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Abstract

Pano3D is a new benchmark for depth estimation from

spherical panoramas. It aims to assess performance across

all depth estimation traits, the primary direct depth es-

timation performance targeting precision and accuracy,

and also the secondary traits, boundary preservation and

smoothness. Moreover, Pano3D moves beyond typical

intra-dataset evaluation to inter-dataset performance as-

sessment. By disentangling the capacity to generalize in

unseen data into different test splits, Pano3D represents a

holistic benchmark for 360o depth estimation. We use it as

a basis for an extended analysis seeking to offer insights

into classical choices for depth estimation. This results into

a solid baseline for panoramic depth that followup works

can built upon to steer future progress.

1. Introduction

Benchmarks are the drivers of progress as they facilitate

measurable technical increments, and can also provide ex-

plainable insights for diverging technical approaches. They

must be unbiased, especially given the emergence of data-

driven methods that can easily exploit any hidden bias in

the data. Besides, the expressiveness of deep models ne-

cessitates the enrichment of benchmarks with varying data

distributions to allow for the assessment of their generaliza-

tion and their capacity to exploit different sources of data.

The recent availability of 360o depth datasets out of

stitched raw sensor data [1, 7], 3D reconstruction render-

ings [56, 55], and photorealistic synthetic scenes [34, 53]

has stimulated research in monocular 360o depth estima-

tion [44, 13, 45, 26, 52, 43]. Still, the progress in monocu-

lar depth estimation has been mainly driven by research for

*Indicates equal contribution.

Figure 1. Preserving depth’s piece-wise smoothness should be the

primary goal of data-driven depth estimation models. Yet most

works only assess direct depth performance neglecting secondary

traits like smoothness or boundary preservation. Different archi-

tectures (UNet – left, or Pnas – right) exhibit different inference

characteristics skewed towards boundaries (UNet) or smoothness

(Pnas). The Pano3D benchmark descends from a holistic perspec-

tive taking into account all performance traits, and additionally

considers an orthogonal performance assessment, generalization

to unseen data from different distributions, contexts or domains.

traditional cameras, and assessed on perspective datasets,

starting with the pioneering work of [14]. Even though

other approaches exist (e.g. ordinal regression [16, 3]),

depth estimation is most typically addressed as a dense re-

gression objective. Various estimator choices are available

for the direct objective like L1, L2, or robust versions like

the reverse Huber (berHu) loss [32]. Complementary er-

rors have also been introduced like the virtual normal loss

[51] which captures longer range depth relations. Addi-

tional smoothness ensuring losses can be used to enforce

a reasonable and established prior of depth maps, which is

their piece-wise smoothly spatially varying nature [23].

Depth maps also exhibit sharp edges at object bound-



aries [23], whose preservation is important for various

downstream applications. Recent works which focus ex-

plicitly on improving the estimated boundaries introduced

new metrics to measure boundary preservation performance

[21, 39]. Since convolutional data-driven methods spatially

downscale the encoded representations, predicting neigh-

boring values relies on neighborhood information, leading

to interpolation blurriness. Counteracting approaches, like

encoder-decoder skip connections or guided filters [47], can

lead to texture transfer artifacts, hurting the predictions’

smoothness. The latter (smoothness) is also an impor-

tant trait for some tasks like scene-scale 3D reconstruction

which usually relies on surface orientation information [29]

to preserve structural planarities, while the former (bound-

aries) are necessary for applications like view synthesis [2]

or object retrieval [28]. Still, smoothness related metrics are

usually presented on surface [46, 27] or plane [12] estima-

tion works. Further, the balance between them needs to be

tuned as they are conflicting objectives.

In this work we set to deliver an unbiased and holistic

benchmark for monocular 360o depth estimation that pro-

vides performance analysis across all traits, i) depth es-

timation, ii) boundary preservation, iii) smoothness. We

also consider an orthogonal evaluation strategy that seeks

to assess the models’ generalization as well, across its dif-

ferent facets, i) varying depth distributions, ii) adaptation

to the scenes’ contexts, and iii) different camera domains.

To support the benchmark, we design a set of solid base-

lines that respect best practises as reported in the literature

and rely on standard architectures. Our results, data, code,

configurations and trained models are publicly available at

vcl3d.github.io/Pano3D/.

• We show that recently made available datasets contain

significant biases or artifacts that prevent them from

being suitable as solid benchmarks.

• We provide 360o depth estimation performance results

for all different traits, across different domains, con-

texts, distributions and resolutions, while also taking

depth refinement advances into account.

• We demonstrate the effectiveness of skip connections,

a rare architectural choice for (360o) depth estimation.

2. Related Work

Monocular Omnidirectional Depth Estimation. The

first works addressing the monocular data-driven omnidi-

rectional depth estimation task were [44] and [56]. The for-

mer applied traditional CNNs trained on perspective images

in a distortion-aware manner to spherical images, while the

latter introduced a rendered spherical dataset of paired color

and depth images, in addition to a simplistic rectangular fil-

tering preprocessing block. Pano Popups [12] simultane-

ously predict depth and surface orientation to construct pla-

nar 3D models, showing the insuffiency of depth estimates

along to approximate planar regions.

The generalized Mapped Convolutions [13] were applied

to omnidirectional depth estimation, showing how account-

ing for the distortion when using equirectangular projec-

tion increases performance in the image regions closer to

the equator. Although these spatially imbalanced predic-

tions are an important issue to address for 360o depth esti-

mation methods, the usual evaluation methodologies do not

address this apart from [55]. The omnidirectional extension

networks [9] employ a near field-of-view (NFoV) perspec-

tive depth camera to accompany the spherical one, offering

a necessary, albeit not full FoV, constraint to enhance the

preservation of details in the inferred depth map.

