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Abstract
Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence
(AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning
method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among
prominent entities within data. Validation of the approach is performed in two datasets that connect lan-
guage and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted
knowledge for subsequent use through reasoning engines is also offered.
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1. Introduction

Nowadays, artificial intelligence (AI) is linked mostly to machine learning (ML) solutions,
enabling machines to learn from data and subsequently make predictions based on unidentified
patterns in data, taking advantage of neural network (NN)-based methods. However, AI is still
far from encompassing human-like cognitive capacities, which include not only learning but
also understanding1, abstracting, planning, representing knowledge and logically reasoning
over it. On the other hand, Knowledge Representation and Reasoning (KRR) techniques allow
machines to reason about structured knowledge, in order to perform human-like complex
problem solving and decision-making.

AI foundations propose that all the aforementioned cognitive processes (learning, abstracting,
representing, reasoning) need to be integrated under a unified strategy, in order to advance to
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Figure 1: Analogies of cognitive development theory (Piagetean-inspired) to modern AI.

stronger AI. This integration involves the progress from intuitive, sub-symbolic intelligence
to symbolic, logic-based cognitive processes. Bridging sub-symbolic (connectionist) AI with
symbolic AI has long been considered crucial towards effective AI solutions [1].

Recognizing the need of symbolic and sub-symbolic integration, the work of this paper
is inspired by the amalgamation of different learning and epistemology theories on human
cognitive development. Besides their functional differences, most theories converge to a devel-
opmental process by which human cognition evolves. In this process, sub-symbolic learning is
fundamental (both in the sense of rudimentary, as well as in the sense of necessary) to obtain
symbolic function, subsequently used for concrete or abstract logic and reasoning [2].

The current success of NN-based sub-symbolic learning and the plethora of symbolic KRR
solutions long available, signify that AI is now equipped to complete its development cycle,
but with one missing link between two ends: non-manual acquisition of symbolic knowledge
based on the distillation of information hidden in sub-symbolic models. Figure 1 portrays the
analogies with the Piagetean [3]2 cognitive development stages to AI’s processes.

The work of this paper corresponds to analogies understanding, i.e. making connections be-
tween concepts. Consequently, we propose an unsupervised approach for extracting knowledge
based on the patterns formed in trained neural networks, namely from Restricted Boltzmann
Machines (RBMs) [4]. The extracted knowledge can be represented formally and thus shared,
used and re-used for logical inference over any domain. The idea is in its early fruition stage
and the paper performs a sanity check over the proposed approach, with an interest in its
applicability to different domains and/or data, and presents a concrete plan for the evolution of
the approach.

To this end, Section 2 offers an overview of related work; Section 3 presents the implemented
method, along with first experimental results and observations; Section 4 provides a conclusion
over the initial approach and a concrete overview of future work.

2. Related Work

Integration of sub-symbolic and symbolic methods pertains to three major research directions:
a) symbolic representation learning through neural approaches; b) induction of structured

2Piaget’s theory has received criticism in terms of terminology, stage transition and contents, causation of
gained attributes, etc. This is the reason why the specific stage names are not used in Figure 1. However, it does
provide a concrete flow of the development of cognitive capacities in humans, useful to depict the analogies in
human vs machine intelligence developmental processes.



knowledge and/or some logical inference capacities in neural approaches, e.g. [5], [6]; c) hybrid
methods that combine symbolic and sub-symbolic solutions to solve different parts of specific
problems, e.g. [7], [8].

The scope of this paper lies in (a) - symbolic representation learning. This can be further
divided to: i) recognition of pertinent symbolic representations of salient concepts within a
domain and/or their hierarchy; ii) recognition of prominent relations that associate particular
concepts; iii) pattern mining for extracting particular associative rules within a domain of
discourse.

Representation learning focuses on identifying/automatically constructing the input features
needed to perform a specific ML task. In computer vision, representations learned often do not
have any symbolic manifestation, rather remain unstructured, black box vehicles in ML-based
classification and feature detection [9], with few approaches aligning representations learned
to specific symbolic labels [10].

