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Abstract— We present a novel approach to the problem of
autonomously recognizing and unfolding articles of clothing
using a dual manipulator. The problem consists of grasping an
article from a random point, recognizing it and then bringing
it into an unfolded state. We propose a data-driven method for
clothes recognition from depth images using Random Decision
Forests. We also propose a method for unfolding an article of
clothing after estimating and grasping two key-points, using
Hough forests. Both methods are implemented into a POMDP
framework allowing the robot to interact optimally with the
garments, taking into account uncertainty in the recognition
and point estimation process. This active recognition and
unfolding makes our system very robust to noisy observations.
Our methods were tested on regular-sized clothes using a dual-
arm manipulator and an Xtion depth sensor. We achieved 100%
accuracy in active recognition and 93.3% unfolding success rate,
while our system operates faster compared to the state of the
art.

I. INTRODUCTION

Robots doing the housework have recently attracted the
attention of scientists. Our interest is focused in the task of
folding clothes and particularly in the first part of the proce-
dure, which is the unfolding of an article of clothing. Starting
from a crumbled initial configuration, we want to recognize
the article and then bring it into an unfolded state so that
it is ready for folding. One of the key challenges in clothes
perception and manipulation is handling the variabilities in
geometry and appearance. These variabilities are due to the
large number of different configurations of a garment, self-
occlusions and the wide range of cloth textures and colors.

Research on clothes perception and manipulation started
in the middle 90s [1], presenting some first clothes recogni-
tion techniques with the help of a dual manipulator. Later,
research has been made in garment modelling and feature
extraction [2] [3], while only recently scientists were able to
completely fold an article of clothing starting from a crum-
pled initial configuration [4] [5] [2]. The main limitations in
the state-of-the-art are a) slow performance and b) difficulty
to generalize to a variety of shapes and materials. This
stems mainly from the model-driven approaches used and
associated simplifying assumptions made. To address these
limitations we propose a data-driven approach for clothes
recognition and unfolding. We first recognize the type of the
article from raw depth data using Random Forests. Based
on the recognition result, a pair of key-points are identified
such that the article will naturally unfold when held by these
two points (Fig. 1). Point estimation is based on Hough
Forests, a random forest framework with Hough voting. An
active manipulation (perception-action) approach based on
POMDPs is also proposed that accounts for uncertainty in

(a) Random Initial Configura-
tion, grasping lowest point

(b) Recognizing garment, then
grasping 1st estimated point

(c) Grasping 2nd estimated point (d) Final unfolded configuration

Fig. 1. Robot unfolding a shirt

the vision tasks and thus leads to superior performance. In
summary, our main contributions are:
• An active manipulation procedure for unfolding an

unknown item of clothing with a minimal number of
moves and only by means of gravity (previous ap-
proaches have to go through a flattening phase using
a table).

• Fast data-driven machine learning algorithms for robust
scale-invariant classification of the garment type and
key-points estimation from noisy depth data.

• A probabilistic perception-action framework for optimal
action policy accounting for uncertainty.

Compared to the state of the art, our system requires less
movements and therefore can operate faster. Furthermore,
to our knowledge, this is the first work that autonomously
unfolds regular-sized clothes. While most researchers work
on small or baby clothes for easier manipulation, regular-
sized clothes allow higher degree of deformation and pose
more challenges to the recognition and unfolding task.

II. RELATED WORK

The first attempts in clothes manipulation have been made
by Hamajima et al. [6] who tried to detect and grasp hemlines



aiming to unfold clothes and Kaneko et al. [7] who used basic
2D shape analysis to recognize different types of clothing.
Osawa et al. [1] dealt with the recognition task and were the
first to introduce iterative grasping of the lowest point of a
garment, converging to a finite set of possible configurations,
an idea adapted to our work. The classification was based
on template matching of the final state of the garment after
re-grasping the lowest point several times. While they also
unfolded the garment using the same procedure, it can be
mostly considered as flattening rather than unfolding.

Later, researchers focused on clothes features and charac-
teristics. Triantafyllou et al. [8] used 2D images to identify
different types of corners inside a piece of fabric lying on a
table, aiming to unfold it by a robotic arm. Willimon et al. [9]
proposed an unfolding method based on clothes features for
estimating and moving certain grasping points to gradually
flatten a piece of clothing placed on a table. This method
required a large number of movements to fully unfold a
towel while performance on other types of clothes was not
mentioned. The same authors [10] proposed a recognition
method using features from two binary silhouettes taken from
two vertical viewpoints and re-grasping the garment 10 times
to improve accuracy. However the overall procedure became
very time consuming. In the final work of the same authors
[11], a multi-layer classifier was developed with features
extracted from depth images. Results where not very accurate
except for the case of considering only shirts, socks and
dresses.