Recent omnidirectional depth estimation works diverged

in two paths. One route is to exploit the nature of the spher-

ical images within network architectures, with BiFuse [45]

fusing features from a cubemap and an equirectangular rep-

resentation, while UniFuse [26] shows that the fusion of

cubemap features to the equirectangular ones is more ef-

fective. HoHoNet [43] adapts classical CNNs to operate

on 360o images by flattening the meridians to DCT coef-

ficients, allowing for efficient dense feature reconstruction,

and applying it to monocular depth estimation from spher-

ical panoramas. Other recent works [34, 52] explore the

connection between the layout and depth estimation tasks,

while [15] relies on the joint optimization between depth

and surface orientation estimates using a UNet model [41].

Monocular Perspective Depth Estimation. The pio-

neering work for data-driven monocular dense depth esti-

mation [14] employed a scale-invariant loss and established

the set of metrics used to evaluate follow up works. Nat-

urally, the progress in monocular depth estimation for per-

spective images is larger, as traditional images find more

widespread use. While impressive gains have been pre-

sented using ordinal regression [16] or adaptive binning [3],

they have not been applied to 360o depth estimation, which

exhibits more complex depth distributions than perspective

depth maps due to its holistic FoV.

Results like the berHu loss presented in [32] have found

traction in omnidirectional models as they are more easily

transferable. On the contrary the more recently presented

virtual normal loss [51] has not been applied to 360o depth,

albeit its longer range depth relation modelling is highly

aligned with the global reasoning required for the spherical

task. Recently, the balance between the multitude of losses

required to balance smoothness, boundary preservation and

depth accuracy were investigated in [33] to help models ini-

tially focus on easier to optimize losses (i.e. depth accu-

racy), and then on harder ones (i.e. smoothness, boundary).

Regarding depth discontinuity preservation perfor-

mance, [21] showed that a combination of three different

loss terms, a depth, a surface and a spatial derivative one,



Figure 2. Existing 360
o depth benchmarks are either synthetic (Structured3D – tomato red) or biased (3D60, with an extra light source

– orange). In addition to a holistic evaluation scheme, our benchmark Pano3D fixes the lighting issues (Matterport3D data – violet), and

additionally offers a variety of zero-shot cross dataset transfer splits (generated from GibsonV2), permitting the validation of close-to-real-

world performance. The tiny (dark green) and medium (dark blue) splits contain residential building scenes but with a different depth

distribution as presented on the left of the figure. The fullplus (light green) split, albeit of similar distribution, contains different context

scenes, like super-markers, garages and construction sites. Finally, we additionally generate camera domain adapted splits like the tiny

filmic (purple) on the right, or the fullplus filmic (not shown), effectively capturing all different generalization performance traits.

help increase performance at object boundaries. Similarly,

a boundary consistency was introduced in [25] to overcome

blurriness and bleeding artifacts. Another approach, based

on learnable guided filtering [47], exploits the color image

as guidance. Recently, displacement fields [39] showed that

predicting resampling offsets instead of residuals is more

suitable to increase performance at sharp depth discontinu-

ities, while preserving depth estimation accuracy.

3. Methodology

Our goal is two-fold, first to deliver a new benchmark

for 360o depth estimation, and second, to methodically an-

alyze the task in light of recent developments, to identify

a set of solid baselines, which future works will use as the

starting points for assessing performance gains. Section 3.1

introduces the benchmark data, which set the ground for the

subsequent analysis. Section 3.2 describes the benchmark’s

holistic approach in terms of evaluation, while Section 3.3

presents the experiment design rationale.

3.1. Dataset

Up to now 360o depth datasets either rendered purely

synthetic scenes like Structured3D [53] or 360D’s SunCG

and SceneNet parts [56], or relied on 3D scanned datasets

like Matterport3D [7] and Stanford2D3D [1]. The latter of-

fer both panoramas and the 3D textured meshes, with some

works using the original Matterport camera derived data

and others the rendered panoramas from the 3D scanned

meshes. Both approaches come with certain drawbacks, the

original data contain invalid (i.e. true black) regions towards

the sphere’s poles, while the 3D rendered data contain in-

valid regions where the 3D scans failed to reconstruct the

surface. At the same time, the original data present with

stitching artifacts (mostly blurring), while the rendered data

sometimes suffer from 3D reconstruction errors which man-

ifest in color discontinuities. We opt for the generation

via rendering approach [56] as it produces true spherical

panoramas and higher quality depth maps at lower resolu-

tion compared to nearest neighbor sampling. However, we

fix a critical issue of the 360D [56] and 3D60 [55] datasets,

namely, the introduction of a light source that alters the

scene’s photorealism. Instead, we only sample the raw dif-

fuse texture, preserving the original scene lighting, a crucial

factor for unbiased learning and performance evaluation.

Zero-shot Cross-Dataset Transfer. However, there is a

need to move beyond traditional train/test split performance

analysis to support model deployment in real-world condi-

tions. Thus, assessing generalization performance is very

important. Towards that end, apart from re-rendering the

Matterport3D scans for training, we introduce a new 360o

color-depth pair generated dataset from the 572 GibsonV2

(GV2) [48] 3D scans. Compared to Matterport3D’s (M3D)

90 buildings, it is a vastly larger dataset, whose scenes offer

higher variety as well. These renders can be used for assess-

ing generalization performance across its different splits:

tiny, medium, full1 and fullplus. After removing outlier

scans and filtering samples (keeping those with ≤ 10%
invalid pixels), we are left with 7170/1527 train/test M3D

samples, and 2740, 6999, 3284, 21203 GV2 tiny, medium,

fullplus, and full split samples respectively.