In NLP, representation learning revolves mostly around the construction of word embeddings,
associating words of high lexical proximity. Symbolic representation of natural language
components is inherent, often accompanied with underlying semantics [11]. Several supervised
methods have tried to move beyond mere term proximity identification to deeper semantics
recognition, usually delving into encoding taxonomic relations between words within term
embeddings [12].

Symbolic representation of non-taxonomic relations, however, is one of the most pertinent
tasks towards structured knowledge acquisition. To this end, [13] employ modular neural
networks, combining different NN models (e.g. image and text) with common features fused in
a cumulative model, thus allowing to learn how textual relations associate objects in images.

The Neuro-Symbolic Concept Learner [14], not only learns object representations in scenes
through natural supervision – i.e. no labeled data required – but also learns non-specified binary
relations between recognized objects, combining visual and textual cues. Ultimately, knowledge
learned is formalized and reasoned upon, in a question-answering task. The method is however
yet confined to very few specific objects and predefined relations between them. Still, it paves
the way towards pragmatic neural extraction of knowledge and subsequently towards symbolic
inferencing over new knowledge.

The Neural Symbolic Cognitive Agent (NSCA) [15] uses a Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) [16] to learn complex temporal relations between data and
subsequently formalize these relations into propositional rules, to be used for subsequent
inferencing. The method has been applied to a restricted domain task and only to enrich
existing knowledge with non-persistent, non-verified (to be exact, not needing verification)
knowledge, however it unveils the capacity of RBMs as a powerful neural method for obtaining
associations and rules among entities.

[17] also employ Restricted Boltzmann Machines (RBMs) in order to extract fuzzy rules, en-
capsulating the uncertainty/vagueness of probabilistic machine learning within logic-compliant
rules, something missing from the crisp NSCA method. However, this method lacks compre-
hensive description of the formalization method for the extracted rules.

The hybrid Differential Inductive Logic Programming (DILP) method [18] combines dif-
ferential neural-based learning with traditional inductive logic programming to learn and
subsequently predict the less than/greater than relationships among visual data of the MNIST



digits database and formalizing them into logical rules, however still remaining a crisp and
supervised approach.

3. Symbolic Relational Representations Extraction

Inspired by [15] and [17], the presented approach aims at extracting intricate knowledge, i.e.
non-predefined associations among data, though RBMs [19] and symbolically representing them
for further use in knowledge-based inferencing. RBMs were elected due to their capacity for
unsupervised learning of probabilities over their input, which can in turn be further analysed
to yield fuzzy associations among the input entities.

The proposed approach uses a state-of-the-art algorithm for RBMs, following the benchmark-
ing implementation of RBMs for Deep Belief Nets (DBNs) of [19], but with a more efficient
training algorithm than the first implementation, i.e. an extension of the original Contrastive
Divergence (CD) algorithm, namely Persistent Contrastive Divergence (PCD) [20].

RBMs compute the probability distribution over pairs of visible and hidden vectors, V and H
respectively, by the equation:

𝑃 (𝑣, ℎ) = 𝑒𝑥𝑝(𝑣⊤𝑏𝑣 + ℎ⊤𝑏ℎ + 𝑣⊤𝑊ℎ)/𝑍, 𝑤𝑖𝑡ℎ 𝑉 ∈
{
0, 1

}𝑁𝑉 , 𝐻 ∈
{
0, 1

}𝑁𝐻 (1)
where 𝑏𝑣 and 𝑏ℎ are biases (initialized uniformly in our implementation) of the visible and
hidden vectors respectively, 𝑊 is the matrix of connection weights and 𝑍 = 𝑏𝑉 + 𝑏𝐻 +𝑊 is a
partition function that ensures the validity of the probability distribution [16]. The training
algorithm (PCD) for the network finds the states of visible (V) and hidden (H) units that lower
the total energy of the network (E), thus maximizing the likelihood of correlation between
visible units based on their connection through the network’s hidden units, as described in [20].

𝐸(𝑣, ℎ) = −∑
𝑖,𝑗

𝑤𝑖𝑗𝑣𝑖ℎ𝑗 −∑
𝑖
𝑏𝑣𝑖 𝑣𝑖 −∑

𝑗
𝑏ℎ𝑗 ℎ𝑗 (2)

Throughout training we monitored the energy gap between the training and validation sets to
avoid overfitting, as per [4]. For each experiment the number of hidden units was set equal to
the number of the visible ones (300 for Visual Genome and 250 for GQA, re Section 3.1.1), while
the learning rate was set at 10−4.

