
Pose and Category Recognition of Highly
Deformable Objects Using Deep Learning

Ioannis Mariolis, Georgia Peleka, Andreas Kargakos, and Sotiris Malassiotis
Information Technologies Institute, Centre for Research & Technology Hellas

6th km Xarilaou-Thermi, 57001, Thessaloniki, Greece
Email:{ymariolis,gepe,akargakos,malasiot}@iti.gr

Abstract—Category and pose recognition of highly deformable
objects is considered a challenging problem in computer vision
and robotics. In this study, we investigate recognition and pose
estimation of garments hanging from a single point, using a
hierarchy of deep convolutional neural networks. The adopted
framework contains two layers. The deep convolutional network
of the first layer is used for classifying the garment to one of
the predefined categories, whereas in the second layer a category
specific deep convolutional network performs pose estimation.
The method has been evaluated using both synthetic and real
datasets of depth images and an actual robotic platform. Ex-
periments demonstrate that the task at hand may be performed
with sufficient accuracy, to allow application in several practical
scenarios.

I. INTRODUCTION

Autonomous manipulation of highly deformable objects,
such as garments, is a very challenging task in the domain of
robotics. In order to enable robots to manipulate such objects,
recognition of their deformed state should be performed using
robust computer vision algorithms. Although some results
have been already demonstrated when deformation is rather
small [1], [2], [3], interpreting highly deformed states remains
elusive. In this work, the deformation state space is reduced
by picking and hanging the garment from a random point. But
even in this case, the investigated state space remains huge,
making impractical the use of shape matching techniques and
typical machine learning approaches. An additional challenge
is introduced by the large variety of shapes, materials, sizes
and textures of real garments. Luckily, with the use of a
3D sensor, we may disregard variations caused by texture or
illumination.

In this paper, we are addressing the problem of recognizing
the category and pose of hung garments, as they are grasped by
a robotic manipulator (Fig. 1). The output of our method can
be used in many scenarios, such as autonomous sorting of gar-
ments for laundry or recycling, as well as to aid manipulation,
eg. unfolding, laying the garment flat on a table, etc. These
scenarios are currently widely applicable in industry, but they
may soon be performed at home by future domestic robots. We
propose the use of a hierarchy of deep convolutional networks
trained by depth images of hung garments to first recognize
the garment’s category and then estimate its current pose. In
that direction, we use a low-cost depth sensor to acquire a
large dataset of exemplars. In addition, we employ physics

Fig. 1. Investigated application scenario: a Motoman robot grasps a garment,
and an XtionPro sensor acquires depth images to recognize the garment’s type
and pose.

based simulation of hanging garments to acquire an even larger
synthetic dataset. The acquired depth images are used as raw
input to deep Convolutional Neural Networks (CNNs), that
learn discriminant representations, suitable for recognition and
pose estimation. CNNs are widely used in image recognition
tasks [4], [5], [6], [7], whereas recent success in outperforming
state of the art at benchmarks such as the MNIST database and
ImageNet [8] using deep architectures of CNNs, has increased
their popularity. In very recent studies [9], such networks
have been proposed for the related problem of human pose
recognition, presenting very promising results.

Other studies that address the same problem with us
are [10], [11], [12]. They are all based on the use of simulated
data of hung garments. The most similar work to ours is [11],
where SIFT-based features are extracted by synthetic depth
images and an hierarchy of Support Vector Machines (SVMs)
is trained to recognize the category and pose of hung garments.
In comparison to these works our key contributions are:

– Formulation of a real-time deep learning scheme that, i)
extracts discriminant features from raw depth images of
hung garments, ii) uses the learned features for recogniz-
ing the category and pose of the garments.

– The proposed system is faster and more robust than978-1-4673-7509-2/15/$31.00 2015 IEEE



the one in [11], that uses hand-engineered features and
SVMs. It is also more accurate in pose estimation than
both [11] and [12]. As opposed to these works, acceptable
performance is reported by our system even without
aggregating single-view classification results.

– Investigation of the use of synthetic data for designing
and pre-training large and deep networks that perform
well even with smaller real datasets. In our simulations
we have used simple 2D models of garments, whereas
in [11] and [12] commercial 3D models very similar to
the real garments used for testing are employed.

– Extensive experimental results on large datasets, demon-
strating beyond state of the art performance.