3.2. Metrics

Since the introduction of the first set of metrics for data-

driven depth estimation [14], namely root mean squared

error (RMSE), room mean squared logarithmic error (RM-

SLE), absolute relative error (AbsRel), squared relative error

(SqRel), and the relative threshold (t) based accuracies (δt),

these metrics are the standard approach for evaluation depth

estimation performance. More recent works have identi-

fied some shortcomings of these metrics. Specifically in

[31] an expanded analysis of depth estimation quality mea-

1The larger GV2 full split is kept for training purposes



Table 1. Direct depth metrics performance across models and supervision schemes. Best three performers are denoted with bold faced

light green (1st), light blue (2nd) and light purple (3rd) respectively following the ranking order. Same scheme applies to all tables.

Model
Depth Error ↓ Depth Accuracy ↑

RMSE RMSLE AbsRel SqRel δ1.05 δ1.1 δ1.25 δ
1.252 δ

1.253

P
n

as

L1 0.4817 0.0780 0.1213 0.0933 34.59% 59.98% 87.25% 96.30% 98.50%

Lcosine 0.4825 0.0782 0.1216 0.1014 37.04% 60.96% 87.48% 96.36% 98.46%

Lgrad 0.4616 0.0749 0.1163 0.0889 37.40% 62.46% 88.39% 96.63% 98.57%

Lcomb 0.4613 0.0740 0.1143 0.0892 38.56% 63.31% 88.70% 96.68% 98.62%

Lvnl 0.4640 0.0743 0.1165 0.0920 37.67% 62.60% 88.47% 96.64% 98.65%

U
N

et

L1 0.4215 0.2033 0.1138 0.0744 37.54% 60.47% 88.05% 97.01% 98.81%

Lcosine 0.4152 0.0841 0.1170 0.0736 34.06% 59.75% 88.13% 97.13% 98.99%

Lgrad 0.4061 0.4264 0.1135 0.0682 37.49% 60.93% 88.50% 97.17% 98.91%

Lcomb 0.4041 0.1459 0.1146 0.0692 37.24% 60.44% 88.31% 97.15% 99.04%

Lvnl 0.3967 0.1182 0.1095 0.0672 38.62% 62.16% 89.08% 97.35% 99.03%

D
en

se
N

et

L1 0.4672 0.5580 0.1223 0.0896 37.53% 60.52% 86.72% 96.27% 98.37%

Lcosine 0.4603 0.0752 0.1145 0.0817 37.57% 62.61% 88.03% 96.75% 98.64%

Lgrad 0.4488 0.3847 0.1210 0.0827 33.25% 59.71% 87.39% 96.73% 98.63%

Lcomb 0.4490 0.2565 0.1129 0.0806 38.30% 63.02% 88.56% 96.66% 98.54%

Lvnl 0.4481 0.6177 0.1142 0.0805 39.28% 63.34% 88.49% 96.66% 98.43%

R
es

N
et

L1 0.4755 0.1639 0.1310 0.0942 31.22% 55.89% 85.56% 96.27% 98.57%

Lcosine 0.4700 0.0804 0.1279 0.0949 37.37% 57.92% 85.32% 96.35% 98.62%

Lgrad 0.4734 0.2495 0.1278 0.0916 35.23% 57.34% 85.54% 96.20% 98.50%

Lcomb 0.4573 0.1200 0.1272 0.0894 34.53% 57.97% 86.26% 96.56% 98.71%

Lvnl 0.4607 0.2938 0.1236 0.0862 34.75% 59.16% 86.11% 96.60% 98.60%

R
es

N
et

sk
ip

L1 0.4373 0.2430 0.1161 0.0783 37.07% 60.60% 87.68% 96.86% 98.75%

Lcosine 0.4347 0.1070 0.1139 0.0772 39.80% 61.31% 88.27% 97.02% 98.81%

Lgrad 0.4107 0.2710 0.1089 0.0717 38.93% 63.31% 89.51% 97.32% 98.92%

Lcomb 0.4165 0.0843 0.1102 0.0722 36.71% 61.92% 89.17% 97.24% 98.90%

Lvnl 0.4260 0.0967 0.1125 0.0756 39.92% 62.53% 88.22% 97.04% 98.88%

sures was conducted, and focused on two important traits,

planarity and discontinuities. The latter is very important

for some downstream applications like view synthesis, and

apart from the completeness (comp) and accuracy (acc) of

the depth boundary errors (dbe) proposed in [31], another

set of accuracy metrics were proposed in [21]. The preci-

sion, recall and their harmonic mean (F1-score) were used

after extracting different boundary layers via Sobel edge

thresholding. Planarity is also very important for various

downstream applications, especially for indoor 3D recon-

struction. Finally, to overcome resolution [4] and focal

length variations [8], recent perspective depth estimation

works resort to nearest-neighbor 3D metrics.