Closer to our approach is the work of Kita et al. [12] [13].
It is based on fitting a deformable model to the current pose
of a shirt hanging from a random point. Using the model,
they are subsequently able to estimate the next grasping point
(e.g. the shoulders of a shirt) in order to unfold it. The authors
show promising results, that are however limited to a single
shirt.

Recently, Maitin-Shepard et al. [5] was the first to com-
plete the whole task of folding a towel using the PR2
robot. The algorithm was based on a corner detector for
appropriately grasping the towel, however the amount of
time required for completing the task makes the approach
intractable in a practical scenario. Bersch et al. [14] also used
the PR2 robot to autonomously fold a T-Shirt with fiducial
markers, again performing in a prohibited running time. The
state of the art in unfolding articles of clothing is the work
of Cusumano-Towner et al. [4]. Adopting the technique of
sequentially grasping the lowest point they can estimate the
resulting state of the garment using a cloth simulator in an
HMM framework. After putting the garment on a table, they
plan a sequence of grasps in order to bring it to the desired
unfolded configuration. The method was applied on small or
baby clothes and results were promising. However, applying
this method to regular-sized clothes requires large working
space (table) and long manipulators attached on a moving
base for better results. In contrary, our approach does not
require a table for unfolding and no movement of the base of
the manipulators is necessary. Also, we have further reduced
the number of moves a robot should make in order to unfold

Fig. 2. Possible lowest points. Gray squares are the symmetric points of
the red ones. Arrows show the desired grasping points for unfolding.

an article of clothing.
Concluding, our work is influenced by two other contri-

butions not related to the laundry problem. The first is the
work of Shotton et al. [15] who used random forests for
human pose estimation from single depth images. The other
work is published by Gall et al. [16] who introduced Hough
forests for pedestrian detection, a Random Forest framework
with the voting property. In this paper we demonstrate
that the above machine learning techniques can produce
robust results with challenging data such as various highly
deformable clothes.

III. CLOTHES RECOGNITION

The recognition is based on Random Forests, first intro-
duced by Breiman et al. [17] as a method of classification
and regression. They achieve state of the art performance
compared to other classifiers like SVM [15] [16] [18] while
they provide very fast inference appropriate for real-time
applications.

To define our problem, we first assume that an article of
clothing has already been isolated from a pile of clothes
and the robot grasps it from a random point. The space of
possible configurations of a garment hanging randomly is
very large, therefore we reduce it by grasping the lowest
point [1]. Fig. 2 shows the possible lowest points of four
types of clothes considered in this paper: shirts, trousers,
shorts and T-shirts. There is only one possible lowest point
for shirts and trousers and two possible lowest points for
shorts and T-shirts without counting the symmetric ones.
Our classifier is able to distinguish between both garment
types and hanging points. Thus, there are six classes defined
as {Shirt,Trousers,Shorts1,Shorts2,T shirt1,T shirt2} where
subscripts 1,2 indicate the different lowest points.

A set of trees is trained over a database of depth images
captured from clothes of all the six classes. Each training
sample is a pair (I,c) where I is a vector containing the depth
image and c is the class of the garment labelled manually.
Each tree is trained over a randomly chosen subset of the
initial training set. At each node, a set of tests are randomly
generated with each test containing the following parameters:
• Ci, i ∈ {1,2}: the channel used.
• V: a set of random vectors indicating random positions

in the image.
• f (V,Ci) > t: a binary test over the set V and channel

Ci using threshold t
We have used two different channels. Channel C1 corre-
sponds to the depth values as captured from the sensor
filtered by a bilateral filter and channel C2 is the mean



Fig. 3. Binary tests: a) 2 pixel test in depth channel, b) 3 pixel test in
depth channel, c) 1 pixel test in curvature channel.

curvature H calculated from the depth data filtered by an
average filter. The mean curvature at a point on a surface is
defined as:

H =
EN +GL−2FM

2(EG−F2)
(1)

where E,F,G and L,M,N are the First and Second Order
Fundamental Coefficients respectively evaluated on the point
[19]. Vectors in V are normalized to the width and height of
the bounding box of the garment for scale invariance so that
vx,vy ∈ [0,1],v ∈ V.