II. RELATED WORK

It can be argued that recognition and manipulation of
deformable objects has been rather under-explored by the
computer vision and robotics community, with initial works
employing template matching techniques, ad hoc rules and
heuristics [13], [14], [15]. The field is drawing more attention,
especially after the recent success of a number of works [16],
[17], [18] on garment recognition and manipulation, using a
PR2 robot on tasks such as clothes folding. However, the
employed recognition methods are mostly based on aligning
an observed shape/contour to an existing one. An active
vision approach is employed by Willimon et al. in [19]
and [20] for hung garment recognition, and recognition of
crumpled garments lying on a table, respectively. Limited
interaction with the garment is performed, such as dropping
and regrasping for the hanging case, and pulling in predefined
directions for the clumped case, and various visual features
are extracted. However, the employed feature classification
methods heavily depend on color-based segmentation, limiting
their applicability in case of garments with high texture
variance. Doumanoglou et al. [21], [22] also employ an active
vision approach in order to unfold a crumpled garment grasped
by its lowest hanging point. Before regrasping the hung
garment, its category is recognized using Random Forests.
Training is performed using small feature vectors extracted
by random pixel tests on depth images acquired using an
XtionPro sensor. High recognition rates are reported, but the
method relies on a lowest hanging point heuristic. Although
some of the above studies infer the garments’ configuration
at some point during manipulation, they don’t estimate the
pose of the garment when it is hung by a single arbitrary
point. This problem is explicitly addressed by Kita et al. [23],
[24] in a series of works, using stereo vision to extract 3D
information about the hung garment’s configuration. In a more
recent work, Kita et al. [10], a trinocular stereo system is
employed for extracting a 3D model of the garment, and its
state is recognized by comparing the model with candidate
shapes, which are predicted in advance via simulation. The
works [11], [12] by Li et al. are also based on the use of
simulated models of hung garments in order to recognize
their state. However, instead of relying on optical sensors,
they employ a Kinect depth sensor to acquire 3D information

Fig. 2. Overview of the proposed hierarchical approach. In the first layer the
hung garment is recognized by a deep CNN. Then, a category specific CNN
is performing pose estimation.

of the garment’s configuration. More specifically, in [11] a
hierarchical classifier using two-layers of SVMs is used for
first recognizing the category, and then estimating the location
of the grasping point on the garment (pose). The SVMs are
trained using SIFT features extracted by the depth images
of simulated garments and compressed using sparse coding.
Simulated garments are also employed in [12], but instead of
using the simulation results to acquire synthetic depth images,
the opposite is proposed. Namely, the depth images of the
real garments are used for constructing a 3D model that is
then matched to the most similar synthetic model. Matching
is based on a weighted Hamming distance metric, which is
learned using a small number of labelled poses of the real
garments. The last two studies are the most similar to our
work and their results are compared with the ones produced
by our method.

In this paper, we are using depth images of the hung
garments as input for deep CNNs. Adopting the hierarchical
approach used in [11], our classifier contains two layers. In
the first layer, a deep CNN is used for classifying the hung
garment to one of the examined categories, which in our case
are shirts, pants, and towels. In the second layer, another deep
CNN with similar architecture is employed for inferring the
pose of the hung garment by estimating the grasping point
location on a garment template. In the second layer, different
CNNs are used for inferring the pose of garments belonging
to different categories. Hence, the output of the first layer is
used for selecting the appropriate CNN for the second layer.
An overview of the proposed method is presented in Figure 2.

III. MATERIALS AND METHODS

Images of hung garments are expected to exhibit stationarity
of statistics and locality of pixel dependencies. These proper-
ties are more evident in case of depth images, since texture



Fig. 3. Network architecture for recognition CNN. The network consists of 3 Convolutional layers and accompanying Pooling layers, followed by 2 Fully-
connected hidden layers. A softmax output layer is added after the last Fully-connected layer.

information is discarded and local dependencies attributed to
the garment’s configuration are enhanced. Therefore, in order
to perform category and pose recognition of hung garments,
it makes sense to employ a learning scheme where the depth
images are used as inputs to CNNs, since their success builds
strongly on these assumptions [8]. However, the extremely
large state space of hung configurations and the immense
variety of garment types, sizes, and material properties call for
deep CNN architectures, where many convolutional layers are
successively employed to automatically learn discriminative
representations of the garments. The above challenges also
motivate the adoption of a hierarchical approach, where the
category of the garment is first identified and then a different
CNN is employed for inferring its pose. In this work, three
garment categories are considered: shirt, pants, and towels.
Hence, the second layer of our hierarchical classifier is con-
sisted by three different CNNs. Since different number of
poses is considered for each category, the main difference
between the 2nd-layer CNNs is the number of neurons in their
output layer.