3.1. RBM Training

The approach aims at examining the capacities of RBMs to extract persistent, common-sense,
semantic relations among classes in datasets of multi-labelled annotated images. The reason
why visually-oriented relations’ extraction was opted for the first approach (as opposed to e.g.
natural language) is the rudimentary nature and distinguishability of visual data interrelations
(as opposed to the complexity and semantic ambiguity of natural language).

In order to examine the domain independence capacities of the approach, the experiment
was performed in two distinct datasets.

3.1.1. Experiment Setup

In order to train our network we used two popular structured image datasets, Visual Genome [21]
and GQA [22]. Both contain rich annotations about the objects (object classes) present in an



Figure 2: Visual Genome thresholding. Left: Hidden units’confidence-based curve and cutoff point.
Right: Activation weights (for maintained hidden units) distribution curve and cutoff points.

image, as well as their semantic relationships. As input, we pass a binary vector per sample
(dataset image), denoting the existence of one or more object classes in that sample. Each image
may contain multiple object classes, making the input an n-hot vector. Although object names
(annotations) are free-form in both datasets, they both offer the means to map names into a
consistent object class dictionary. Therefore, for Visual Genome we assigned each object name
to the provided WordNet [23]-based synset it belongs to and converted each object name to a
WordNet lemma for GQA.

Since both datasets contain a large number of object classes, we only used those with more
than ≈ 1000 appearances, in order to restrict the computational cost of training, totaling to 300
classes for Visual Genome and 250 for GQA.

3.1.2. RBM Network Pruning

The reconstructed input yielded several relations among all 𝑣𝑖 ∈ 𝑉 under each ℎ𝑗 ∈ 𝐻 . However,
not all hidden units bore the same significance, since several pertained to connections with

significantly low activation weights for all 𝑣𝑖
wij⟷ ℎ𝑗 . To examine their significance, each ℎ𝑗 ∈ 𝐻

was assigned a normalized confidence weight 𝑐𝑤ℎ𝑗 , 𝑗 ∈ 𝑁𝐻 , based on the method employed
in [24], as seen in Eq. 3.

Based on [25], a cutoff mechanism was devised in order to maintain only the "beneficial" ℎ𝑗 ,
i.e. the hidden units whose relative computational cost would still benefit the analysis, while
the rest were discarded as noise. To this end, the elbow/knee [25] pertained the cutoff point for
the hidden units to be maintained (Eq. 4).

𝑐𝑤ℎ𝑗 = ∑
𝑖
|𝑤𝑖𝑗 | (3) 𝐾𝑓 (𝑐𝑤𝐻 ) =

𝑓 ′′(𝑐𝑤𝐻 )
(1 + 𝑓 ′(𝑐𝑤𝐻 )2)15

(4)

-
Similarly, a cutoff point was devised in order to maintain the "beneficial" visible units per each

hidden unit ∀ℎ𝑗 ∶ 𝑣𝑖 ↔ ℎ𝑗 . To this end, the elbow/knee 𝐾𝑓 (𝑤𝑣𝑖 ), 𝑤𝑣𝑖 ≥ 0 and 𝐾𝑓 (𝑤𝑣𝑖 ), 𝑤𝑣𝑖 < 0
was computed for all activation weights in the RBM, as the cutoff point to prune all visible units
within each hidden unit that bore a low, non-beneficial, activation weight.

A graphical representation of the hidden unit confidence and activation distribution curves
and their elbow-based cutoff points for Visual Genome can be seen in Figure 2.