Three different types of binary tests were used:

• Two pixel test in the depth channel: V = {u,v},
f (V,C1) = du − dv, where dx is the depth value at
position x.

• Three pixel test in the depth channel: V = {u,v,w},
with w being a random point on the line between u and
v, f (V,C1) = (du−dw)− (dw−dv).

• One pixel test in the curvature channel: V = {u},
f (V,C2) = |cu| where |cu| is the absolute value of the
curvature at position u.

Tests are illustrated in Fig. 3. Those simple features are
extremely fast to compute and their combination along the
path of the trees delivers high discriminative power. Pixel
tests are not restricted inside a patch as in [16] and reveal
global surface characteristics. At each node a random set
of tests is generated and the best is chosen as the one that
minimizes the Shannon Entropy of the samples at each child
node, which is defined as:

Hentropy =
Nc

∑
i=1
−Ni

N
ln(

Ni

N
) (2)

Nc is the number of classes, Ni is the number of samples of
class i and N is the total number of samples reached a child
node. We declare a node as leaf and stop splitting it further
when a minimum number of samples reached the node or
the tree has grown to a maximum allowed depth.

Inference about a previously unseen item of clothing is
made by traversing its depth image towards the leafs in every
tree in the forest, going left or right according to the binary
test f assigned to each node. The class of the sample will
be the dominant class of the average class distribution of the
leaf nodes reached. We should mention that the inference
time of a tree in the forest is O(logD) where D is the depth
of the tree and therefore is very fast in real-time recognition.

IV. GRASP POINT ESTIMATION

Having recognized the garment, the objective is now to
grasp it from two certain key-points in order to unfold it.
Figure 2 shows the desired grasping points (arrows) for the
four types of clothes we used. Our grasp point estimation is
based on Hough Forests[16]. The idea is similar to random
forests but with an additional property. Each training sample,
apart from the label, contains some extra information which
is in our case a vector containing the position of one of
our desired grasping points. Thus, a training sample is now
a triplet (I,c,p) where p = [px, py] is the position of the
grasping point on the image I. Coordinates px and py are
normalized to the width and height of the bounding box of
the garment for scale invariance so that px, py ∈ [0,1]. When
the grasping point is not visible, p is undefined and not used.
A separate Hough Forest is created for each type of garment,
so the classes now become two: c = 0 represents images
where the grasping point is not visible and c = 1 represents
images where the grasping point is visible.

The binary tests used are the same as in clothes recognition
with the difference that two objective functions should now
be minimized for test selection: minimizing the uncertainty
about the classes and minimizing the uncertainty about the
location of the grasping point of the samples in each node.
The uncertainty of the classes is again measured using the
Shannon Entropy:

Hentropy = ∑
c∈{0,1}

−Nc

N
ln

Nc

N
(3)

where Nc is the number of samples of class c and N is
the number of samples reached the node. To measure the
uncertainty of the location, the following quantity was used:

D = ∑
samples

d(ps,pM) (4)

where d is the Euclidean distance, ps is the vector of a sample
and pM is the average vector of all samples of a node.

While training, leaf nodes store the distribution P(c) of
the classes along with a list Lp of all the location vectors
of the samples reached them. When a previously unseen
image traverses the Hough forest, the location vectors stored
in the leaf nodes will vote for the grasping point location.
These votes are accumulated into a Hough image and the
grasping point location is estimated as the point where
the concentration of votes is high (Fig. 4). We estimate
this point by picking the maximum of the Hough image
after Gaussian filtering. This can also be done using the
MeanShift algorithm. The localization of the grasping point
only occurs when the class recognized is 1, i.e. the grasping
point is visible. After a grasp point is detected, the surface
orientation in its vicinity is estimated by locally fitting a
plane. This is used to create a valid grasp by moving the
gripper perpendicularly to the estimated direction.

Each Hough Forest is trained for a certain garment type in
order to localize only one grasping point at a time. When this
point is grasped, another Hough forests is used to estimate
the second one and complete the unfolding. Therefore, we



Fig. 4. Hough forest and grasp point estimation from Hough Image

have trained several Hough Forests for every occasion, i.e. for
clothes hanging from the lowest or from one desired grasping
point. The decision about which Hough forest should be
used, is based on the recognition result.

