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Abstract—This work addresses the problem of multi-task
object detection in an efficient, generic but at the same time
simple way, following the recent and highly promising studies
in the computer vision field, and more specifically the Region-
based CNN (R-CNN) approach. A flow-enhanced methodology
for object detection is proposed, by adding a new branch to
predict an object-level flow field. Following a scheme grounded
on neuroscience, a pseudo-temporal motion stream is integrated
in parallel to the classification, bounding box regression and
segmentation mask prediction branches of Mask R-CNN. Exten-
sive experiments and thorough comparative evaluation provide
a detailed analysis of the problem at hand and demonstrate
the added value of the involved object-level flow branch. The
overall proposed approach achieves improved performance in the
six currently broadest and most challenging publicly available
semantic urban scene understanding datasets, surpassing the
region-based baseline method.

I. INTRODUCTION

Object detection and recognition is a fundamental task for
the human visual system. It has been proved that the human
brain uses multiple object properties to achieve the required
recognition performance. Appearance features such as shape,
structure, color, and texture comprise essential information for
this purpose. Therefore, most object representation methods
have concentrated on single frame cues for recognition.

However, the vast majority of objects are not stationary.
The motion characteristics of an object constitute a unique
signature that can be used for recognition of the object.
Intuitively, exploiting the motion characteristics of an object
can improve our object recognition capabilities. The role of
motion information in object recognition has been already
examined by a number of studies [1]. Both rigid and non-rigid
motion, have been studied for their role in different tasks.

As it has been highlighted, object recognition involves
a number of heterogeneous modalities, namely appearance,
shape and motion. Specialized neural networks have been
developed to model each one of them. However, these modal-
ities are strongly interconnected and it has been shown in the
literature that employing a multi-target learning technique to
address them all in parallel can have important advantages. It
drastically reduces the overhead between the networks and it
allows the network to generalize better.

Given the lack of motion information in single frames, only
appearance-related features have been employed until now in

multi-target learning methods. The shape of an object has been
shown to be correlated with its motion characteristics. This
is further confirmed by recent literature that has shown it is
possible to predict the flow of an object et al. [2] from a
single frame. This pseudo-flow information can be used as a
substitute for the actual motion information.

In this paper, a neuroscience-inspired scheme is proposed to
improve object detection by introducing to the Mask R-CNN
architecture an additional pseudo-temporal stream (branch) for
motion prediction from still images. An object-level flow field
is incorporated in the object recognition process. In particular,
the proposed pseudo-temporal information is effectively incor-
porated into the proposed detection framework by penalizing
the global loss computation with an optical flow loss factor.
For this purpose, a dense pseudo-flow estimation branch is
added that achieves satisfactory motion prediction accuracy at
a relatively low computational cost, since the latter is applied
solely at the RoI level. Specifically, the resulting network
detects object bounding boxes with instance segmentation
masks and estimates the object flow predictions for each
candidate object.

The remainder of the paper is organized as follows: Related
work is reviewed in Section II. The proposed approach is
detailed in Section III. Experimental results are discussed in
Section IV and conclusions are drawn in Section V.

II. RELATED WORK

Over the past few years, a broad number of techniques have
been proposed, targeting object detection from still images or
videos, while combining and integrating different approaches.
This section analyses the different methodologies available
in the literature for object detection from still images and
videos, focusing on DL techniques. DL methods can be
roughly divided in a) region-based and b) regression-based
ones, depending on the number of processing steps/phases they
employ.

A. Region-based methods

Current region-based methods perform detection by carry-
ing out a classification on different regions, sub-windows or
patches extracted from the image. This is the most popular
category of methods, where the aim is to produce region



proposals at first and then classifying each proposal into
different object categories [3], [4], [5], [6], [7], [8]. Most of the
approaches vary on the type of methodology used for choosing
the regions, trying to find the balance between an exhaustive
search and a fixed number of region proposals. One of the first
attempts to utilize CNNs in object detection was the Region-
based CNN (R-CNN) [3] in which a number of class-agnostic
candidate regions are proposed and fed to a CNN to extract
a fixed-length feature descriptor for each region. Thereafter, a
unique linear Support Vector Machine (SVM) for each class
classifies these regions based on their extracted descriptors. In
[4], a Spatial Pyramid Pooling (SPP) layer is introduced, in
order to remove the fixed-size constraint of the network. The
latter computes a convolutional feature map from the entire
image only once and then pools features in arbitrary regions to
generate fixed-length representations for training the detectors.