A. Depth Data Acquisition

In order to acquire the depth input images, an ASUS
XtionPro depth sensor, which is similar to Kinect, is employed.
The depth sensor is mounted on the robot’s base, and the hung
garment is positioned by the robot in front of the sensor, at
a distance of approximately 1 m (see Figure 1). Then, the
robot gripper starts rotating around the vertical axis and a
series of depth images are successively acquired, capturing
overlapping views of the rotated garment until a full rotation is
performed. At that point, about 180 images have been captured
and the gripper retrieves its original position. In order to
minimize oscillations, rotation speed is kept low, increasing
the time needed for capturing the images for each pose,
slowing acquisition down. Therefore, apart from real world
data, synthetic 2D models of garments have been constructed
(see Figure 5) and a significantly greater amount of depth
images has been acquired, using virtual scenes that replicated
to a large extend the real setup. The main motivation behind

the creation of the synthetic dataset is to use it for guiding
the design of the CNNs architectures. Since, simulation can
provide a plethora of training data, the evaluation of larger and
deeper networks and their comparison to simpler architectures
becomes feasible. At the same time, cross-domain knowledge
transfer can be investigated using a combination of synthetic
and real datasets for training the deep networks.

B. Deep Learning Models

Using the synthetic dataset several CNN architectures were
investigated (see next Section for details), and the selected
ones for category recognition and pose estimation are pre-
sented here.

Deep CNN for Category Recognition The network’s
architecture is depicted in Figure 3. It contains five layers
with learnable parameters, where the first three layers are
convolutional and the remaining two are fully-connected. The
output of the last fully-connected layer is connected to a 3-
way softmax which estimates a probability distribution over
the 3 garment categories. Let C denote a convolutional layer,
P an L2-norm pooling layer of stride 2, LCN a local contrast
normalization layer [4], and F a fully-connected layer. Both
C and F layers consist of a linear transformation followed
by a nonlinear one, which in our case is the hyperbolic
tangent non-linearity. For C layers, the size is defined as
width × height × filters, where width and height have a
spatial interpretation, whereas filters denotes the number of
applied convolutional kernels. If we use parentheses to include
the size of each layer, then the network description can be
given as C(154× 58× 16) P LCN C(72× 24× 32)
P LCN C(34× 10× 16) P LCN F (64) F (16)
SM(3) , where SM denotes the softmax output layer. The

filter size for the first C layer is 7× 7, for the second 5× 5,
and the third 3× 3. The input to the net is a depth image of
160× 64 pixels. The total number of parameters in the above
model is about 112K.

As suggested by the use of the softmax layer, the net-
work is trained (in a supervised fashion) by minimizing a
Cross Entropy objective function, whereas the minimization



Fig. 4. Selected vertices defining the poses of the hanging garments. In the
top row, white markers define the poses on real garments. In the bottom row,
the synthetic models are depicted. The selected poses are defined by their
vertices that reside to the left of their symmetry axes.

is performed by means of Stochastic Gradient Descent (SGD)
optimization. The network’s performance evaluation is based
on reported Correct Classification Rate (CR).

Deep CNN for Pose Estimation In this study, similarly
to [11], pose estimation is performed by means of classi-
fication, with each pose defined as a grasping point on the
garment’s surface. Thus, a similar architecture to recognition
CNNs is also adopted for the CNNs performing pose estima-
tion. However, in this case a larger number of classes (poses)
is defined for each garment type. In case of shirts there are
74 poses, in case of pants 59, and in case of towels 25. These
poses have been defined to coincide with the vertices of the
simulated models after discarding symmetric counterparts, and
are denoted, by Arabic numbers on the models of Figure 4. In
this figure, only the towel labels are exhaustively displayed.
Notice that towels present two symmetry axes, resulting to a
smaller number of different poses.

