our experiments is the fact that our approach outperforms NSDR even though it uses its base concept of
must-link and cannot-link constraints. This fact is credited to the sparse coding approach that filters out possible outliers and
noise that could drive the clustering in poor results as well as the dynamic adaptation of the local neighborhoods to the char-
acteristics of each connected component.

With respect to the computational time, LSC-R has the lowest computational cost, outperforming the Nyström method, as
it was also experimentally shown in (Chen & Cai, 2011). The proposed SC-PC method preserves the processing cost relatively
low, compared to the rest of accelerated methods of LSC-K and LSC-WPR, while SC-PC achieves higher Acc and NMI by exploit-
ing the pairwise constraints. Especially for the large-scale data set of MNIST, by varying the number of the p constrained points
in the range of 300–1800, SC-PC needs 9.58–33.57 s, which is almost two times faster than LSC-K which needs 14.05–56.35 s.
Also, SC-PC is faster than LSC-WPR which requires 22.13–36.19 s. Compared to NCut and the semi-supervised NDSR method,
it is clear that the proposed SC-PC method is at least 40 times faster with cases where the difference reaches to 350 times
faster. At this point we must mention that in addition to the high processing cost, NCut and NSDR cause memory ‘‘overflows’’
in the large-scale data set of MNIST, making them inappropriate for larger datasets.

Summarizing our results, the proposed SC-PC method outperforms the accelerated methods in terms of clustering accu-
racy while it manages to keep computational costs relatively close to the fast accelerated method of LSC-R, compared to
LSC-K and LSC-WPR. Additionally, SC-PC outperforms, in most of the cases, the clustering accuracy of the semi-supervised
baseline NSDR method, while it drastically reduces the processing cost.
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4. Conclusion

In this paper we present an efficient method for accurate and scalable SC. In particular, we handle real-world problems which
either decrease the clustering accuracy or significantly increase the computation time. This happens because state-of-the-art
methods of spectral clustering either follow unsupervised strategies or lack scalability. The proposed SC-PC method achieves
high clustering accuracy and ensures scalability, by (a) extracting and setting the pairwise constraints to a small affinity sub-
matrix; (b) computing connected components to dynamically adapt the local neighborhoods of points of the same component;
(c) performing constraints propagation to the adapted local neighborhoods; and (e) following a landmark spectral clustering
strategy. As it was experimentally shown, the proposed method outperforms state-of-the-art spectral clustering methods that
either follow semi-supervised or scalable strategies, in terms of clustering accuracy and computational cost.

Moreover, in real-world applications continuous updates are required as the data sets evolve over time. Recently, several
incremental strategies (Dhanjal, Gaudel, & Clémençon, 2011; Ning, Xu, Chi, Gong, & Huang, 2010) have been proposed in the
literature, by efficiently updating the eigenspace. (Chi, Song, Zhou, Hino, & Tseng, 2009; Xu, Kliger, & Hero, 2010, 2014) able
to handle not only insertion/deletion of data points but also similarity changes between existing points. In our future
research we plan to examine both the incremental and evolving strategies of the proposed SC-PC method in the context
of spectral clustering in Big Data (Mall, Langone, & Suykens, 2013).
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