Built upon R-CNN success, the Fast R-CNN [5] targets
the inefficiency of having to pass each of the candidate
regions individually through the CNN by forward passing the
input image to the network once, generating its feature map
and applying Region of Interest (RoI) pooling for each of
the candidate regions to extract their feature representations.
Based on the previously mentioned methods, Faster R-CNN
[7] introduced a trainable mechanism for the purpose of
proposing candidate regions called Regional Proposal Network
(RPN). Given a number of uniformly generated anchors across
the image, the RPN distinguishes them between foreground
and background before passing the former to the classifier.
Moreover, Mask R-CNN [6] extended the Faster R-CNN
by adding an extra head for segmentation and replaced the
ROI pooling with RoI align resulting in higher accuracy
predictions. In [9], T.-Y. Lin et al. proposed Feature Pyramid
Networks (FPN) on the basis of Faster R-CNN. The latter
presented a top-down architecture with lateral connections for
building high-level semantics at all scales. Later, a variety of
improvements have been proposed, including R-FCN [8] and
Light-head R-CNN [10].

In contrast to previous Region-based detectors, such as
Fast/Faster R-CNN [5], [7], that apply a costly per-region
sub-network hundreds of times, the proposed Region-based
detector in [8] is fully convolutional with almost all compu-
tations shared on the entire image, while also improves speed
by reducing the amount of work needed for each RoI. The
latter introduces position-sensitive score maps to address a
dilemma between translation-invariance in image classification
and translation-variance in object detection. Additional classi-
fiers are added in [11] aiming at progressively increasing the
IoU’s of the proposed regions with the ground truth objects
which results in improved predictions.

B. Regression-based methods

In contrary to the R-CNN family methods where region
proposal and region classification are done by discrete mod-
ules, in one-stage methods the regions are generated and
classified in a single forward pass. Methods belonging at this
category try to map directly from image pixels to bounding

box coordinates and class probabilities [12], [13], [14], [15],
[16], [17]. In particular, Liu et al. [12] describe a method
for detecting objects in images, using a single deep neural
network. The approach, named Single shot multi-box detector
(SSD), discretizes the output space of bounding boxes into a
set of default boxes over different aspect ratios and scales per
feature map location. At prediction time, the network generates
scores for the presence of each object category in each default
box and produces adjustments to the box to better match the
object shape. Additionally, the network combines predictions
from multiple feature maps with different resolutions to nat-
urally handle objects of various sizes. In [13], a CNN-based
technique is proposed, which models the problem of object
detection as an iterative search in a multi-scale grid-space of
all possible bounding boxes.

The YOLO [14] and the SSD [12] algorithms are the
most representative one-stage/regression object detection ap-
proaches. Later, R. Joseph has made a series of improvements
on the basis of YOLO and has proposed its v2 and v3 editions
[15], which further improve the detection accuracy while
keeps a very high detection speed. Moreover, an approach for
introducing addition context into the SSD model is described
in [16], where a state-of-the-art feature extractor (Residual-
101 [17]) is combined with the aforementioned detection
framework [12]. The proposed SSD+Residual-101 architecture
is augmented with a set of deconvolution layers in order to
introduce additional large-scale context in object detection.

Although this category of methods offers faster performance
compared to the RPN based one, they are limited in terms
of prediction accuracy due to the high imbalance between
positive and negative regions fed to the classifier (the positive
and negative terms refer to the presence and the absence of
ground truth object, respectively). Lin et al. [18] addresses the
imbalance by having the ambiguous regions contribute more in
the loss calculation, thus valuing the hard examples more than
the easily classified ones. To this end, the authors introduced
a novel loss function named ‘focal loss’ by reshaping the
standard cross-entropy loss so that the detector will put more
focus on hard misclassified examples during training. Focal
Loss enables the one-stage detectors to achieve comparable
accuracy of two-stage detectors while maintaining a very high
detection speed.