Direct Depth Metrics. We build upon these develop-

ments and design our benchmark to provide a holistic eval-

uation of depth estimation models. Given the progress of

recent data-driven models we expand the δ accuracies with

two lower thresholds, a strict at δ1.1, and a precise, δ1.05,

similar to [25]. However, these metrics, when applied di-

rectly on equirectangular images, are biased by its distortion

towards the poles. To remove this bias we take the spher-

ically weighted mean (denoting with a w prefix), which

is standard practise for 360o image/video quality assess-

ment [50] and was also used in [55]. For the δt accuracies

though, we turn to uniform sampling on the sphere using

the projected vertices of a subdivided icosahedron, denoted

as δico
K

t , K being the icosahedron’s order.

Depth Discontinuity Metrics. We complement the di-

rect depth performance metrics with a set of secondary met-

rics measuring performance at preserving the depth discon-

tinuities, usually manifesting at object boundaries. While

[31] used manual annotation and structured edge detection

[11], we follow the approach of [39] that relies on automatic

Canny edge detection [5]. In addition, we complement the

depth boundary errors (dbeacc and dbecomp) with the accu-

racy metrics of [21] (prect, rect) using the same thresholds,

t ∈ {0.25, 0.5, 1.0}, for both set of metrics.

Depth Smoothness Metrics. While the planarity met-

ric of [31] required the manual annotation of samples, its

goal is to measure the smoothness of the inferred depth with

respect to dominant structures. A straightforward adapta-

tion that alleviates annotations is the use of surface orienta-

tion metrics, which is a property directly derived from the

depth measurements. Using spherical-to-Cartesian coordi-

nates conversion the depth/radius measurements are lifted

to 3D points, with the surface orientation extracted by ex-

ploiting the structured nature of images. Similar to how

surface estimation methods measure performance, we use

the angular RMSE (RMSEo), and a set of accuracies αdo

with pre-defined angle thresholds d, using those from [46]

(d ∈ {11.25o, 22.5o, 30o}).

Geometric Metrics. Depth estimations are typically

used in downstream applications for metric-scale 3D per-

ception. Therefore, 3D performance metrics are reasonable

to assess suitability for downstream tasks. We use two dif-

ferent metrics that aggregate the performance of the afore-

mentioned different depth traits, i.e. accuracy and precision,

boundary preservation and smoothness. The first geomet-



ric metric is computed on the point cloud level (c2c), using

a point-to-plane distance between each point and its clos-

est correspondence with the ground truth point cloud. The

point-to-plane distance jointly encodes depth correctness

and smoothness, while the closest point query will penalize

boundary errors. The second geometric metric is computed

on the mesh level, having each point cloud (predicted and

ground truth) 3D reconstructed using the Screened Poisson

Surface Reconstruction [29]. We then calculate the Haus-

dorff distance [10] between the two meshes. Similarly,

Poisson reconstruction leverages both position and surface

information when generating the scene’s mesh. Through

this metric we assess the capacity to represent the entire

scene’s geometry with the estimated depth, an important

trait for some downstream applications.

3.3. Experimental Setup

We design our experiments and search for a solid base-

line taking recent developments into account.

Supervision. As shown in [6] the L1 (L1) loss exhibits

the best convergence for monocular depth estimation irre-

spective of the model size and architecture complexity, in-

dicating that models behaving like median estimators are

more appropriate. Most recent works for 360o depth esti-

mation [45, 26, 13] use the berHu loss [32], with the excep-

tion to this rule being [43] that uses the L1 loss.

We additionally observe that these works rely solely on

a single direct depth loss, while recent works on perspec-

tive depth estimation also include additional losses. MiDaS

[40], MegaDepth [35] as well as [49] and [21] use a multi-

scale (K = 4 scales) gradient matching term (Lgrad) that

enforces consistent depth discontinuities. While their terms

are scale-invariant and operate in the log-space, 360o depth

does not suffer from disparity/baseline or focal length varia-

tions, and since we do not use the L1 loss in log-space (as its

performance is inferior to pure L1 [6]), we use a non-scale

invariant version of this loss. Apart from boundary preser-

vation, the piece-wise smooth nature of depth, necessitates

the use of a suitable prior for the predictions. This was ac-

knowledged in [21], where a surface orientation consistency

loss was used (Lcosine). Prior works employed smoothness

priors on the predictions, and, to overcome cross boundary

smoothing, relied on image gradient weighting [18]. Yet

image gradients do not necessarily align with depth discon-

tinuities, making the normal loss a better candidate.

Finally, the newly introduced virtual normal loss [51]

(Lvnl) is a long-range relationship oriented objective, which

given the global context of spherical panoramas is well

aligned with the task. In our experiments we follow a pro-

gressive loss ablation starting with a L1 objective, exam-

ining the effect of Lgrad and Lcosine on the L1 baseline,

as well as their combined effect Lcomb, and finally further

extend the combined objective with Lvnl, with the latter ex-

periment including all losses.

Model Architecture. The importance of high-capacity

encoders, pre-training and multi-scale predictions is ac-

knowledged in the literature [40]. Building on the first,

we preserve a consistent convolution decoder and use a

DenseNet [22] (55M parameters)) and ResNet-152 [20]

(110M parameters) encoder as baselines. Inspired by re-

cent work [33] we also include their Pnas model (99M pa-

rameters) whose encoder is a product of neural architecture

search [36]. In addition, taking into account the bound-

ary preservation performance of skip connections, we also

use the – largely unpopular for depth estimation – UNet

model [41] (27M parameters). Since it is a purely convolu-

tional model, we additionally modify the ResNet-152 model

with skip connections starting from the first residual block,

in contrast to UNet’s very early layer encoder-to-decoder

skip. Since pre-training weights are not available for UNet,

we experiment with cold-started models, and also simplify

training using a single-scale predictions as the multi-scale

effect should be horizontal across all models with the same

convolution decoder structure.