V. PROBABILISTIC ACTION PLANNING

Although the one-frame recognition accuracy of our Ran-
dom Forests classifier is statistically high (Fig. 6(b)) there
are some viewpoints of clothes where their type is hardly
discernible. In order to eliminate the possibility of erroneous
classification, we introduce an active recognition scheme.
Furthermore, we want to make our system insensitive to
noisy point estimations mainly caused by the noisy depth
input, introducing an active point estimation scheme as well.
The idea is that the robot will rotate the garment around the
gravity axis until the uncertainty about recognition or point
estimation is minimized. Instead of exhaustively searching
over all viewpoints we employ a probabilistic framework
that will select the best action policy jointly minimizing the
uncertainty and cost of manipulation.

A widely used probabilistic framework is the Partially
Observable Markov Decision Processes (MDP) which are
capable of modelling the uncertainty about the current state
and can find an optimal policy over the so called belief
state. While other probabilistic planning approaches have
been proposed [20] [21], we have adopted the POMDP
framework because having only few states, our problem can
be efficiently solved in reasonable time [22] while we take
advantage of the representation power and ease of use of
the framework. POMDPs have been also used in clothes
manipulation by Monso et al. [23] who tried to isolate articles
of clothing from a pile.

Fig. 5 shows the block diagram of the complete un-
folding process. We have developed two different kinds
of POMDPs, one for recognition and one for grasp point
estimation described below. If one of those sub-tasks cannot
be accomplished, the robot returns to its initial configuration
by grasping the lowest point of the garment and thus enters
a loop until it becomes unfolded.

A. Active Recognition

Our proposed POMDP is a tuple (S,A,O,T,P,R,γ,b0)
where
• S is the set of states.
• A is the set of actions.
• O is the set of observations.

• T is the conditional transition probabilities.
• P is the conditional observation probabilities.
• R is the reward function over the actions and states.
• γ is the discount factor of rewards over time.
• b0 is the initial belief state.

The states S in the recognition phase are six and correspond
to the six classes used in the classification S = {S1,S2..,S6}.
The set of actions is A= {Arotate,A1,A2, ...,A6} where Arotate
means that the robotic gripper rotates the hanging garment
by a degrees to take another observation, while A1−A6 is the
final recognition decision being at state S1−S6 accordingly.
The observations are collected from the Random Forests
classifier and contain the inferred class cin of the garment
along with the probability P(cin) from the averaged distri-
bution of the leaf nodes. P(cin) takes values in the interval
[0,1] but we quantise it into five equally spaced bars for
reducing the observation dimensionality. Thus, there are 30
observations, five probability bars for each of the six classes
(O= {OS1,P1 ...OS1,P5 ,OS2,P1 ...OS2,P5 , ...,OS6,P1 ...OS6,P5}). The
transition probabilities taking action Arotate are:

T (Si|Arotate,S j) =

{
1, if i = j
0, if i 6= j

i, j ∈ {1, ..,6} (5)

All other actions finalize the recognition process and resets
the state to its initial configuration:

T (Si|A j,Sk) = b0(Si) i, j,k ∈ {1..6} (6)

Observation probabilities P(O|Si) are only dependent on the
current state and are measured experimentally from previ-
ously unseen images. Rewards are assigned in the following
way: a positive reward is given to the robot when being at
state Si takes action Ai and a very negative reward when
being at state Si takes action A j 6=i. A small negative reward
is given to the action Arotate in order to avoid infinite rotation.
Regarding the initial probabilities, each type of garment has
equal probability to be selected by the robot, however shorts
and T-shirts have two possible lowest point. Thus, the initial
belief state is b0 = (0.25,0.25,0.125,0.125,0.125,0.125)
corresponding to states S1 - S6 accordingly. The discount
factor γ is set to 0.99. Our objective is to increase the
belief about a state before taking a final decision, taking
into account the uncertainty about the result of the Random
Forest classifier (P(O|Si)).

At the time period tn, the robot is in state s∈ S and decides
to take action a ∈ A. The next state of the robot will now
be s′ with probability T (s′|a,s) and will receive the reward
γnR(s′,a). After each action of the robot, the belief about
each state has to be updated. Let b(s) be the probability
of the robot being at state s and o the observation of the
robot after taking action a. The belief state will be updated
according to the following equation:

b′(s′) =
P(o|s′,a) ∑

s∈S
T (s′|s,a)b(s)

∑
s′∈S

P(o|s′,a) ∑
s∈S

T (s′|s,a)b(s)
(7)
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Fig. 5. Block diagram of the unfolding procedure

where s′ is the next state of the robot, b′(s′) is the new
belief state over the states s′ and P(o|s′,a) is the probability
of receiving observation o after taking action a and arriving
at state s′. The denominator is a normalization factor.