C. Flow-based object detection

Optical flow techniques have been applied to video-based
object detection tasks over the years, as the incorporation of
temporal information in the object detection task can improve
the feature quality and recognition accuracy. The majority of
them incorporate optical flow vectors obtained after applying
an Optical Flow algorithm in the visual analysis loop for
marking the detected object in the video frame. In [19], a
DL framework, called T-CNN, which incorporates temporal
and contextual information from tubelets/boxes obtained in
videos is presented, by propagating detection results across
adjacent frames according to pre-computed optical flows. Zhu
et al. [20] propose a flow-guided feature aggregation, an



(a) FlowNet (b) Im2Flow
Fig. 1: Optical flow estimation architectures: a)FlowNet architecture: including the refinement part, is trained in an end-to-end
manner, b) Im2Flow architecture: an encoder-decoder model that infers flow given a single image

accurate and end-to-end learning framework for video object
detection, which leverages temporal coherence on feature-
level. The later enhances the visual features by employing
an optical flow network to estimate the motions between the
nearby frames and the reference frame. Recently, a unified
approach is introduced, which is based on the principle of
multi-frame end-to-end learning of features and cross-frame
motion. It belongs to the category of feature-level methods,
and introduces a Spatially-adaptive Partial Feature Updating
to fix the inaccurate feature propagation caused by inaccurate
optical flow.

From the above analysis, it can be deduced that despite the
fact that optical flow features have been extensively applied
in video object detection task, the current study is the first
study, to the best of authors knowledge, that addresses the
problem of object detection from still images, by incorporating
object flow predictions of each detected object. In addition,
object detection-related literature has in principle concentrated
on appearance and contextual information analysis, while the
respective pseudo-temporal information has not been exam-
ined yet, i.e. leaving great potential for further performance
improvement unexplored.

III. FLOW R-CNN

Objects inherently have motion characteristics, the capturing
and encoding of which could be of paramount importance for
achieving robust detection performance. According to recent
neuroscience reports [21], [21], [22], the cerebral cortex can
predict the path of a moving object (visual motion), even in
cases where the object is traveling faster than the brains’
visual processing rate, in order to adapt human behavior
to surrounding objects moving in real-time. Neuro-scientists
conclude that there is a specific part, called the Medial
Superior Temporal (MST) area, in the cerebral cortex, which
lies in the dorsal/parietal stream of the visual area of the
primate brain where the whole visual processing takes place.
The MST cooperates with the Middle Temporal (MT) area,
in order to estimate the motion field of each moving object
in a scene. In other words, that specific part is responsible
for estimating the final or close to the final location of a
moving object. Therefore, it is evident that the human brain
can reveal the implied motion using a single still image. Given
a single static image, the brain’s ventral stream interprets the
instantaneous semantic content, and at the same time the dorsal

stream predicts what is going to happen based on scene spatial
configuration, e.g. the ventral stream detects a car, while the
dorsal stream anticipates that the car is moving forward. In
this section, Flow R-CNN is thoroughly presented, including
a detailed analysis of the new object-based motion branch.

A. Object-based motion analysis

CNNs have been extensively employed for optical flow
estimation, achieving a huge improvement in prediction qual-
ity. In the current study, the literature approach of [23] is
selected (Fig. 1a), where the information included in a pair of
successive images is first spatially compressed in a contractive
part of the CNN and then refined in an expanding part.
However, for small displacement, FlowNet is not reliable.
Thus, the authors proposed an extension of their previous
model, called FlowNetSD [24], where they replaced several
network parameters including kernel size and window stride
of selected layers. Despite the very good results of these
methods, they pose an impermeable constraint, as they require
a pair of images as input to obtain satisfactory results. On
the contrary, inspired by the aforementioned neuro-scientific
notion of visual dynamics, Gao et al. have introduced an
encoder-decoder CNN (refer to Fig. 1b) equipped with a novel
optical flow encoding scheme that is able to translate a single
static image into an accurate flow field. Their main idea is to
learn a motion prior over short-term dynamics from a large
set of videos and transfer the learned motion from videos to
static images to infer their motion. The current study adopts
the findings of Gao et al. [2] for object-level flow estimation.

