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Abstract. We present Active Random Forests, a novel framework to
address active vision problems. State of the art focuses on best viewing
parameters selection like viewpoint or zooming based on single view clas-
sifiers. In contrast, we propose a multi-view classifier where the action
taking process about optimally selecting viewing parameters is inherent
to the classification process. This has many advantages: a) The classifier
exploits the entire set of images captured at a certain time and does not
simply aggregate probabilistically per view hypotheses; b) actions are
made according to learnt disambiguating image features from all possi-
ble views and are optimally selected using the powerful voting scheme of
Random Forests and c) the classifier can take into account the costs of its
actions. The proposed framework is applied to the task of autonomously
unfolding clothes by a robot, addressing the problem of best viewpoint
selection in classification, pose and grasp point estimation of garments.
We show great performance improvement compared to random viewpoint
selection and state of the art methods.

Keywords: Active Vision, Active Random Forests

1 Introduction

Object recognition and pose estimation has been studied extensively in the lit-
erature achieving in many cases very good results [1][ ][ ]. However, single-view
recognition systems are often unable to distinguish objects which depict simi-
lar appearance when observed from certain viewpoints. An autonomous system
can overcome this limitation by actively collecting relevant information about
the object, that is, changing viewpoint, zooming to a particular area or even
interacting with the object itself. This procedure is called active vision and the
key problem is how to optimally plan the next actions of the system (usually
a robot) in order to disambiguate any conflicting evidence about the object of
interest.

The majority of state of the art techniques [ ][ ][ ] in active vision share fol-
lowing idea: one single-view classifier is trained to recognize the type and pose
of target objects, while a subsequent step uses the classification results to plan
the next actions so that conflicting hypotheses are disambiguated. Although this
approach is intuitive, combining features from multiple views is difficult while
hypotheses from different views can be only exploited a posteriori (i.e Bayesian
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(a) (b) (c) (d)

Fig. 1. Robot unfolding a shirt. a) Grasping lowest point. b) grasping 1st grasp point.
c) grasping 2nd grasp point. d) final unfolding

formulations). In addition, their performance heavily relies on the performance of
the single-view classifier. However, making a classifier that can generalize across
views is hard, a problem which becomes even more challenging when other forms
of variability are considered as well, such as illumination variations or deforma-
tions. Another problem in active vision which state of the art techniques haven’t
addressed yet, is the cost associated with an action. This problem appears in
situations where for example moving a camera is time-consuming, and selecting
arbitrary viewpoints has an impact on the efficiency of the system.

To cope with the above challenges, we propose Active Random Forests which
can be considered as an “active classifier”. The framework is based on classical
Random Forests [2] having also the ability to control viewing parameters during
on-line classification and regression. The key difference is that the classifier it-
self decides which actions are required in order to collect information which will
disambiguate current hypotheses in an optimal way. As we will demonstrate,
this combination of classification and viewpoint selection outperforms solutions
which have these two components separated. Furthermore, inference is made us-
ing the entire set of images captured until a certain time, taking advantage of
the various feature associations between different viewpoints. The on-line infer-
ence and action planning become extremely fast by the use of Random Forests,
making the framework very suitable for real-time applications such as robotics.
In summary, the main contributions of our framework are:

– A multi-view active classifier which combines features from multiple
views and is able to make decisions about further actions in order to accom-
plish classification and regression tasks in an optimal way.

– Novel decision making criteria based on distribution divergence of train-
ing and validation sets while growing the decision trees.

– A decision selection method during classification and regression using
the powerful voting scheme inherent to Random Forests.

– A method for taking into account the possible costs of actions.

To our knowledge, there is no other framework which has an action selection
process inherent to the object classifier. Letting the classifier decide the next
disambiguating actions gives much discriminative power to the framework, as
will be shown in Section ?.
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We demonstrate the proposed framework in the challenging problem of rec-
ognizing and unfolding clothes autonomously using a bimanual robot. In this
problem, three objectives should be achieved: Garment categorization, pose es-
timation and certain grasp point detection in order to accomplish the unfolding
task as shown in Figures 1 and 2(a). Furthermore, we are interested only in the
best viewpoint selection as the controllable viewing parameter, although other
parameters (e.g. zooming) or robot actions can be also integrated easily. In this
common case of a robot grasping an object, viewpoint selection is achieved by
rotating the object on the robot gripper while cameras mounted on the robot
head capture images. We compare our work with the methods described in [3]
and [4] using two different single-view classifiers [icra][deformable-part-model],
showing the superiority of our approach.