3.2. Spectral Analysis of RBM Network

To explore the patterns formed in the RBMs’ network structure, spectral analysis was employed.
More precisely, a graph representation 𝐺𝑅𝐵𝑀 = (𝑉𝑅𝐵𝑀 , 𝐸𝑅𝐵𝑀 ) was created, per each of the
datasets, based on the pruned RBM network’s structure. The graphs pertain of weighted
vertices, interconnected by weighted edges, where 𝑤𝑣𝑅𝐵𝑀𝑘 = 𝑐𝑤ℎ𝑗 , ∀𝑣𝑅𝐵𝑀𝑘 ∈ 𝐻 and 𝑤𝑣𝑅𝐵𝑀𝑘 =
̃𝑓 𝑟𝑒𝑞(𝑣𝑖), ∀𝑣𝑅𝐵𝑀𝑘 ∈ 𝑉 , where ̃𝑓 𝑟𝑒𝑞(𝑣𝑖) ∈ [0, 1] is the normalized frequency of 𝑣𝑖 ∈ 𝑉 in the

training dataset. Regarding edges, weight 𝑤𝑒𝑅𝐵𝑀 = 𝑤𝑖𝑗𝑣𝑖(ℎ𝑗) is assigned.
In order to examine the most prominent associations arising among the interconnected

vertices, taking also advantage of the vertex and edge weights, a combinatorial Laplacian matrix
with vertex and edge weights [26] was used, with  = 𝐵𝑇𝐵∗, where 𝐵 is the weighted incidence
matrix and 𝑇 is the weighted edge incidence diagonal of each graph.

In order to explore the RBM results against the ground truth, the results of the RBM’s spectral
analysis were compared against the spectral analysis of the co-occurence between object classes
in the ground truth. To this end, a graph representation of the ground truth per each dataset
was devised, as 𝐺𝐺𝑇 = (𝑉𝐺𝑇 , 𝐸𝐺𝑇 ) 3. The graphs again bear weighted vertices and edges, with
𝑤𝑣𝐺𝑇𝑘 = 𝑓 𝑟𝑒𝑞(𝑣𝑛), ∀𝑣𝐺𝑇𝑘 ∈ 𝑉 , where 𝑓 𝑟𝑒𝑞(𝑣𝑛) is the frequency of 𝑣𝑛 ∈ 𝑉 in the training dataset.
Edge weights are designated as 𝑤𝑒𝐺𝑇𝑘 = ∑

𝑛,𝑚
𝑐𝑜𝑜𝑐(𝑣𝑛, 𝑣𝑚), where 𝑐𝑜𝑜𝑐(𝑣𝑛, 𝑣𝑚) ∈

{
0, 1

}𝑁𝑉

denotes the cooccurence between two classes in an image of the dataset.
Lastly, to extract the associations, spectral clustering based on  was performed, using

DBScan [27] with a relative gap [28], with 𝑚𝑖𝑛𝑃𝑡𝑠 = 2 as even pair-wise associations are
relevant to our goal, 𝑒𝑝𝑠 = 0.75 set empirically as the optimal radius and 𝑟𝑒𝑙𝐺𝑎𝑝 = ‖𝑥‖2 of 
found to be the optimal relative gap for both RBM-based graphs, but also Ground Truth graphs.
Subsequent work aims at also automating retrieval of the optimal 𝑒𝑝𝑠 based on ’s spectral
properties.

3.3. Results

The results of this analysis revealed the capacity of RBMs to extract prominent relations among
visible units. The extracted clusters of interrelated classes can be seen in the Appendix, in
sections A.2 and A.1.

3.3.1. Observations

Spectral analysis of the ground truth data graphs already yields results that capture valid
common-sense interrelations among input classes. However, spectral analysis over the RBMs
has revealed, in many cases, different and more intricate relations than in the ground truth
data. Ground Truth graphs are found (as expected) to solely depict visual co-occurrence. This is
apparent by the difference in number of clusters, as well as from the non-correspondence in
semantics that RBM-based spectral analysis produces as opposed to Ground Truth analysis.

Moreover, within RBM-produced clusters, abstractions and specializations that are globally
(not only visually) applicable for the observed semantic senses within their domain have been
revealed. For example (see Appendix A.2), RBM analysis in Visual Genome was able to discern

3𝑉𝐺𝑇 denotes all classes in the dataset and thus coincide with 𝑉𝑅𝐵𝑀 , effectively making 𝑉𝐺𝑇 , 𝑉𝑅𝐵𝑀 ∈ 𝑉



Table 1
Evaluation results of RBM-produced and Ground

VG RBM VG GT GQA RBM GQA GT
Number of clusters 28 14 12 11
Semantic validity per cluster 0.98 0.99 0.958 0.962
Clusters with shared/similar semantics 8 0
Precision in common semantics clusters 1.00 0.99 N/A N/A
Recall in common semantics clusters 0.91 0.84 N/A N/A

between things related to food per se and objects found in an eating area, while the relevant
Ground Truth analysis bundled most of these objects under a single cluster related to food.
Several abstract relations such as e.g. the ones between logos, letters and design, between
words, writing and signs, among different body parts, facial parts,
animal parts, vehicle parts, etc have only been captured through RBM analysis.