B. Mask R-CNN

The baseline of this work is Mask R-CNN that belongs,
as briefly stated in section II, to the Region-based/two-stage
approaches. The latter is equipped with an RPN mechanism
in the first stage in order to propose candidate RoIs. In the
second stage, another part of the network takes the proposed
RoIs and locates the relevant areas of the feature map by
utilizing a RoIAlign layer. The extracted features are further
processed in parallel to perform classification, bounding box
regression and instance-level semantic segmentation. Both
stages are connected to the backbone. Backbone could be any
Convolution Network, but usually, ResNet or VGG are used
to extract raw images.



Fig. 2: An example of a computed flow field given a static image

C. Proposed architecture

In the current work, the proposed approach mimics the
visual perception procedures that take place in the human
brain, following an appropriate deep neuro-physiologically
grounded architecture. The primary visual cortex is emulated
by the backbone of the network, generating high-level feature
representations, while the dorsal (‘where’) and ventral (‘what’)
stream are incarnated by the flow-estimation and object clas-
sification branches respectively, predicting object categories
with each respective motion in a collaborative way. The above
notion is presented in Fig. 3.

The introduced Flow R-CNN exhibits the following advan-
tageous characteristics: a) it enhances the two-stage detector
by introducing an additional pseudo-temporal stream, and
b) it incorporates the aforementioned stream in a multi-task
learning process. In particular, the current study adopts the
findings of Gao et al. [2] while moving their concept one
step further, utilizing the pseudo-temporal object-level motion
patterns combined with the appearance/contextual information
to distinguish objects in still images. To this end, an object
detection architecture is designed that takes into account the
implied movement estimation.

The proposed Flow R-CNN model is built upon the Mask
R-CNN model, estimating a per RoI flow field given a single
static in an Im2Flow inspired branch. As a feature extractor
(backbone) the ResNet variant is selected. The three existing
branches of the baseline model (object classification, bounding
box prediction, and mask prediction) remain intact and a 4th

Fig. 3: The dorsal stream (green) and ventral stream (purple)
are shown. They originate from primary visual cortex

sub-network is integrated to the RoI head, in an end-to-end
manner, to estimate a flow field for each predicted region
proposal. The flow branch is inspired by the encoder-decoder
logic of the Im2Flow model, where a motion prior-learned
from videos in the form of a two-dimensional vector, taken
from several urban scene understanding datasets, is transferred
to images, bridging the still-image detection with video object
motion understanding.

Prior to the application of the proposed Flow R-CNN,
optical flow estimation is realized for each dataset described
in section IV. More specifically, videos from several datasets
were used to model the motion patterns of objects and people
in the scene, then embed the resulting knowledge into a repre-
sentation for individual images (i.e. a two dimensional vector
as can be seen in Fig:2). Finally, the proposed Flow R-CNN
combines, in a way, the appearance information from the static
image and the predicted motion dynamics from the introduced
4th branch in order to improve the detection accuracy. A
graphical representation of the developed Flow R-CNN model
is illustrated in Fig. 4. It needs to be highlighted that in the
current implementation a modified version of the Im2Flow
was used, where the encoder part was replaced by a region-
based model backbone (ResNet) and the decoder part with
the object-level flow estimation branch. The developed CNN
branch consists of one convolutional layer, which models the
correlations among the RoI features, an average pooling layer,
and two fully connected layers, for computing the respective
flow field. Experimentation with additional configurations,
regarding the number of convolutional and fully connected
layers (as well as their parameterization), did not lead to
improved recognition performance.

In the training phase, a multi-task loss Ltotal is defined on
each sampled proposal, as shown in (1). The classification
loss Lclass, the bounding-box loss Lbbox and the instance
segmentation loss Lseg are identical to the ones define in Mask
R-CNN model.

Ltotal = Lclass + Lbbox + Lseg + Lof (1)

For each RoI, an additional object-level flow loss Lof is
computed to supervise the per-object motion by penalizing the
predicted m x m x 2 optical flow output. This requires optical
flow data for every image in the database, and in some cases,
the authors of this study have extracted such info using state-



of-the-art optical flow estimators [24]. The predicted object-
level flow fields were compared with the cropped and resized
region from the ground truth motion fields, penalized with
an l1 loss function. It is assumed that the loss of the optical
flow estimation branch enhances the learning process of the
composite model while retaining key parts of the baseline
model unaffected.