Periodic Displacement Fields Refinement. We addi-

tionally consider the refinement of the predicted depth, us-

ing a shallow hourglass module [38]. It is adapted for the

task at hand, with two branches, one for the input color im-

age and the other for the predicted depth map. Across each

stage, we account for the varying nature of each branch’s

feature statistics using Adaptive Instance Normalization

[24]. We follow the recent approach of [39] that shows

how predicting displacement fields instead of residuals pro-

duces higher quality depth refinement. However, the spher-

ical domain is continuous, and thus, we need to account

for the horizontal discontinuity of the equirectangular pro-

jection. To achieve this in a locally differentiable manner,

we resort to a periodic reconstruction of the sampling coor-

dinates. Considering the final sampling coordinates (φ, θ)
after adding the displacement field, we wrap them around

to (τ, θ), with τ = atan2(− sinφ,− cosφ) + π.

Training and Evaluation. We train all models solely

on the official train split of M3D, and evaluate them on its

official test split as well. Evaluation is conducted across

all the aforementioned axes of depth performance. Apart

from this holistic performance analysis, we additionally

take an orthogonal direction and assess the models’ gen-

eralization performance on zero-shot cross-dataset transfer

using the GV2 tiny, medium and fullplus splits. Given that

both GV2 and M3D scenes were scanned with same type

of camera (i.e. Matterport), we render another version of

tiny which is tone mapped to a film-like dynamic range,

dubbed tiny-filmic, changing the camera-related data do-

main. Our experiments are conducted on two different res-

olutions 512× 256 and 1024× 512 (we render all datasets

to both) to assess cross-resolution performance.



Table 2. Direct depth performance using spherical metrics. A UNet model with spherical padding is also presented ( light pink ), as well

as the two better performing models trained and tested on the 3D60 ( light orange ) and Structured3D ( light red ) datasets.

Model
Depth Error ↓ Depth Accuracy ↑

wRMSE wRMSLE wAbsRel wSqRel δico
6

1.05 δico
6

1.1 δico
6

1.25 δico
6

1.252
δico

6

1.253

Pnascomb 0.5367 0.0811 0.1259 0.1153 36.44% 60.52% 86.80% 95.83% 98.11%

Unetvnl 0.4520 0.1300 0.1147 0.0811 36.68% 60.59% 88.31% 96.96% 98.73%

DenseNetcomb 0.5209 0.1982 0.1209 0.1013 35.97% 60.41% 87.02% 95.96% 98.09%

ResNetcomb 0.5294 0.1365 0.1374 0.1127 32.03% 55.31% 84.74% 95.81% 98.21%

ResNetcomb
skip 0.4788 0.0927 0.1166 0.0893 36.20% 60.64% 87.99% 96.62% 98.49%

Unetvnl
circ 0.4399 0.0685 0.1132 0.0769 36.85% 61.38% 88.84% 97.25% 98.89%

Unet 3D60vnl 0.3140 0.0455 0.0741 0.0316 49.99% 75.16% 95.49% 99.11% 99.60%

ResNet 3D60comb
skip 0.3758 0.6100 0.0883 0.0481 46.03% 70.29% 93.12% 98.41% 99.34%

Unet S3Dvnl 0.1815 0.0546 0.0919 0.0398 50.61% 75.98% 92.23% 96.56% 97.53%

ResNet S3Dcomb
skip 0.2450 0.1335 0.1349 0.1249 40.48% 67.29% 88.67% 95.01% 96.68%

Table 3. Top half : Depth discontinuity/boundary preservation and depth smoothness performance metrics. Bottom half : Same metrics after

refining all models (subscript ref ) with a periodic displacement field hourglass module.

Model

Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Error ↓ Accuracy ↑
dbeacc dbecomp prec0.25 prec0.5 prec1 rec0.25 rec0.5 rec1 RMSEo α11.25o α22.5o α30o

Pnascomb 2.5119 5.3501 39.83% 31.59% 27.01% 23.53% 14.42% 10.98% 15.26 67.73% 77.99% 81.67%

Unetvnl 1.2699 3.8876 58.97% 57.54% 51.85% 43.96% 36.69% 28.59% 16.02 61.80% 76.58% 81.70%

DenseNetcomb 2.0628 5.0977 47.16% 40.77% 35.20% 26.09% 16.87% 12.21% 15.98 64.58% 76.86% 81.20%

ResNetcomb 2.2393 5.3796 44.10% 36.70% 27.44% 22.91% 12.23% 7.20% 16.63 63.09% 75.70% 80.20%

ResNetcomb
skip 1.4883 4.5346 57.34% 54.11% 47.57% 33.99% 24.30% 16.37% 15.27 64.18% 77.57% 82.27%

Pnascomb
ref 2.2861 5.0435 46.66% 44.74% 37.96% 30.66% 26.00% 22.49% 17.83 63.33% 74.01% 78.15%

Unetvnlref 1.4241 3.8505 53.46% 51.38% 44.36% 43.09% 41.54% 37.50% 16.86 61.50% 75.70% 80.64%

DenseNetcomb
ref 1.9769 4.9026 51.94% 48.43% 40.63% 30.61% 26.14% 22.46% 16.49 63.80% 76.17% 80.58%

ResNetcomb
ref 2.1078 5.0783 50.77% 46.52% 36.58% 28.31% 23.33% 19.37% 16.68 63.08% 75.82% 80.36%

ResNetcomb
skip & ref 1.4291 4.3115 60.78% 58.09% 51.49% 37.79% 32.55% 27.23% 15.05 65.16% 78.26% 82.77%

Table 4. Consolidated performance on the GibsonV2 splits, across all depth traits, using a subset of the available metrics, for models trained

on the Matterport3D data. The best performing model (UNet) trained with photometric augmentation is also presented ( light pink ).