Solving the above POMDP generates an optimal action
policy for the robot. The belief state is updated after each
observation of the classifier using (7) and the robot decides
according to the policy whether to further rotate the garment
to collect more observations or take a final decision and
continue the unfolding process. In case the garment is rotated
more than 360 degrees, the process is restarted by re-grasping
the lowest point. As we will see (Table I), this active
recognition dramatically increases the recognition accuracy
with the cost of only a few rotations.

B. Active Grasp Point Estimation

The same idea is applied to the grasp point estimation
procedure. The states now correspond to the different grasp
point locations with an extra state indicating the invisible
grasp point. Again, we quantize the image space to lower
the problem dimensionality applying a 8x8 grid on the
bounding box of the garment (Fig. 5). Thus, the set of
states is S = {S0,S1, ...,S64} where S0 is the invisible-grasp
point state and S1 - S64 correspond to the location of the
grasp point on the 8x8 grid. The set of actions is similarly
defined as A = {Arotate,A1,A2...,A64} where Arotate should
be taken when grasp point is invisible and Ai is the action of
grasping the estimated point located on the ith grid square
(state Si). The observations come from the Hough Forest
and contain the location of the estimated point along with
the probability of the class c = 1, i.e. the probability of
the point being visible. Quantising this probability into 5
equally spaced bars we get 320 different observations, 5
probability bars for each of the 64 grid locations (O =
{OS1,P1 ...OS1,P5 ,OS2,P1 ...OS2,P5 , ...,OS64,P1 ...OS64,P5}). All the
other variables (T,P,b0) are calculated experimentally from
previously unseen images. A positive reward is given if the
robot grasps the correct location, a smaller reward if it grasps
a neighbour location and a very negative reward if it grasps
any other location. In addition, if the robot decides to rotate
the garment, a positive reward is given if the grasp point was
invisible and a small negative reward is given if the grasp
point was visible.

The solution of the unfolding POMDP gives the optimal
action policy for estimating a desired point. The robot rotates

the garment until a certain confidence about the location of
the point is reached and then decides to grasp it. If the
rotation exceeds 360 degrees the process is restarted by
picking again the lowest point. This probabilistic planning
makes point estimation very robust and insensitive to noisy
estimations.

VI. EXPERIMENTS

Robot Setup. We have tested our methods using a dual
manipulator by YASKAWA1. We capture depth images from
an Xtion depth sensor placed between the arms at a fixed
height while grasping is based on custom “claw like” grip-
pers [24].

Training Set. Our training dataset was created using 24
regular-sized clothes of various sizes and fabric types, 6 of
each category. In order to cover a variety of possible clothes
configurations, each garment was grasped 20 times from each
lowest point and 40 images were captured while the garment
was rotating, covering the viewpoints of all 360 degrees. The
final database contains 28,800 depth images. Image labelling
was done manually using fiducial markers over key points
to facilitate the task.

Testing Set. Testing was based on a dataset containing
only novel items (not in the training dataset). The clothes
used for testing were 3 per category (12 total). For measuring
accuracy, we used 240 depth images for each category (1440
in total) while the same clothes were used for evaluating the
whole unfolding procedure.

Random Forest configuration. For training Random For-
est trees we used 5000 random candidate tests, 70 candidate
thresholds per test and 4 minimum samples per node, while
no restriction on the maximum depth of trees was imposed.
Figure 6(a) shows the average recognition rate in relation
with the number of trees in the forest. We see that above
60 trees recognition rate remains the same, therefore this is
the number of trees used in our forests. We used the same
configuration for both random and Hough forests. Training
a tree for recognition takes about half an hour while a tree
for point estimation takes about 10 minutes on an Intel i7
CPU. Inference of one frame takes less than 40ms.

POMDPs. For solving our POMDPs we used the point-
based SARSOP algorithm [22]. All transition and obser-
vation probabilities needed were calculated experimentally

1Two M1400 Yaskawa arms mounted on a rotating base
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Fig. 6. a) The average recognition rate as the number of trees increases, b) Recognition rate of each class for passive and active method, c) Grasp point
estimation rate of each possible occasion. gp2 means the estimation of the 2nd grasping point while the garment is hanging from the 1st one.