2 Related Work

Active vision literature focuses mainly on finding efficient methods for select-
ing observations optimally while little attention is paid to the classifier which is
kept simple. The majority of works adopted an off-line approach which consists
of precomputing disambiguating features from training data. Schiele et al. [5]
introduced “transinformation”, the transmission of information based on sta-
tistical representations, which can be used in order to assess the ambiguity of
their classifier and consequently find the next best views. Arbel et al. [6] de-
veloped a navigation system based on entropy maps, a representation of prior
knowledge about the discriminative power of each viewpoint of the objects, and
later, they presented a sequential recognition strategy using Bayesian chaining
[7]. Furthermore, Callari et al. [8] proposed a model-based active recognition,
using Bayesian probabilities learned by a neural network and Shannon entropy
to drive the system to the next best viewpoints. Also, Sipe and Casasent [9]
introduced the probabilistic feature space trajectory (FST) which can make es-
timation about the class and pose of objects along with the confidence of the
measurements and the location of the most discriminative view. Such methods
are computationally efficient both in training and testing. On the other hand,
they rely mainly on their best hypotheses based on prior knowledge which can
in fact have low probabilities on a test object while features from the visited
viewpoints are not combined in order to make the final inference.

One of the most representative works in this direction was made by Denzler
et al. [4] who tried to optimally plan the next viewpoints by using mutual infor-
mation as the criterion of the sequential decision process. They also presented a
Monte-Carlo approach for efficiently calculating this metric. Later, Sommerlade
and Reid [10] extended this idea in tracking of multiple targets on a surveillance
system. One drawback of this approach was that the accumulated evidence of
the various viewpoints visited did not affect the viewpoint selection strategy. An
improvement over this idea was made by Laporte and Arbel [3] who introduced
an on-line and more efficient way of computing dissimilarity of viewpoints by
using the Jeffrey Divergence weighted by the probabilistic belief of the state of
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the system at each time step. This work however, combines viewpoint evidence
only probabilistically using Bayesian update, and also relies on the consistent
performance of the single-image classifier in estimating poses (in at least some
viewpoints), which is generally very difficult, especially when dealing with de-
formable objects.

The work of Roy et al. [11] solves another problem in active vision, which
is identifying large objects that do not fit on the camera’s field of view, us-
ing Bayesian methods to handle uncertainty. The work of Zhou et al. [12] gives
another perspective to active vision, making a “conditional feature sensitivity”
analysis, allowing to select the most discriminative feature in an active recog-
nition system. A recent work on active vision was made by Jia et al. [13][14]
who used a similarity measure based on the Implicit Shape Model and other
prior knowledge combined in a boosting algorithm in order to plan the next
actions. However their similarity measure is not suitable for objects exhibiting
high intra-class variations. Finally, there are some active vision applications to
robotic systems in real scenarios [15] [16] [17] [18] mainly based on the previously
described works, showing promising results.

Our work is based on the method proposed by Doumanoglou et al. [19].
In that work authors have used Random Forests for identifying garments and
grasping points, while they also propose an active scheme based on POMDPs for
dealing with uncertainty. Although results were promising, viewpoint selection
was made only sequentially by taking nearby viewpoints, which is a sub-optimal
solution while in some cases it made the whole process slow. Our work is built
on the same principles, making active vision faster and more efficient by the
use of Active Random Forests. In addition, we estimate the pose of the garment
in order to guide the robot’s gripper to grasp a desired point, which reduced
grasping errors compared to the local plane fitting techniques employed in [19].
Most importantly, our framework can be easily extended to other active vision
problems.