GV2 Model

Direct Depth Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑

wRMSE wRMSLE wAbsRel δico
6

1.1 δico
6

1.25 dbeacc dbecomp prec0.25 prec0.5 prec1 RMSEo α30o

ti
n

y

Pnascomb 0.5574 0.0970 0.1945 36.01% 76.76% 2.6616 5.6187 34.90% 30.67% 25.07% 15.91 81.68%

Unetvnl 0.4723 0.2060 0.1733 41.67% 81.49% 1.4726 4.3377 61.43% 64.51% 60.21% 17.35 80.71%

DenseNetcomb 0.5131 0.1368 0.1738 38.62% 79.99% 2.2068 5.2911 43.19% 40.05% 35.32% 16.24 81.66%

ResNetcomb 0.5426 0.1427 0.2113 31.87% 72.80% 2.3665 5.5963 40.64% 37.11% 30.21% 16.97 80.64%

ResNetcomb
skip 0.4932 0.0900 0.1747 39.26% 79.86% 1.6406 4.7710 55.44% 56.69% 52.48% 16.24 81.93%

Unetvnlskip & aug 0.4580 0.0840 0.1701 39.73% 81.19% 1.4480 4.2681 62.69% 66.19% 62.27% 16.30 82.16%

m
ed

iu
m

Pnascomb 0.5053 0.0926 0.1866 34.85% 78.58% 2.6420 5.5068 36.54% 31.80% 27.25% 14.31 84.06%

Unetvnl 0.4416 0.1876 0.1665 42.49% 82.50% 1.5245 4.3178 62.75% 65.68% 60.22% 16.39 82.43%

DenseNetcomb 0.4661 0.1670 0.1669 39.30% 81.72% 2.2311 5.2215 44.53% 41.16% 36.07% 15.15 83.50%

ResNetcomb 0.5023 0.1317 0.2058 32.12% 73.67% 2.3915 5.4622 41.86% 37.73% 30.38% 15.86 82.48%

ResNetcomb
skip 0.4563 0.0884 0.1677 39.98% 81.34% 1.6930 4.7230 56.33% 57.24% 51.81% 15.44 83.30%

Unetvnlskip & aug 0.4321 0.0823 0.1673 39.70% 81.90% 1.5045 4.2659 63.94% 67.27% 61.69% 15.43 83.70%

fu
ll

p
lu

s

Pnascomb 0.6759 0.1139 0.1991 38.60% 73.75% 2.8383 6.1612 32.61% 26.83% 21.81% 19.83 75.93%

Unetvnl 0.6167 0.2657 0.1844 42.42% 76.21% 1.7228 5.0369 54.45% 56.37% 52.31% 22.05 73.41%

DenseNetcomb 0.6684 0.1649 0.1835 40.79% 74.87% 2.4985 6.0993 39.33% 34.44% 27.63% 20.57 75.18%

ResNetcomb 0.6690 0.1504 0.2095 37.35% 71.42% 2.6259 6.2642 37.82% 32.27% 23.59% 21.00 74.54%

ResNetcomb
skip 0.6370 0.1183 0.1828 41.28% 75.45% 1.9257 5.5758 50.05% 48.96% 41.74% 20.61 75.18%

Unetvnlskip & aug 0.6014 0.1033 0.1758 42.70% 76.97% 1.7040 5.0063 56.24% 58.18% 53.33% 20.87 75.09%

ti
n

y
fi

lm
ic

Pnascomb 0.6268 0.1088 0.1939 37.03% 75.66% 2.9347 6.1523 32.01% 27.16% 21.20% 17.34 79.73%

Unetvnl 0.5448 0.2315 0.1848 42.82% 79.43% 1.6943 4.8443 57.63% 59.49% 53.19% 19.21 78.00%

DenseNetcomb 0.6903 0.1896 0.1968 35.34% 73.48% 2.8225 6.3933 37.14% 31.85% 24.24% 19.29 77.37%

ResNetcomb 0.6107 0.1479 0.2036 35.08% 73.29% 2.7016 6.1781 37.34% 32.57% 22.22% 18.30 78.64%

ResNetcomb
skip 0.6445 0.1195 0.1863 39.00% 75.19% 2.1093 5.7670 50.19% 48.58% 37.50% 19.26 77.35%

Unetvnlskip & aug 0.4750 0.0871 0.1743 39.51% 80.39% 1.5326 4.3923 60.69% 63.32% 59.43% 16.66 81.62%

fu
ll

p
lu

s
fi

lm
ic

Pnascomb 0.7866 0.1344 0.2129 35.97% 68.86% 3.1505 6.7791 29.06% 22.40% 16.16% 21.55 73.61%

Unetvnl 0.7368 0.2975 0.2199 38.47% 70.20% 1.9476 5.5601 50.65% 50.90% 44.46% 23.89 70.69%

DenseNetcomb 0.9258 0.2207 0.2292 33.54% 63.80% 3.1514 7.1900 32.52% 25.41% 17.75% 24.04 70.14%

ResNetcomb 0.7786 0.1727 0.2154 35.99% 68.24% 2.9668 6.8743 34.37% 27.06% 16.76% 22.50 72.35%

ResNetcomb
skip 0.8705 0.1632 0.2217 34.94% 65.30% 2.4696 6.6184 43.73% 39.23% 27.65% 23.91 70.13%

Unetvnlskip & aug 0.6237 0.1084 0.1829 41.57% 75.56% 1.7688 5.1482 54.64% 55.56% 50.02% 21.23 74.58%



Table 5. Consolidated depth performance across all traits using a subset of the available metrics. Results are presented for the two best

performing models on the GibsonV2 splits which have been trained on the Matterport3D train split.