The networks used for pose estimation can be described
as C(154 × 58 × 32) P LCN C(72 × 24 × 64)
P LCN C(34 × 10 × 32) P LCN F (256)
F (128) SM(n), where n is the number of poses and

depends on the garment category. Hence, the topology and
the depth of the networks is identical to the recognition CNN,
but the size of the network increases to compensate for the
large increase in the number of output classes. The total
number of parameters in the above model is over 832K, i.e. 8
times higher than the recognition network. Although training
is performed in the same fashion as in recognition, evaluation
of the network’s performance is not based, in this case, on the
reported CR. Since we expect the garment to present similar
configurations when grasped by neighbouring points, it makes

more sense to use metrics suitable for regression. A natural
choice could be the Geodesic distance between the predicted
and the actual pose (grasping point). However, since the poses
have been defined on the 2D synthetic models an acceptable
approximation is to use the Inner-distance metric [25]. Given a
shape O and two points x, y ∈ O, the inner-distance between
x, y denoted as d(x, y;O), is defined as the length of the
shortest path connecting x and y within O. O is defined as a
connected and closed subset of R2. Thus, the Inner-distance
between predicted and the actual pose, called henceforth Error
Distance, is computed, and its mean over the test set is
used for assessing the performance of the network. Adopting
the approach of [11] and [12], the distribution of the Error
Distance is also estimated using the percentage of the tested
grasping points that reside within that distance.

C. Aggregation of Viewpoint Classification Results

The presented CNNs perform single-view classification for
both category and pose recognition. However, the acquisition
setup allows aggregation of the single-view results for the
entire dataset of the 180 depth images that correspond to the
same pose. A simple but effective method to achieve this is to
perform majority voting between the different outputs of the
180 single-view classifications. This approach can be applied
to both category and pose classifiers, boosting the performance
and introducing more robustness to the classifiers.

IV. EXPERIMENTAL EVALUATION

A. Setup

Robotic manipulations have been conducted using a dual
arm robot composed by two M1400 Yaskawa arms mounted
on a rotating base. The depth images of the hanging garments
have been acquired by an Asus XtionPro depth sensor placed
between the arms at a fixed height. Grasping has been based
on custom made grippers [26].

Synthetic Dataset Before evaluating our method on real
data acquired using the above setup, we have constructed a
large dataset (SD) of synthetic depth images using Blender
2.6.2, an open-source 3D computer graphics software. We
have constructed 24 models of shirts, 24 models of pants,
and 24 models of towels. The models of the same category
differ in shape, size and material properties. In order to
simplify and speed-up the simulation process we are using,
as in [10], 2-D models of the garments, assuming that the
front and back sides of the clothes are not separated. Even
with this simplification, the models approximate surprisingly
well the configuration of real garments hung under gravity (see
Figure 5). An example model for each category along with
their corresponding triangular mesh, is presented in Figure 4.
The mesh of the shirt models consists of 141 vertices, whereas
there are 113 vertices for pants and 81 vertices for towels. Due
to symmetry the above vertices correspond to 74, 59 and 25
distinct poses respectively. Using Blender’s cloth engine, we
have simulated hanging the models by each of their vertices.
A ring of 80 virtual cameras is placed uniformly around the
hung garment in such height that they can view the entire



garment, and 80 synthetic depth images are acquired. The
use of the camera ring depletes the need for rotating the
garment, which introduces additional noise during acquisition
with the real system that uses only a single sensor. The
formulation of the synthetic dataset needs only a small fraction
of the time needed by the real world system, whereas the
resulted images are noise-free. The set of the 80 images for
a single vertex is acquired in about 1 min. Namely, the entire
database of the 643200 depth images has been created in
less than a week. As explained in Section 2, the synthetic
dataset allows the evaluation of larger and deeper networks
and is used for guiding the design of the CNNs architectures.
At the same time, it is used for investigating cross-domain
knowledge transfer. To facilitate the above tasks, the setup
of the virtual cameras should match as close as possible
the robotic platform’s setup. Thus, the virtual cameras where
positioned at a distance of about 1060 mm from the hanging
axis, whereas their vertical distance from the hanging point
was set to 400 mm equal to the one of the robot’s XtionPro
sensor. The virtual camera’s intrinsic parameters where also
matched to those of the XtionPro sensor. Figure 5 presents
synthetic depth images of different models hung by their
first pose. The views are matched in order to facilitate the
comparison between the resulted configurations of models that
belong to the same category. It is clear that the differences in
the model parameters reflect to differences to the final hung
configurations. Hence, it can be assumed that the synthetic
dataset presents adequate intra-class variability even in case
of pose estimation.