Most interestingly, other non-direct properties were revealed based on seed classes that served
as common denominators over related objects. For example, a RBM-produced Visual Genome
cluster pertains to lady, dress, skirt, bag, child, male child. Upon further in-
spection based on VG’s semantic relations among data reveals that this is in fact a two-sense
tree, with lady being the common denominator and dress, skirt, bag constituting a se-
mantic branch regarding clothing related to women, while child, male child constituting
a disjoint branch4 of types of persons frequently related to women. Such information can enable
the unsupervised retrieval of hierarchy or meronymy relations among classes.

3.3.2. Evaluation

Although it is very difficult to evaluate the validity of the produced interrelations due to the lack
of a golden standard and to contextual subjectivity, the produced clusters of interrelated objects
based on the RBM-graph spectral analysis where compared against the clusters produced from
the ground truth-graph spectral analysis, in terms of semantic validity.

Refraining from self-justification of the results, two independent observers studied the pro-
duced clusters in order to identify the ’common sense’ semantic contexts of the produced
clusters in both RBM and ground truth graphs.

Moreover, the Visual Genome dataset’s RBM-based spectral analysis produced some clusters
of similar semantics with its ground truth, which gave the opportunity to measure precision
and recall among the semantically similar clusters. The GQA results however did not yield any
semantically similar clusters. The results can be seen in Table 1.

3.4. Representation of Extracted Knowledge

Since the semantics of the produced "relation clusters" are not disentangled at this stage, every
member of each cluster is considered as generically related to each other member of the cluster.

Therefore, as a first step, a generic isRelatedTo object property can be used to construct
generic symbolic rules that express the interrelations among cluster members.

4The members of each branch do not co-occur in the dataset.



To this end, the interrelations extracted can be expressed in Description Logics (DLs) notation
as propositional axioms of the form:

𝐶𝑖𝑛 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝐶𝑖𝑚 ) (5)
where C is a class in the dataset, i is a single cluster produced through the spectral analysis

of the RBM-based graph and 𝑛,𝑚 are classes ∈ cluster i.
In first order logic (FOL), this translates to:

∀𝑥.𝐶𝑖𝑛 (𝑥) → (∀𝑦.𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜(𝑥, 𝑦) → 𝐶𝑖𝑚 (𝑦)) (6)
Based on this representation, several inference tasks can provide richer information while

reasoning over given facts in a particular domain. For example, a visual question answering
system may use the isRelatedTo property to query, based on a DL or FOL reasoner, additional
aspects related to an image, given an instance x of a class 𝐶𝑖𝑛 (𝑥) retrieved or explicitly annotated
in an image y, by instantiating accordingly isRelatedTo(x,y).

For example, given the VG RBM-produced cluster word.n.01, writing.n.01, sign.n.02,
the following axioms may be produced:

𝑤𝑜𝑟𝑑 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑤𝑟𝑖𝑡𝑖𝑛𝑔) (7a)

𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑤𝑜𝑟𝑑) (7b)

𝑤𝑜𝑟𝑑 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑠𝑖𝑔𝑛) (7c)

𝑠𝑖𝑔𝑛 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑤𝑜𝑟𝑑) (7d)

𝑠𝑖𝑔𝑛 ⊑ ∀𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (7e)

𝑤𝑟𝑖𝑡𝑖𝑛𝑔 ⊑ ∀(𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜.𝑠𝑖𝑔𝑛) (7f)
Based on this knowledge, a question-answering system using a knowledge-based (deductive)

inference engine can answer the question "What is related to this image?" given an image
imagename, where a sign(infosign) was identified, by grounding the isRelatedTo property for
isRelatedTo(infosign, imagename). Through axioms 7d and 7e, we get:

sign(infosign) ⊑ ∀𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜(infosign,imagename.𝑤𝑜𝑟𝑑(𝑦)) ⊨ 𝑤𝑜𝑟𝑑(imagename)
sign(infosign) ⊑ ∀𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇𝑜(infosign,imagename).𝑤𝑟𝑖𝑡𝑖𝑛𝑔(𝑦) ⊨ 𝑤𝑟𝑖𝑡𝑖𝑛𝑔(imagename)
Effectively, the contents of the image has some relation to words and writing, given that sign

exists in the image.