Fig. 7. Examples of successful grasp point detection

from the training set of clothes from images not used for
training the forests. The rotation angle a used is 10 degrees.
Moreover, reward values affect the level of confidence re-
quired for the robot in order to take a decision about an
action. Having a confidence level above 0.9999 we were able
to achieve 100% active recognition accuracy requiring only
few rotations (Table I), while also improving point estimation
results (Fig. 6(c)).

Recognition Results. It is difficult to compare clothes
recognition results with other approaches as each author
makes different assumptions. Fig. 6(b) compares results
of our passive and active recognition. Active recognition
achieved 100% accuracy while the one-frame (passive)
recognition had 90% success rate in average.

Grasp point estimation results. Fig. 6(c) shows the point
estimation results, while there is no other similar work to
compare with. Again, an improvement of active over passive
estimation is observed. Some success and failure examples
of point estimations are shown in Figures 7 and 8(a).

End-to-end unfolding results. We have conducted 120
full end-to-end unfolding experiments, using each test gar-
ment 10 times. We consider the unfolding successful when
the grasped points are 10cm close to the desired points. We
also implemented a shape matching algorithm [25] in order
to automatically asses the final unfolded state by matching
the unfolded garment to predefined unfolded templates. If
the matching score is below a threshold, the process is
restarted. The process is also restarted in case the garment is
rotated more than 360 degrees and no recognition or point
estimation occurs. If robot restarted the process more than
once it was assumed as failure. 112 out of 120 experiments
the unfolding was successful. Recognition achieved 100%
accuracy requiring 2.4 rotations average. We encountered
three types of errors caused by the gripper: a) the robot
grasped two points on the garment because its opening is

not adjustable, b) inaccurate alignment of the robot gripper
because the plane fitting around the estimated point was
affected by noisy depth sensor data, c) gripper couldn’t
grasp a surface because of its local shape. These errors are
illustrated in Fig. 8(b) - 8(d). 15 out of 22 total errors (68%)
were caused by the gripper while only 7 (32%) were caused
by incorrect point estimations. However, in 14 erroneous
situations, errors were perceived by the robot which restarted
the process and successfully unfolded the garment. In the
remaining 8 erroneous cases, robot required more than one
restart and thus we considered them as failures. In no
experiment the grasped point was more than 10cm away from
the ground truth. Finally, the average unfolding time is 2min
23.5sec with the robot set in its safety speed mode. Results
are summarized in table I2. In the state of the art work [4],
their videos show a good case scenario of unfolding shorts
in about 3:20 and a more complex scenario of unfolding a
T-shirt in about 4:30, which is slower than our average time
in every category. Although robot parameters like motion
planning affects the execution time, making it a not very
reliable metric, our approach have reduced the unfolding
movements to three grasps and few rotations. Such actions
are generally executed faster compared to lying the garment
on a table and re-grasping it quite a few times.

VII. CONCLUSIONS

We have proposed a complete solution to the problem
of autonomously unfolding an article of clothing. We used
random forests for clothes classification and Hough forests
for grasp point estimation in order to completely unfold four
categories of clothes. Both were implemented into a POMDP
framework for planning a dual manipulator optimally, en-
hancing the recognition and the unfolding procedure. We
achieved very high recognition and unfolding success rate

2Supplementary video: http://clopema.iti.gr/ICRA_2014/
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Fig. 8. a) Failure examples of grasp point estimation (in green is the ground truth, when missing point is invisible), b) The opening of the gripper is not
adjustable causing the grasp of two points, c) Inaccurate grasping because of noisy point cloud, c) Gripper cannot grasp some kinds of surfaces easily

TABLE I
UNFOLDING RESULTS

Experiments Successful Successful Average Rotations Estimation Gripper Average
Unfoldings Recognition for recognition Errors Errors time

Shirts 30 27 30 0,8 2 4 150 sec.
Trousers 30 30 30 1,1 0 3 136 sec.
Shorts 30 30 30 2,7 0 2 127 sec.
T-shirts 30 25 30 5 5 6 161 sec.

Total 120 112 120 2.4 (avg.) 7 15 143.5 (avg.)
% 93.3% 100%

while our methods operate faster compared to the state of the
art. The majority of our errors were caused by unsuccessful
grasping of an estimated point. One reason is the noise
of the Xtion depth sensor which causes inaccurate motion
planning of the manipulators. The other reason is the lack of
dexterity of the gripper, making the grasping of very thin or
flat surfaces very difficult. The solution to the first problem
would be a stereo camera with high resolution, which is
planned to be used in the near future. On the other hand,
a more humanoid gripper seems a more appropriate solution
for clothes manipulation.
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