Real Garments Dataset As opposed to the synthetic dataset
the acquisition of real data is time-consuming and noisy. The
robot grasps a crumbled garment lying on a table and hangs
it in front of the XtionPro sensor. Then, the hung garment
is rotated 360◦, while the sensor is acquiring both RGB
and depth images. Image size is 640x480 pixels for both
modalities, whereas depth images are thresholded keeping only
values between 700 and 1500 mm in order to segment the
garment from the background. A dataset, called henceforth
RD1, consisting of 4757 depth images has been acquired, with
the robot autonomously picking up the garment using curva-
ture cues from the crumbled garment’s surface. A different
XtionPro sensor, mounted on the robot hand, is employed for
capturing a depth image that is used by the pick-up algorithm
before grasping. In total, 13 real sized garments have been
employed, belonging to the three specified categories. Each
garment has been hung 4 or 5 times and about 80 depth
images have been acquired for each case. In this autonomous
setting, the selection of the pose is random and the acquired
dataset is useful for the recognition task only. In order to
acquire data for the pose estimation task, a more controlled
setting has been selected. Before grasping, markers have been
placed on the garments approximately matching the topology
of the pose vertices in the simulation. Then, robot grasping is
performed manually, with the robot holding the garment from
each marker. Acquisition is performed in the same fashion as
in the previous case, with the difference that 180 depth images

Fig. 5. Example images of synthetic (left) and real (right) garments hung by
their first pose.

are acquired per pose. In any case, during garment rotation the
angular speed of the gripper is held low, in order to reduce
oscillation effects. Thus, an average time of about 5 min is
necessary to capture the 180 depth images of each pose. For
the new dataset, called henceforth RD2, 9 real sized garments
have been employed, three for each category, yielding a total of
85320 depth images. An example of the resulted configurations
for RD2 and the first pose of each category is presented in
Figure 5. The complete database containing both real and
synthetic labeled datasets is publicly available1.

Experimental Details The implementation and evaluation
of the proposed method has been made in Torch7 [27], which
is a machine learning library that extends Lua. It provides

1http://clopema.iti.gr/datasets/DeepGarmentRecognition



Type Training Test Validation
Shirt 135360 90240 45120
Pants 108480 72320 36160
Towel 77760 51840 25920

TABLE I
DATASET SIZES FOR POSE ESTIMATION USING SD

a flexible environment to design and train learning machines
such as the CNNs used in this study. Since in the case of the
synthetic dataset we have sufficient amount of labelled data,
we have employed a hold out approach and split SD to a
training, a test, and a validation set. For the recognition task
the training set uses 36 of the synthetic models, the test set
24 models, and the validation set 12 models, yielding 160800
(keeping 40 out of 80 depth images for each pose), 214400,
and 107200 depth images, respectively. For the pose estimation
task, different training sets are used for each garment type.
Each training set uses 12 of the synthetic models, each test
set 8 models, and each validation set 4 models. In Table I the
corresponding sizes of the datasets used for pose estimation
are presented, separately for each garment category. We have
used the validation sets for determining optimum learning
parameters. The networks performed well for a large range of
parameter values. Thus, selecting values within this range, the
networks’ learning rate was set to 0.001, whereas momentum
was set to zero. SGD was performed using batches of a single
training instance and early stop at 10 epochs has been applied.
For the real dataset, due to their smaller size K-fold cross-
validation [28] is employed in a stratified fashion, where all
instances of a garment are in the same fold. For RD1 K was
set to 10, whereas for the larger RD2 K was set to 3 folds.

Images with initial size 640 × 480 were automatically
cropped to 640 × 256 with the garment remaining at the
center of the image. Cropping did not result to any loss of
information, since when hung, the length of the garment is a lot
greater than the width due to the effect of gravity. The cropped
images were finally down-sampled to 160 × 64. Training of
a single image takes about 12ms in a system with Intel Core
i7-4770K CPU @ 3.50GHz 8 processor and 32 Gb RAM,
whereas testing takes about 5ms. Thus, even for the viewpoint
aggregation approach, the hierarchical classifier is very fast,
needing about 1.8 seconds to test the acquired images and
produce the category and pose results.