GV2 Model

Direct Depth Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑

wRMSE wRMSLE wAbsRel δico
6

1.1 δico
6

1.25 dbeacc dbecomp prec0.25 prec0.5 prec1 RMSEo α30o

tinyHR Unetvnl 0.5794 0.1247 0.2151 31.98% 62.05% 1.4330 5.1737 44.84% 46.13% 41.57% 22.36 74.12%

ResNetcomb
skip 0.4993 0.1273 0.1758 40.78% 80.31% 1.9271 5.9666 36.24% 37.68% 30.77% 15.65 82.78%

mediumHR Unetvnl 0.5901 0.1291 0.2269 31.21% 61.02% 1.6221 5.5436 43.98% 44.21% 38.46% 22.13 74.73%

ResNetcomb
skip 0.4528 0.1618 0.1664 42.03% 81.91% 2.0356 5.8467 34.27% 34.60% 27.81% 14.71 84.46%

fullplusHR Unetvnl 0.8772 0.1769 0.2730 22.46% 46.09% 1.7532 6.4628 36.46% 35.80% 28.67% 27.43 65.07%

ResNetcomb
skip 0.6607 0.2308 0.1836 41.18% 74.77% 2.3775 6.9102 28.70% 28.15% 20.71% 19.88 76.30%

4. Analysis

Implementation Details. We implement all experi-

ments with moai [37], using the same seed across all ex-

periments. For data generation we use Blender and the Cy-

cles path tracer using 256 samples. Our ResNets are built

with pre-activated bottleneck blocks [20] and all our mod-

els’ weights are initialized with [19]. We optimize all mod-

els for 60 epochs on a NVidia 2080 Ti, using Adam [30]

with a learning rate of 0.0002 and default momentum pa-

rameters, and a consistent batch size of 4. All losses are

unity (i.e. equally) weighted across all experiments. We

use CloudCompare to calculate the c2c distance [17], and

MeshLab to calculate the m2m distance [10]. During eval-

uation, we consider the raw values predicted by the models

and clip the valid depth range to 10m.

Which loss combination offers better performance?

Contrary to their focused nature both Lcosine and Lgrad

increase depth estimation performance across all models

when complementing the direct L1 objective, as evident

in Table 1. In addition, they provide the expected boost

in smoothness/discontinuity preservation across all models

as presented in our supplementary material. When viewed

purely from a depth estimation perspective, it is observed

that their combination, Lcomb, benefits performance. But,

when examining the specific depth traits that they seek to

enforce, their conflicting nature is also apparent. Overall,

we observe almost all models achieve highest overall per-

formance when both losses are present, with, our without

the virtuan normal loss (VNL) which is added in the Lvnl

case. The latter greatly boosts the UNet model, which is

reasonable as the localised nature of skip connections is

aided by the global depth constraints that VNL introduces.

Which architecture is better performing? We com-

pare architectures after selecting the best performing mod-

els for each, which for UNet is Lvnl, and for the rest the

Lcomb. The rationale for choosing Lcomb for ResNetskip is

that while Lgrad behaves better on direct depth metrics (ex-

cept closer distances, as indicated by the RMSLE), there is

a large performance gap in the discontinuity and smooth-

ness metrics2, compared to the performance discrepancy

on depth estimation. Table 2 presents the results using the

spherical metrics that account for the distortion. These are

unbiased metrics, which is evident given the deteriorated

performance across all metrics compared to those estimated

on the image level on each equirectangular panorama. A

more straightforward comparison is available in our sup-

plement. Interestingly, we observe that models employ-

ing encoder-decoder skip connections exhibit better perfor-

mance both in direct depth metrics (Table 2). Curiously,

contrary to the expectation as set by the literature [40] that

high-capacity encoders are required, the UNet architecture

showcases the best performance. Regarding domain ori-

ented techniques, we train the better performing model with

circular padding [42, 54] that connects features across the

horizontal equirectangular boundary, denoted as circ. Evi-

dently, this simple scheme increases the performance across

all metrics, allowing the model to exploit its spherical na-

ture.

Is this performance consistent when considering sec-

ondary traits? Regarding the discontinuity and smoothness

traits as presented in Table 3 it is evident that skip connec-

tions result in higher performance, but especially for the

dominating UNet, at the expense of the smoothness trait.

This is reasonable as early layer skip connections result into

texture transfer, and further evidenced by the improved per-

formance of ResNetskip, which lacks early layer skips, on

both discontinuity and smoothness metrics. Overall, UNet

achieves the best performance on depth and discontinuity

metrics at the expense of the smoothness trait and closer

range performance as indicated by its inferior RMSLE. On

the other side, the different metrics indicate that the PNAS

model produces oversmoothed results that are more metri-

cally accurate and precise at closer distances. Nonetheless,

ResNetskip achieves a better balance without significant sac-

rifices across the secondary traits.