IV. EXPERIMENTAL RESULTS

A. Object detection datasets
Major research efforts have been made in the field of

computer vision to understand the complex urban scenarios.
The respective progress is bonded with the availability of
vast amounts of annotated training data (e.g. cars, bicycles,
pedestrians etc.) under varying conditions. In this section,
experimental results, as well as comparative evaluation from
the application of the proposed object detection method, are
presented. For the evaluation, the ‘KITTI‘[25], ‘V-KITTI’[26],
‘Visdrone’[27], ‘Cityscapes’[28], ‘Berkeley Deep Drive’[29]
as well as the ‘UDacity’[30] datasets were used.

• KITTI dataset [25]: The KITTI object detection bench-
mark consists of 7481 training images and 7518 test
images, comprising a total of 80.256 labeled objects.
All images are color and the goal of the challenge is
to detect objects from three common urban categories,
namely Car, Pedestrian, and Cyclist. For evaluation, an
Average Precision (AP) is computed.

• V-KITTI dataset [26]: The Virtual KITTI dataset con-
tains 50 photo-realistic high-resolution synthetic videos
for a total of approximately 21.000 frames, generated
from 5 different virtual words in urban settings under dif-
ferent imaging and weather condition. These worlds were
created using the Unity game engine and a novel real-
to-virtual cloning method. These photo-realistic synthetic
videos are automatically, exactly, and fully annotated for
2D and 3D multi-object tracking and at the pixel level
with category, instance, flow, and depth labels. For the
particular task of object detection the V-KITTI contains
detailed class annotation for the objects of interest (Car,
Van).

• Visdrone dataset [27]: The Visdrone benchmark dataset
consists of 288 video clips formed by 261.908 frames and
10.209 static images, captured by various drone-mounted
cameras, covering a wide range of aspects including
location, environment (urban and country), objects, and
density (sparse and crowded scenes). The dataset was
collected using various drone platforms, in different sce-
narios, and under various weather and lighting conditions.
From those only 8.559 images are used for the object
detection task, with more than 540k bounding boxes in
ten predefined categories, such as such as Pedestrians,
Cars, Bicycles, and Tricycles. The dataset is further
divided into training, validation and testing sets, having
6.471, 548 and 1580 images, respectively.

• Cityscapes dataset [28]: The Cityscapes dataset contains
a diverse set of stereo video sequences recorded in street

scenes from 50 different cities, with high-quality pixel-
level annotations of 5.000 frames in addition to a larger
set of 20.000 weakly annotated frames. A number of
30 visual classes for annotation were defined, which are
further grouped into eight categories: flat, construction,
nature, vehicle, sky, object, human, and void. However,
instance-level labeling is available only for humans and
vehicles (Person, Rider, Car, Truck, Bus, Train, Motor-
cycle, and Bicycle). Around 3000 images are used for the
training, 500 for the validation, as well as 1500 images
with annotation being held for benchmarking purposes.

• Berkeley Deep Drive (BDD) dataset [29]: The BDD
dataset is a new driving dataset comprised of over 100K
videos with diverse kinds of annotations including image-
level tagging, object bounding boxes, drivable areas,
lane markings, and full-frame instance segmentation. The
dataset possesses geographic, environmental, and weather
diversity, which is useful for training models so that they
are less likely to be surprised by new conditions. The
latter contains 10 object categories (bus, traffic light,
traffic sign, person, bike, truck, motor, car, train, and
rider) spread over 100.000 images with over 1.8M object
instance labeled bounding boxes, making it suitable for
robust object detection and semantic instance segmen-
tation. The dataset is divided further into 3 domains,
namely ‘clear weather’, ‘city street’ and ‘daytime’. The
current study selects only the ‘city street’ as a training
domain which has a number of around 36.000 images in
the training set.

• Udacity dataset [30]: The UDacity dataset contains over
600K urban objects in a variety of outdoor urban videos
involving Pedestrians, Cars, Bicycles and other objects
moving in the scene. Part of the data was collected using
an HD camera mounted in a vehicle. Around 375.000
annotated objects for 100k images are used for training.
The train/validation and test splits are 40%, 40% and
20%, respectively.

B. Experimental environment

In order to define the experimental protocol a set of param-
eters should be initialized as follows:

• The R-CNN part of the model was pre-trained using the
COCO [31] dataset, while for the fine-tuning, the training
and validation sets from each dataset were used.