3 Problem Overview

We will describe our framework of Active Random Forests in the context of
our target application: autonomously unfolding clothes using a dual-arm robot.
This problem consists of picking a cloth from a table in a random configuration,
recognizing it and bringing it into a predefined unfolded configuration. In order to
unfold a garment, the robot has to grasp the article from two certain grasp points
sequentially (e.g. the shoulders of a shirt) and hang it freely to naturally unfold
by gravity, imitating the actions of a human (Fig. 1). There are three underlying
problems in such procedure: Garment type classification, grasp points detection
and pose estimation as shown in Figure 2(a). We will describe in short these
objectives, based on [19]:

For classification, 4 basic garment types are considered: shirts, trousers,
shorts and T-shirts. In order to reduce the configuration space of a garment
picked up randomly, the robot first grasps its lowest point. Fig 2(c) shows the
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(a) (b) (c)

Fig. 2. Clothes Analysis. a) Grasp point and pose vectors. b) The depth and curvature
channels and the random positions used in binary pixel tests. c) Possible lowest points
of clothes. Gray boxes are the symmetric points of the blue ones. Green boxes show
the desired grasping points for unfolding

possible lowest points which are 2 for shorts and T-shirts, and one for shirts and
trousers. Therefore, the classes considered are 6, corresponding to the possible
lowest points.

The grasp points used for unfolding are manually defined, shown in Fig. 2(c).
The robot should sequentially find and pick these points so that a garment can
be unfolded.

While pose cannot be clearly defined on deformable objects, in our problem
we define it as the direction from which a desired point on the garment should
be grasped by the robot arm, depicted in Figure 2(a).

In the next section we will describe how these objectives can be addressed
using our Active Random Forests framework for efficient viewpoint selection.

4 Active Random Forests

As our framework is based on classical Random Forests, we will first describe the
configuration of the decision trees and the training samples, then propose our
decision making criteria in order to learn disambiguating actions and finally we
will analyse the inference process and the real-time viewpoint selection achieved
by an Active Random Forest.

4.1 Training

One training sample of Active Random Forests should consist of all the images
that can be obtained from a certain training object using the possible actions
and controllable viewing parameters available in the system. In our problem,
only viewpoint selection is considered and therefore training samples can be
represented as a tuple (I(v), c,g(v),p(v)), v ∈ V where I is a vector containing
the depth image of the garment, c is the class, g is a 2D vector containing the
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position of the desired grasp point in the image, p is a 2D vector containing
the pose of the cloth defined in the XY plane as shown in Figure 2(a) and V
is the set of all possible viewpoints v of the garment. Viewpoints are considered
around the Z axis (which coincides with the holding gripper) covering the whole
360o degrees. We discretized the infinite viewpoint space into V equal angle bins.
Vector g(v) is not defined if the point is not visible from viewpoint v.

Each split node of Random Decision Trees stores an array of the already seen
viewpoints V′ which also passes to its children. Starting at the root node, the
only seen viewpoint is the current one (V′ = {V0}). Following [19], at each node
a random set of splitting tests is generated with each test containing a random
seen viewpoint v ∈ V′ taken from uniform distribution over V′, a channel Ci =
{C1, C2}, a tuple of random positions M(u1,u2,u3) on the image (Fig. 2(b)) and
a binary test f(v, Ci,M) > t using threshold t, selected from a pool of possible
binary tests. Channel C1 is the raw depth data of the garment as captured from
a depth sensor filtered by a bilateral filter and channel C2 is the mean curvature
of the surface filtered by an average filter[19]. Also we used the binary tests
proposed in [19] containing simple pixel tests in the depth or curvature channel,
which showed good results and low execution time. For clarity reasons, they are
shown below:

– f(v, C1,M = {u1,u2}) = du1(v)− du2(v)
– f(v, C1,M = {u1,u2,u3}) = (du1(v)− du3(v))− (du3(v)− du2(v)).
– f(v, C2,M = {u1}) = |cu1(v)|

where du is the depth at location u, as shown in Figure 2(b).
In contrast with [19], our forest is able to make classification, grasp point

detection and pose estimation using the same trees. To achieve this, we apply
a hierarchical quality function for node splitting, so that the upper part of the
trees perform classification and the lower part perform regression. The overall
quality function has the following form:

Q = αQc + (1− α)Qr (1)

where Qc is a quality function for classification, Qr a quality function for re-
gression and α an adapting parameter. We adopt the traditional information
gain using Shannon Entropy for Qc and the corresponding information gain for
continuous Gaussian distributions as defined in [21] for Qr. Specifically, letting
S be the set of training samples reaching a split node, and f be a random bi-
nary function applied to S, the latter will be split into two subsets, Sl and Sr,
according to a random threshold t. Then, Qc is the sum of the entropies of the
2 children nodes while the quality function for regression Qr is defined as:

Qr = −
{l,r}∑
i

|Si|
|S|

V∑
v=1

ln |Λq(v)(Si)| (2)

where Λq(v) is the covariance matrix of the vectors q(v), with q(v) = g(v)
or p(v) chosen randomly. For switching between classification and regression,
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the maximum posterior probability of the samples in a node is used with the
parameter α being equal to:

α =

{
1, if maxP (c) ≤ tc
0, if maxP (c) > tc

(3)

where tc is a predefined threshold, typically set to 0.9. At a split node, the quality
function (1) is evaluated against a random set of split tests, and the one that
maximizes Q is finally selected. When the maximum posterior probability of a
class in a node is below tc, the tree performs classification, otherwise performs
regression of grasp point location or pose, selected randomly.

4.2 Incorporating Actions

When object recognition is not feasible by single view observations, some actions
should be taken to change the current viewing conditions. Furthermore, such
actions are also needed when searching for a particular region of the object which
is not visible in the current view. In contrary, actions may have an execution
cost which should be taken into account in the selection process. Therefore, the
criteria for making a decision about an action should be the informativeness of
the current observations, the belief about the visibility of the region of interest
in the current observations and the execution cost of a potential action.

The analysis in section 4.1 was made taking into account the set of already
seen viewpoints of the object V′, which at the root node contains only the
current view V0. The split nodes keep splitting the training set for a few times
using this view, until, in some cases in certain depths, the current view stops
being informative and the tree starts overfitting on the training samples reached
the nodes. The moment at which such behaviour appears is crucial and requires
a further action to be taken (or another viewpoint to be seen in our problem) so
that more disambiguating information can be collected. We achieve this by using
a validation set in parallel with the training set and measure the divergence of
the posterior distributions among these two sets in a node.

Specifically, we split the initial training set S into 2 equal-sized random sub-
sets, with ST being the actual training set and SD the validation set. For finding
the best split candidates at a node only the training set is considered. However,
the validation set is also split using the best binary test found and is passed to
the left or right child accordingly. Thus, at node j, the sample sets that arrive
are the training set SjT and the validation set SjD.

In order to determine the presence of overfitting, the training set is compared
against the validation set at each split node. For measuring the divergence of
two sets, we have experimented with two alternative metrics which were tested
and compared in the experimental results (Section ?). The first is the Hellinger
distance[22], a statistical measure defined over validation set SjT and SjD as:

HL(SjT ‖S
j
D) =

1√
2

√√√√ 6∑
c=1

(√
PSj

T
(c)−

√
PSj

D
(c)
)2

(4)
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when comparing the class distributions of the training set SjT and validation set

SjD. PS(c) is the class probability distribution of the set S. The Hellinger distance
satisfies the property 0 ≤ HL ≤ 1 and it takes its lowest value 0 when training
and validation set distributions are identical and its maximum value 1 when one
distribution is 0 when the other is positive. Similarly, assuming that grasp point
and vectors at node j are normally distributed variables, the averaged Hellinger
distance over the possible viewpoints is:

HL2(SjT ‖S
j
D; q) =

1

V

∑
v∈V

1−

(
|Λq(v)(S

j
T )||Λq(v)(S

j
D)|
) 1

4

|A| 12
exp{−1

8
uTA−1u} (5)

where
u = µq(v)(S

j
T )− µq(v)(S

j
D) (6)