Selecting Network Architecture We began investigating
various CNN architectures for category and pose recognition
using the validation set of SD. Initially we have trained
shallow architectures with only two convolutional and pooling
layers and one hidden fully connected layer. Then, we started
gradually increasing the number of layers until no significant
improvement is presented in the classification accuracy. The
architectures described in Section 3 were finally selected,
presenting at least 0.5% higher accuracy than the simpler ar-
chitectures and not less than 0.5% than the deeper architectures
that have been examined. The deepest architecture that has
been considered employed 4 convolutional layers, 4 pooling

layers and 2 fully connected hidden layers.
In accordance to published literature, for the majority of

the examined architectures CNNs trained fast. Namely, most
CNNs converged to their maximum accuracy in less than 10
epochs, when Stochastic Gradient Descent (SGD) algorithm
was used for optimization. The CNNs also presented robust-
ness with respect to the selected learning rate, which for most
networks could span several orders of magnitude without a
noticeable impact on the performance.

B. Results and Discussion

Category Recognition Using the synthetic dataset for train-
ing the CNN, a recognition rate of 92.31% has been reported
for the synthetic test set. Then, we retrained the CNN from
the beginning using RD1 and 10-fold cross-validation. In that
case, an average (over the ten folds) recognition rate of 89.38%
is reported. Thus, even though 37 times less data were used
the networks’ performance was decreased by only 3%. What
is more, in case a majority voting scheme is employed for
aggregating the results of all the views of each garment in the
same pose, the recognition rate for RD1 increases to 94.83%,
which can be considered acceptable for our current application.

In order to test whether cross-domain learning can be
achieved, we have also used RD1 to test the CNN that
was trained by the synthetic data. However, the reported
recognition rate was not above chance, implying that some
fine tuning of the network is needed before testing with the
real data. Since we are using SGD, training is performed on-
line, allowing pre-training the network with the synthetic data
and continue training with RD1 data. In that case, although
both training and testing recognition rates drastically increase
in the first epochs (about 20% - 30% in each fold), in the
last epochs testing recognition rate reaches 89.51%, which is
only slightly higher to the one without pre-training. However,
when the results are aggregated over the views a rate of
96.55% is achieved, which is about 2% higher compared to the
aggregated results without pre-training. This implies that pre-
training helps the network to produce more coherent results
for different views of the garment in the same pose.

In order to establish a baseline, the single view performance
of our CNN trained with RD1 has been compared to other
popular learning schemes such as Support Vector Machine
(SVM) and Random Forests (RF), which, however, need as
input more discriminant features than the raw depth-images.
For that purpose we have extracted Histograms of Oriented
Gradients (HOGs) from the depth images and performed
learning. The length of the extracted feature vectors was
4788 and the results are presented in Table II. We used
one versus one SVM with linear kernels, whereas RFs were
trained using at most 100 trees and maximum depth 25. In
the last line of the table, PT-RF denotes the learning scheme
proposed in Doumanoglou et al. [21]. This scheme is also
based on Random Forests, but instead of HOGs the features
are extracted by applying certain Pixel Tests (PTs) on the depth
image. In that work the method was applied for hung garment
recognition and regrasping point estimation. Although related



Learning scheme Recognition Rate %
CNN 89.38
HOG-SVM 86.41
HOG-RF 83.83
PT-RF [21] 82.05

TABLE II
COMPARATIVE RESULTS BETWEEN PROPOSED METHOD (CNN) AND

OTHER WIDELY USED LEARNING SCHEMES SUCH AS SVMS AND RANDOM
FORESTS.

to our work, in that study the pose of the hung garment is
restricted to be one of the lowest hanging points. Thus, we do
not compare with the results of that study. Instead, Table II
contains only the results of applying PT-RF on our dataset.
According to these results, our approach outperforms those
based on hand engineered features by at least 3%.

Since the convolutional layers of our deep network are
learning discriminant representations of the raw depth inputs, it
makes sense to also test the performance of these automatically
extracted features on a different classifier. Thus, we have taken
the output of the last pooling layer of the CNN and used it as a
feature vector for a linear SVM. This resulted to a recognition
rate of 88.66%, outperforming HOG-SVM by more than 2%,
verifying the discriminating power of our learned features.

In case RD2 is employed for training and testing the
recognition CNN, a 93% average recognition rate is achieved
for single views. Thus, RD2 is matching the synthetic dataset’s
performance for the recognition CNN. This is a strong indi-
cation that we are exploiting the full potential of the network,
despite the lack of a large real dataset.