• Images were resized such that their scale (longer edge)
is 512 pixels.

• The RPN anchors span 5 scales and 3 aspect ratios, and
the IoU threshold of positive and negative anchors was
0.7 and 0.3 respectively.

• As in Mask R-CNN, a RoI was considered positive if
it has Intersection over union (IoU) with a ground-truth
bounding box of at least 0.5, otherwise it was discarded
as negative.

• The optical flow loss Lof was defined only on positive
RoIs. During training, a set of 64 samples was selected for
each input image, while at test time the proposal number



Fig. 4: Overall Flow R-CNN architecture: a composite region-based object detection model, the backbone of the network is
used for the image decoding, while the object-level flow estimation branch is used to infer the optical flow field. Sketched part
of the network, i.e. the segmentation branch, remains intact during training.

was set 300 followed by an NMS mechanism. The NMS
process was performed twice, at the RPN results as well
as at the predicted classes (class-specific NMS).

• The training phase is divided into two stages: a) only the
flow branch being trained, b) all layers from ResNet stage
4 and up being fine-tuned.

• The ‘Keras 2’ deep learning framework with ‘Tensorflow’
backend was used for experimentation on two Nvidia
GeForce GTX TITAN X GPUs. Ubuntu 18.04.

• The model was trained using SGD, utilizing batches of 2
images with learning rate (lr), initially set equal to 1e−3.

• Momentum was set to 0.9 and weight decay to 0.0001.

C. Comparative evaluation

In Tables I, II, III, IV, V and VI, quantitative object
detection results are given in the form of the mean Average
Precision (mAP), i.e. computes the average precision value
for recall value over 0 to 1. The current study follows the
evaluation protocol defined by COCO challenge and adopts the
primary challenge metric mAP that computes mAP over all
classes and over 10 IoU thresholds. Averaging over the 10 IoU
thresholds rather than only considering one general threshold
of mAP IoU=.5 tends to reward models that are better at
precise localization. For providing a better insight, indicative
object detection results obtained by the application of the
proposed approach against the baseline one are presented in
Fig.5. It can be observed that the proposed scheme exhibits
improved recognition performance (especially in the case of
moving cars) over the baseline in varying urban scenarios
(night-view, top-view, car-view).

From the first group (Table I) of the provided results (i.e.
KITTI dataset), it can be seen that the introduced Flow R-CNN
model slightly improved the results of the respective Mask

TABLE I: Comparative results on KITTI dataset
Easy Moderate Hard
Mask Flow Mask Flow Mask Flow

Car 0.893 0.905 0.843 0.849 0.733 0.736
Pedestrian 0.804 0.812 0.672 0.677 0.619 0.622
Cyclist 0.739 0.746 0.635 0.638 0.554 0.556
mAP 0.812 0.821 0.717 0.721 0.635 0.638

TABLE II: Comparative results on V-KITTI dataset
Class Mask R-CNN Flow R-CNN

Car 0.932 0.958
Van 0.917 0.940
mAP 0.924 0.949

R-CNN model in all categories (Car, Pedestrian, Cyclist) as
well as in every application scenario (Easy, moderate, hard).
However, there was a significant improvement for the ‘Car’
category, about 1.2%, that supports the initial claim. The latter
demonstrates the increased discrimination capabilities of the
flow information stream. The same applies to the V-KITTI ex-
periments (Table II), where the proposed architecture surpasses
the baseline by a large margin (over 2% improvement).

TABLE III: Comparative results on Visdrone dataset
Class Mask R-CNN Flow R-CNN

Pedestrian 0.205 0.223
People 0.071 0.064
Bicycle 0.029 0.033
Car 0.406 0.428
Van 0.208 0.232
Truck 0.148 0.181
Tricycle 0.132 0.148
Awn 0.091 0.085
Bus 0.216 0.253
Motor 0.153 0.151
mAP 0.166 0.180



a)

b)
Fig. 5: Object detection results obtained from the application of the Mask R-CNN (a) and Flow R-CNN (b) models to the
supported datasets[29], [27], [30]

TABLE IV: Comparative results on Cityscapes dataset
Class Mask R-CNN Flow R-CNN

Person 0.345 0.364
Rider 0.271 0.307
Car 0.488 0.505
Truck 0.296 0.306
Bus 0.401 0.387
Train 0.302 0.252
Motorcycle 0.237 0.256
Bicycle 0.182 0.204
mAP 0.315 0.323