A =
1

2

(
Λq(v)(S

j
T ) + Λq(v)(S

j
D)
)

(7)

and µq(v)() is the mean value over vectors q (= g(v) or p(v)) in viewpoint v.
The other metric is the so called Jensen–Shannon divergence which mea-

sures the information divergence of two probability distributions and is actually
a symmetric version of the Kullback–Leibler divergence. Measuring the class dis-
tribution divergence of training and validation sets, Jensen–Shannon divergence
is defined as:

JS(SjT ‖S
j
D) =

1

6

6∑
c=1

PSj
T

(c) log
PSj

T
(c)

Pm(c)
+ PSj

D
(c) log

PSj
D

(c)

Pm(c)
(8)

where Pm is the average distribution of ST and SD. Again, JS satisfies the
property 0 ≤ JS ≤ 1, where 0 indicates identical distributions while 1 indi-
cates maximum divergence. For measuring the information divergence of our
continuous variables over two sets, we substitute (8) with multi-variate Gaus-
sian distributions and compute the average over viewpoints V, which results
in:

JS(SjT ‖S
j
D; q) =

1

2V

∑
v∈V

(
uT
(
Λq(v)(S

j
T )−1 + Λq(v)(S

j
D)−1

)
u

+ tr
(
Λq(v)(S

j
T )−1Λq(v)(S

j
D) + Λq(v)(S

j
D)−1Λq(v)(S

j
T )− 2I

))
(9)

where u is the same used in (6). More details about (9) can be found in [22].
When the divergence of the training and validation set ∆ (= JS or HL) is

above a threshold t∆, the node becomes a decision node and an action should
be taken in order to change the viewing parameters, which in our problem is
a rotation of the robot gripper in order to change the viewpoint v. Therefore,
in a decision node the whole set of possible viewpoints V is considered in the
selection of the best random test.

There are two main directions regarding the selection criteria of a new view-
point, from which only the first has been studied in the literature:
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0 360

B(v)
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P(v)

0 360vmax
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P(v)

0 360vmax
seen

P(v)

0 360

P(v)

a)

b)

c)

d)

e)

Fig. 3. Viewpoint distribution for random test selection. a) Uniform distribution, b)
weighted distribution, c) Visibility map, d) Final distribution using (a), e) final distri-
bution using (b).

– Viewpoints can be reached at the same cost, while when moving from view-
point i to viewpoint j, no further information can be captured from the
viewpoints in between.

– Moving from viewpoint i to viewpoint j has a cost relative to the distance
of i and j, while when moving from i to j, images from the intermediate
viewpoints can be also captured without additional cost.

Our problem belongs to the second category, however we consider also the first
case for comparison with previous works. Assuming no cost for the transition
between viewpoints, the distribution of V used for randomly selecting a new
viewpoint in a decision node is uniform (Fig. 3(a)). For our problem however,
it is more realistic to assume a cost relevant to the degrees of rotation of the
gripper needed to see a viewpoint, while during rotation, all intermediate images
can be captured. The distribution of V in a decision node in this case is depicted
in Figure 3(b). If the furthest viewpoint seen so far is vmax, then all viewpoints
v = 1...vmax are also seen and have equal distribution ρ to be selected, as
no action is required. The next viewpoints have an exponential distribution
ρe−(v−vmax)/V for v = (vmax+1)...V . Parameter ρ can be easily found by solving∑V
v=1 P (v) = 1. Using such distribution, further viewpoints are less likely to be

selected by a split test. Modifying the distribution from which the viewpoints v
are randomly selected and tested, is equivalent to weighting them.

One other issue when searching for a particular region of an object like a
grasp point on a cloth, is that it may be invisible in the acquired images. In
this case, a viewpoint is needed so that not only it disambiguates the current
belief, but it also makes the particular region visible. The visibility of samples
reaching a node can be measured by the vectors in g(v) where viewpoints with
non-visible grasp points are not defined. To achieve this, a visibility map B is
constructed as:

B(v) =

∑
s∈Sj b(s, v)∑

v′∈V
∑
s∈Sj b(s, v′)

, b(s, v) =

{
1, if gs(v) exists

0, if gs(v) is not defined
(10)
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...
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0 360

P(v)
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Decision: d
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V = V

Stage	2
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SD

ST SD

...