Pose Estimation As explained in Section 3, in order to
evaluate the performance of the CNNs in pose estimation,
the inner-distance [25] in cm between predicted and actual
grasping points is considered. The results after aggregating
over the 180 views for each pose, are presented in CNNRD2

column of Table III for the real dataset, whereas CNNSD

column contains the results for the synthetic dataset. Single
view results are also provided in parenthesis. For comparison,
the distances in the related works of [11] and [12] are
presented in the second and third columns respectively. These
distances as explained in the aforementioned works are also
aggregated over 90 and 300 views, respectively, whereas no
results on the single view distances were documented. N/A
denotes ’not available’, since instead of towels in these works
shorts have been considered. Even our single view results
outperform the aggregated results of the related methods.

However, caution is needed when comparing the results in
Table III, since different datasets have been used, whereas
training in [11] and [12] is based mostly on simulated 3D
models of the garments. Since 3D models are available, in
these works distance refers to geodesic distance, approximated
in our work by inner-distance on 2D models. Another impor-
tant parameter is the size of the clothes used for testing. As
reported in [11] and [12] the maximum distance between any
pair of grasping points (poses), is 75 cm for the shirt, and
65 cm for the pants. In our case, we used articles of clothing

Type Li14a Li14b CNNSD CNNRD2

Shirt 16.05 13.61 12.62 (13.4) 7.84 (10.95)
Pants 10.89 9.70 6.03 (7.53) 4.61 (7.42)
Towel N/A N/A 11.62 (11.81) 1.96 (3.34)

TABLE III
COMPARISON ON MEAN ERROR DISTANCE FOR DIFFERENT TYPES OF

GARMENTS. THE EMPLOYED UNITS ARE CENTIMETRES, AND VIEWPOINT
AGGREGATION IS APPLIED. IN THE PARENTHESES, SINGLE VIEW RESULTS

ARE REPORTED FOR OUR METHOD.

presenting larger maximum distances, 108 cm for shirts, 112
cm for pants, and 50 cm for towels.

A comparison of the distribution of the pose Error Distance
is plotted in Figure 6 for the different garment types. This
is a key evaluation metric in [11] and [12] and is also
adopted in our work. As illustrated by the graphs in this
figure, our method presents improved results for both shirt
and pants, even without normalizing according to the different
maximum distances. In case of towels, the correct pose is
inferred by the aggregated pose classification results for 84%
of the poses. Thus, the corresponding distance error is non-
zero only for a small fraction of the test data, rendering the
plot of the distance error redundant. As in the recognition
case, the above results indicate that the CNNs designed using
the large synthetic dataset, perform well even when trained
with smaller datasets of real garments. In this case, as implied
by the results in Table III, the real datasets outperform SD. A
possible explanation is that the synthetic models’ configuration
when hung is more difficult to discriminate due to the selected
material properties and simulation process. However, even in
that case, the proposed CNN approach manages to produce
acceptable error distances for pose estimation.

Testing the complete pipeline In order to test the complete
approach, 6 garments that were not used for training have
been employed (2 for each category). Each garment has been
autonomously grasped (5 times) by the robotic manipulator
and its category and pose have been estimated. In all cases,
the category of the garment has been correctly identified,
whereas a mean Error Distance of 5.3 cm has been reported
for pose estimation. A short video demonstrating the complete
recognition pipeline is available online2.

V. CONCLUSION AND FUTURE WORK

In this work, we propose hierarchical CNNs for recognizing
the category and pose of hung garments. Depth images of
the garments are used as inputs to the nets and discrimi-
nant representations are automatically learned. Both real and
synthetic data are employed in the design and evaluation of
the networks. Experimental results report above state of the
art performance in all datasets, whereas weak cross-domain
knowledge transfer has been observed. Our future focus will
be on extending the synthetic and real datasets to include
additional garment types such as T-shirts and shorts and
evaluate the method’s performance on the extended datasets.
We will also explore multi-view architectures, performing

2https://www.youtube.com/watch?v=P25ku9KpMVE



Fig. 6. Error Distance distributions for shirt and pants using RD2 data.
Comparison with corresponding distributions in [11] (Li14a) and [12] (Li14b).

fusion of the depth information of different views at the middle
layers of the CNNs. Finally, we intend to integrate the method
to a broader garment manipulation pipeline, such as picking-
up, regrasping, and unfolding.
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