TABLE V: Comparative results on BDD dataset
Class Mask R-CNN Flow R-CNN

Bike 0.383 0.391
Bus 0.481 0.489
Car 0.732 0.746
Motor 0.194 0.198
Person 0.531 0.537
Rider 0.349 0.352
Traffic-light 0.479 0.473
Traffic-sign 0.558 0.547
Truck 0.506 0.514
mAP 0.421 0.424

Concerning the Visdrone experiments (Table III), it can
be observed that the introduced scheme perform reasonably
well in categories where the motion is evident (‘Car’, ‘Van’,
‘Track’, etc.), while fails to recognize those that have complex
structure or cover small portion of the image due to camera
positioning (e.g. based on drone footage).

The exhibited results of the Cityscapes dataset (Table IV)
suggest that incorporating the flow stream into the learning
process of an R-CNN architecture may have a positive impact
in the detection and recognition of moving objects, such as
‘Cars’, ‘Motorcycles’ and ‘Trucks’, by 1.7%, 1.9% and 1%,
respectively. Moreover, regarding the BDD experiments (Table
V) the influence of the motion branch to the R-CNN scheme is
evident in the presented results, as most classes have superior
recognition performance, whereas a slight increase is reported
for the overall mAP (0.3%), as static objects (‘traffic-light’

TABLE VI: Comparative results on Udacity dataset
Class Mask R-CNN Flow R-CNN

Bike 0.625 0.629
Bus 0.949 0.951
Car 0.724 0.736
Motorbike 0.738 0.736
Person 0.747 0.752
Traffic-light 0.502 0.498
Traffic-sign 0.701 0.696
mAP 0.712 0.714

TABLE VII: Comparative results on six datasets using differ-
ent backbone architectures

Backbone KITTI V-KITTI Visdrone Cityscapes BDD Udacity

ResNet-50 0.724 0.949 0.180 0.323 0.424 0.714
ResNet-101 0.731 0.956 0.185 0.329 0.430 0.720
ResNet-50-FPN 0.735 0.961 0.194 0.334 0.432 0.725
ResNet-101-FPN 0.742 0.967 0.207 0.340 0.438 0.731

and ‘traffic-sign’) over-shade the performance. Udacity dataset
(Table VI) has quite similar content and category types to
the previous one, and due to the lack of optical flow training
data for this group, as Udacity is composed of still images,
it was decided to transfer the acquired knowledge from the
previous set (i.e. the BDD). This limitation has led the model
to fail in most cases, except in the case of cars, that hold a
significant portion of the dataset, demonstrating the need for
data but also highlighting the cumulative capabilities that the
introduced model offers to the moving objects. An evaluation
of the proposed Flow R-CNN in six different datasets using
various backbones is shown in Table VII. It can be observed
that the introduced model achieves improved performance
in all datasets using deeper ResNet architectures, while also
benefiting from advanced schemes such as the FPN-variant;
highlighting the generalizability of the proposed design.

V. CONCLUSIONS

In this paper, the problem of multi-task object detection
using DL techniques was investigated following the recent
and highly promising studies in the computer vision field, and



more specifically the R-CNN approach. A methodology for
incorporation of pseudo-temporal information in Region-based
CNN object detection schemes was presented, in contrast to
the vast majority of literature methods that rely only on the
use of appearance information and semantic knowledge. Ad-
ditionally, following a neuro-scientifically grounded scheme,
the pseudo-temporal stream was integrated parallel to the
classification, bounding box regression and segmentation mask
prediction branches of Mask R-CNN, and it was effectively
incorporated into the learning process by penalizing the global
loss computation with an optical flow loss factor. Exten-
sive experiments and thorough comparative evaluation were
reported, which provide a detailed analysis of the problem
at hand and demonstrate the added value of the involved
instance-level motion branch. The overall proposed approach
achieved improved performance in the six currently broadest
and most challenging publicly available semantic urban scene
understanding datasets, surpassing the baseline method. Future
work includes the investigation of re-adjusting the proposed
pseudo-temporal branch utilizing a more sophisticated optical
flow estimation methodology.
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