How helpful is depth refinement? We also examine the

effect of a shallow depth refinement module on these mod-

els, with the results after training for 10 epochs presented in

Table 3. All models, apart from UNet, improve their perfor-

mance at boundary preservation while also preserving depth

estimation performance, but at the expense of smoothness,

with the exception in this case being ResNetskip. For UNet

specifically, texture transfer leads to noise, which prevents

an interpolation-based warping technique to improve re-

sults, as it was designed to improve smooth depth predic-

tions. However, ResNetskip closes the performance gap and

even improves smoothness performance, further solidifying



its well-balanced nature.

Why this benchmark? Table 2 shows the performance of

the two higher performing models when trained and tested

on other recently introduced 360o depth datasets, namely

3D60 [55] which is an extension of [56] and Structured3D

[53] with 512×256 and 1024×512 resolutions respectively.

All metrics are significantly higher which evidences their

insuitability to be used for benchmarking progress. This

is largely because of their inherent bias which is the result

of lighting for 3D60, which includes an extra light source

at the center, as also explained in [26], an unfortunate bias

that models learn to exploit as farther depths are darker; and

the omission of the noisy camera-based image formation

process and lack of real-world scene complexity exhibited

by the purely synthetic Structure3D dataset,

What is their generalization capacity? We test these

models in a zero-shot cross-dataset transfer setting using

the GV2 splits using a subset of all metrics with the re-

sults presented in Table 4. We observe reduced performance

for all models across all splits which is the result apply-

ing these models in different contexts/scenes and to out-of-

distribution depths (tiny/medium). Yet, the ranking between

models is not severely disrupted, indicating that architec-

ture changes do not significantly affect generalization. The

fullplus split is noticeably harder than the others, as all met-

rics are considerably worse, showcasing that pure context

shifts (similar depth distribution) are detrimental to perfor-

mance. However, camera domain shifts are another gener-

alization barrier that is significant, as shown by the models’

results on the filmic splits, where a different color trans-

fer function was applied during rendering. The latter also

received the bigger gains when training with photometric

augmentation (UNetaug), specifically random gamma, con-

trast, brightness and saturation shifts, which also boosted

performance horizontally across all splits. Still, augmenta-

tion alone did not raise performance to levels similar to the

M3D test set, indicating that other techniques are required.

Table 6. Performance of all models using the 3D metrics. For the

m2m metric inside the parentheses, we also report the percentage

(%) of the error w.r.t the bounding box diagonal, while for the c2c

metric we also report the error standard deviation.

model m2m c2c

Pnascomb 0.2502 (7.02%) 0.1439 (0.1881)

Unetvnl 0.2397 (6.52%) 0.1305 (0.1663)

DenseNetcomb 0.2475 (6.98%) 0.1425 (0.1852)

ResNetcomb 0.2573 (7.01%) 0.1405 (0.1907)

ResNetcomb
skip 0.2424 (6.83%) 0.1300 (0.1770)

How does performance vary with resolution? Given

their 360o FoV, spherical panoramas require higher reso-

lutions to be able to more robustly estimate detailed depth.

Table 5 presents the results of the two better performing

models, trained on M3D’s 1024 × 512 resolution data, and

tested on the GV2 splits with the same resolution. We ob-

serve a change in performance between the UNet and the

ResNet with skip connections. The latter’s expanded re-

ceptive field and higher capacity encoder offer significantly

higher performance in the direct depth and smoothness met-

rics, albeit the UNet still localizes boundaries better.

How about downstream application suitability? We

also assess each model’s performance using the 3D met-

rics that aggregate performance across all axes. Table 6

presents the results using the cloud and mesh distances are

presented in Section 3.2. Overall the performance ranking is

preserved, with UNet’s noisy predictions being moderated

by the reconstruction process in the mesh distance metric,

while the point cloud distance’s nearest-neighbor nature is

more sensitive to it. Thus, downstream applications like

view synthesis should investigate model results using c2c

metrics, while applications relying on 3D reconstruction

should resort to the m2m metric. Again, as shown by these

metrics, the skip connections based ResNet is a reasonably

balanced choice, that follows UNet’s top performance.

5. Summary

Spherical depth estimation is a task that comes with cer-

tain advantages (holistic view) and disadvantages (resolu-

tion requirements) compared to traditional – perspective –

depth estimation. Preserving boundaries is challenging be-

cause of the distortion frequently squeezing objects towards

the equator, and thus, smaller spatial areas; and due to the

discontinuities that the different projections introduce. Im-

posing a smoothness prior is also not straightforward as

for perspective depth. The presented Pano3D benchmark

can stimulate future progress in 360o depth estimation that

will take all these aspects into account. From our exten-

sive analysis – which nonetheless does not cover all cases –

we identify the effectiveness of skip connections in terms of

boundary preservation, as a means to overcome the weak-

ness of spatial downscaling, which in turn, is necessary to

exploit the panoramas’ global context. While the UNet ar-

chitecture achieves top performance in lower resolutions, a

ResNet with skip connections is a more balanced architec-

tural choice that scales better across resolutions.

Finally, Pano3D relies on zero-shot cross-dataset trans-

fer to move beyond a simple train/test split performance

comparison. By decomposing generalization into three dis-

tinct performance reducing barriers, our goal is better fa-

cilitate the assessment towards real-world applicability of

data-driven models for 360o geometric inference.

Supplementary Material. We provide extra quantita-

tive and qualitative comparisons not included in this doc-

ument. Supplementing experiments also reproduce prior

work used as a basis for designing our methodology.
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