Split	Node
Decision	Node
Leaf	node

seen current

seen seen selected

Random	Split

Stage	1

Fig. 4. Active Random Forests and decision making. Method overview.

An example is shown in Figure 3(c). When visibility is low in the collected
views, B(v) is multiplied with the current distribution of the set V calculated
previously, so that preference is given to the viewpoints where the grasp point
is more probable to be visible, as shown in Fig. 3(d)–(e).

A decision node can now select the next best viewpoint vbest randomly eval-
uating binary tests and selecting viewpoints taken from the calculated distri-
bution P (v). The random tests are evaluated on the whole set S = SjT ∪ S

j
D.

This results in finding the best viewpoint vbest which optimally separates the
diverging samples and helps the tree disambiguate its hypotheses. The samples
that arrive at each child of the decision node are again split randomly into train-
ing and validation sets and the tree enters the next stage where again only the
seen viewpoints are considered, which are now increased by 1 (Fig. 5). That is:
V′ = V′parent ∪ vbest. This stage follows the same hierarchical quality function
(1) and the tree continues growing until another decision node is encountered or
a leaf node is created. The criteria of making a leaf node is setting a minimum
number of samples allowed in a node. Finally, in the leaf nodes, along with the
class distribution P (c) we store only the first 2 modes of g(v) and p(v) per
class as in [23], weighted by the class probability, for memory efficiency during
inference.

4.3 Inference

In order to make an inference using an Active Random Forest, the current ar-
bitrary view is captured and starts traversing the trees. Although in some trees
the current view can reach a leaf node, in other trees it reaches a decision node
where other viewing parameters are needed or another viewpoint is required.
The requests from all the trees are accumulated in a voting array, and the ac-
tion needed in order to take the most voted camera parameters or viewpoint
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Fig. 5. Active Random Forests and decision making. Method overview.

is executed. The trees that requested these parameters can grow further, and
some of them may reach a leaf node. The other trees keep their requests for the
next iteration. In each iteration, the most voted camera parameters are taken.
The system updates the set of images captured at the end of each iteration with
the last observation so that the whole set can be used by the trees in order to
grow as deep as possible. The process stops when a certain amount of leaf nodes
reached and inference can be made. The final inference about the class is made
by averaging the class distribution of the leaf nodes. Grasp point detection and
pose estimation are made using Hough voting from the vectors g and p of the
leafs in the 3D space, combining all the viewpoints seen. Algorithm 1 summarizes
the inference procedure and Figure 5 illustrates the framework.

We should note that in the experiments, this voting scheme produces a re-
sponse similar to a delta function, significantly concentrated to one action. Such
response is the result of the combination of many weak classifiers which vote for
the most discriminating view at a time. Also, the more discriminative a view is,
the more leaf nodes are reached. Therefore, inference is achieved using minimum
number of actions, while if the first view is discriminative enough, no further
actions may be required.
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Algorithm 1 ARF Inference

1: Input: A trained ARF, the current arbitrary viewpoint Vcurrent

2: Output: garment class c, grasp point location g and pose p
3: function Inference(ARF )
4: Vseen = {Vcurrent} . Initialze the set of seen viewpoints
5: Leafs = ∅ . Initialize the set of leaf nodes reached
6: while true do
7: Initialize decisionV otes array to 0
8: for all Trees T in ARF do
9: node← traverse(T, Vseen)

10: if node = leaf then
11: Leafs← Leafs ∪ node
12: ARF ← ARF\T
13: else if node = decisionNode then
14: Increase decisionV otes[node→ decision]

15: if Number of Leafs > NL then
16: break
17: Execute Action for Decision: d = argmaxd(decisionV otes(d))
18: Update current view Vcurrent

19: Vseen ← Vseen ∪ Vcurrent

20: return Average class c and Hough Votes Hg(v), Hp(v) from Leafs
21: end function
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