4. Conclusions and Future Work

This paper presented an early neuro-symbolic integration approach for unsupervised symbolic
knowledge extraction from trained neural networks, by using RBMs to uncover persistent
semantic associations among concepts found in multi-labelled images of the Visual Genome and
GQA datasets. Valuable insights arose in the process about the capacity of RBMs and spectral
analysis to uncover relational knowledge from data.

The purpose of this first proof-of-concept work is to determine the validity of the assumption
that the obscure patterns that are formed in trained NNs may be captured symbolically, to some
extent, as structured knowledge, able to construct, update or complement knowledge bases. The
goal of this process is to be task-independent and that the knowledge acquired can be further
re-used, shared and used for complex reasoning. The approach aims to be applicable to any
domain for which data is available, leverage the need for huge data and yield consistent results
in terms of extracted propositions’ accuracy.

The next steps will delve into examining whether the same applies in deeper architectures
and what more/else deeper networks may reveal, by expanding the approach from RBMs to



DBNs. The directed nature of the added layers in DBNs5, in combination with the capacity of
the current approach to recognize the k-most significant hidden units of the base RBM layer,
are expected to consist the first step of disentangling the top-level semantics of the produced
generic relations and improve the accuracy of the RBM results.

Further, a modular NN approach will be sought after in order to project the results of the
DBNs to natural language, in order to extract the specific semantic associations among related
input classes.
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Table 2
Visual Genome Wordnet synset mismappings.

Wordnet Synset Sense in VG Wordnet Synset Sense in VG
topographic_point.n.01 Spot (as in fleck) numeral.n.01 Number
contemplation.n.02 Reflection (as in mirroring) new_jersey.n.01 Jersey (garment)

Table 3
GQA RBM and Ground Truth spectral clustering results.

RBM cluster Common-sense
semantics

Ground Truth cluster Common-sense
semantics

people, helmet, Related to people cake, spoon, bread, carrot, dish,
meat, vegetable, broccoli, tomato,
onion, tray, can, sauce, pepper,
cheese, label, pizza,

In the kitchen

nose, ear, eye, On the face keyboard, computer, Technological
objects

table, plate, bowl, glass, On a table orange, apple, fruit, banana, stick, Fruit
shoe, person, hat, jacket, What a person wears outlet, refrigerator, kitchen, In the kitchen
counter, chair, pillow,
shelf, bottle, cabinet,

In a room surfboard, wetsuit, Related to surfing

sidewalk, street, sign, On the street bridge, gravel, platform, Near water
leg, neck, Body parts bat, jersey, spectator, Related to baseball

game
fence, field, Found outdoors (rural) bird, beak, Related to bird
wing, zebra, Related to animals rug, carpet, remote control, In the sitting room
faucet, sink, Plumbing in room tag, suitcase, Related to suitcase
hat, jacket, person, What a person wears brick, balcony, On/near a balcony
cat, paw, On a cat

A. Experimental Results

A.1. GQA Results

Table 3 portrays the clusters of interrelated classes produced through spectral analysis of an
RBM trained on the GQA dataset (objects) and the clusters of most prominently co-occurring
classes produced through spectral analysis of the GQA dataset’s ground truth.

A.2. Visual Genome Results

Table 4 portrays the clusters of interrelated classes produced through spectral analysis of an
RBM trained on the Visual Genome dataset (objects) of most prominently co-occurring classes
produced through spectral analysis of the Visual Genome dataset’s ground truth respectively.

It is worth mentioning that some Visual Genome object classes are represented with a Wordnet
word/term that does not reflect the sense which the Visual Genome data signify. These terms
are marked with * in Table 4 and their proper semantics/senses are listed in Table 2.



Table 4
Visual Genome RBM and Ground Truth spectral clustering results.

RBM cluster Common-
sense seman-
tics

Ground Truth cluster Common-
sense seman-
tics

kitchen.n.01, spoon.n.01, bread.n.01,
cake.n.03, banana.n.01, pizza.n.01,
food.n.01, sauce.n.01, cheese.n.01,
plate.n.04,

Related to food paw.n.01, bear.n.01, fur.n.01, Related to bear

wave.n.01, ocean.n.01, surfboard.n.01,
beach.n.01,

Things at the
beach

ring.n.01, finger.n.01, On a hand

telephone.n.01, vegetable.n.01,
root.n.03,

Related to vege-
tation

sauce.n.01, bread.n.01,
tomato.n.01, vegetable.n.01,
meat.n.01, cheese.n.01, fork.n.01,
napkin.n.01, spoon.n.01, tray.n.01,
pizza.n.01, knife.n.01, food.n.01,
banana.n.01, cake.n.03, root.n.03,

Related to food

room.n.01, drawer.n.01, cabinet.n.01, Things in a room court.n.01, racket.n.04, player.n.01,
skirt.n.01,

Related to tennis

bird.n.01, beak.n.01, Related to birds bat.n.05, new_jersey.n.01*, uni-
form.n.01,

Related to
sports/ baseball

sink.n.01, faucet.n.01, bathroom.n.01, Things in a bath-
room

sink.n.01, faucet.n.01, bath-
room.n.01, toilet.n.01,

Things in a bath-
room

uniform.n.01, ball.n.01,
new_jersey.n.01*, player.n.01, bat.n.05,

Related to
sports/baseball

animal.n.01, cow.n.01, sheep.n.01, Related to farm
animals

word.n.01, writing.n.01, sign.n.02, Related to writ-
ing

kitchen.n.01, drawer.n.01, Things in a
kitchen

arrow.n.01, traffic_light.n.01, Related to traffic
signs

beak.n.01, bird.n.01, Related to birds

computer.n.01, laptop.n.01, screen.n.01,
television.n.01, wire.n.01, keyboard.n.01,
pillow.n.01, desk.n.01, bed.n.01,

Things in a sit-
ting room

hoof.n.01, zebra.n.01, mane.n.01,
horn.n.01,

Related to ani-
mals

goggles.n.01, board.n.02, ski.n.01, Related to snow
sports

computer.n.01, keyboard.n.01, lap-
top.n.01, desk.n.01, screen.n.01,
television.n.01,

Things in a sit-
ting/study room

sand.n.01, mountain.n.01, hill.n.01,
path.n.04,

Related to path skateboard.n.01, ramp.n.01, Related to skate-
board

soil.n.02, shrub.n.01, flower.n.01,
plant.n.01,

Related to vege-
tation

traffic_light.n.01, arrow.n.01, li-
cense_plate.n.01,

On the street

cow.n.01, sheep.n.01, Farm animals ski.n.01, goggles.n.01, Related to snow
sports

napkin.n.01, rug.n.01, tray.n.01,
shelf.n.01, ceiling.n.01,

Inside eating
area

dress.n.01, skirt.n.01, lady.n.01,
child.n.01, bag.n.04, male_child.n.01,

Related to lady

face.n.01, topographic_point.n.01*, Facial attributes
hoof.n.01, tail.n.01, Animal at-

tributes
branch.n.01, leaf.n.01, Related to

tree/shrub
people.n.01, numeral.n.01*, Related to popu-

lation
windshield.n.01, headlight.n.01, On a

car/motorcycle
license_plate.n.01, motorcycle.n.01, Related to motor-

cycle
wing.n.01, airplane.n.01, Related to

airplane
fork.n.01, tomato.n.01, Related to food
sidewalk.n.01, field.n.01, umbrella.n.01, Surfaces
contemplation.n.02*, bridge.n.01, Related to water
logo.n.01, letter.n.01, design.n.01, Related to

logo/posters
ring.n.01, finger.n.01, On a hand
paper.n.01, box.n.01, Related to paper
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