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Abstract—In this paper, a novel approach for 3-D Shape descrip-
tion and retrieval based on the theory of ellipsoidal harmonics is
presented. Four novel descriptors are introduced: the surface el-
lipsoidal harmonics descriptor, which concerns 3-D objects that
are described as polygonal surfaces; the volumetric ellipsoidal har-
monics descriptor, which is applicable to volumetric 3-D objects;
the generalized ellipsoidal harmonics descriptor that is applied to
any local 3-D object descriptors; and, finally, the combined ellip-
soidal-spherical harmonics descriptor, which leads to a compact
and powerful descriptor that inherits the advantages of both ap-
proaches: the rotation invariance properties of the spherical har-
monics and the directional information enclosed in ellipsoidal har-
monics. Experimental results performed using well-known 3-D ob-
ject databases prove the retrieval efficiency of the proposed ap-
proach.

Index Terms—3-D object retrieval, ellipsoidal harmonics, shape
description.

1. INTRODUCTION

HE 3-D object retrieval is a relatively new and very chal-

lenging research field and a major effort of the research
community has been devoted to the formulation of accurate and
efficient 3-D object search and retrieval algorithms. In the new
3-D era, the growth of the Internet along with the recent progress
in computer’s graphical units and the development of friendly
and easy-to-use 3-D content creation tools have led to the cre-
ation of huge repositories with 3-D objects. In this new environ-
ment, the demand for efficient tools that can quickly and accu-
rately retrieve the desired 3-D content is emerging.
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A. Related Work

In the last few years, a lot of work has been performed in the
area of accurate 3-D shape description for search and retrieval
applications. The presented approaches can be classified into
four major categories: global feature-based approaches, local
feature-based approaches, topology-based approaches, and
view-based approaches.

The global feature-based approaches, which are the first
methods that appear in the field of 3-D search and retrieval, aim
to capture the geometry of the whole object in a single repre-
sentation (usually a vector), using various methods: primitive
shape features [1], [2], moments (Krawtchouk [3], Zernike [4]),
transformations, etc. Local feature-based approaches attempt
to describe the complete 3-D object using local features. The
majority of the local feature-based approaches describes the
complete geometry using histograms; however, few attempts
to further exploit the local information have been recently
presented.

In topology-based approaches, the main feature of the 3-D
object is formed by its topology instead of its geometry. The
topology is usually represented in the form of a graph, and the
matching is performed using dedicated graph matching tech-
niques. The view-based approaches cannot be classified as na-
tive 3-D description methods. The object is decomposed to a
collection of 2-D views and the most powerful image descrip-
tors are utilized. Table I summarizes some important 3-D ob-
ject retrieval approaches. For more sophisticated analysis, the
reader is referred to the 3-D search and retrieval reviews [5],
[6]. More recently, the field of 3-D shape search and retrieval
has attracted more researchers and the competition on the field
has been increased significantly, mainly due to the Shape Re-
trieval Contest (SHREC), organized each year by the consor-
tium of Aim@Shape EU-funded project [7].

All of the existing approaches present advantages and draw-
backs. Topology-based approaches are the only approaches that
can capture topological information; however, few methods
exist that equally rely on both topology and geometry. Addi-
tionally, the majority of the topology-based approaches cannot
easily generalize to all kinds of 3-D objects and they are very
sensitive to minor shape changes (the topology can be seriously
altered); thus, their applicability is limited to few classes of 3-D
objects. Local feature-based approaches focus on acquiring
highly discriminant local representations, which are usually
integrated in a single (or multiple) histogram(s) and thus, their
discriminative power is seriously affected in the majority of
the approaches. View-based approaches provide very reliable
3-D shape representation; however, due to their nature, they
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TABLE 1
RELATED WORK PRESENTED IN THE LITERATURE

Global Feature
[18], [19], 3D angular radial transform (ART) [20]

Primitive shape features: Volume, area, moments [1], bounding box, cords, moments, wavelets [14], convex hull features
(crumpliness, packing and compactness) [2], Spatial Maps of volumetric features [15], [10]
Transformations: Generalized Radon Transform [16], Spherical Harmonics [9], 3D Zernike [17], complex spherical functions

Local Feature [23], Space partitioning histograms [10]

Forming Histograms: MPEG-7 shape index [21], Extended Gaussian Images [22], Complex Extended Gaussian Images

Spin Image Singatures [24], Priority-Driven Search [25].

Topology Based

Curve Skeletons [26], [27], Reeb Graphs[28], Medial Surfaces [29]

View Based Light-Field Descriptor [11]
TABLE II
COMPARISON OF RELATED WORK PRESENTED IN THE LITERATURE
Invariaance .
Method Rotation Translation Scale Articulation Genelig
[16] PCA Normalization Yes No Yes
[9] Yes Normalization | Normalization No Yes
[17] Yes Normalization | Normalization No Yes
[20] PCA Normalization | Normalization No Yes
[25] Yes Yes Yes Yes Yes
[28] Yes Yes Yes Yes Yes
[29] Yes Yes Yes Yes No
[26] Yes Yes Yes Yes No
[11] Search Normalization | Normalization No Yes
Legend:

PCA: Rotation Invariance is achieved using Principal Component Analysis. Normalization: A normalization step is required before applying the method. For
scale and translation normalization is robust. Search: the invariance is achieved during search using complex techniques.

are unable to capture features that cannot be seen from the
selected points of view. Also, their time performance during
retrieval can be considered as a serious disadvantage (N to N
matching is required). Global feature-based approaches are
more reliable when compared to topology-based and local
feature-based approaches due to their ability to capture mainly
the global geometry of the 3-D object discarding local features,
i.e., minor shape changes between two objects do not seriously
affect the global shape description. The latter is suitable for
the general purpose 3-D object retrieval applications where the
retrieval is based on global shape similarity. However, it can
also be considered as a potential drawback in some cases, when
there are objects of the same class that can dramatically change
their shape (non-rigid objects or, usually, articulated objects),
or objects from different classes that present major similarities
(e.g., spindle of the helicopters has similar geometry to a fish).

There are also other problems that pose obstacles in the effi-
ciency of the existing global-based approaches, such as the 3-D
object’s degeneracies (e.g., holes, missing polygons, hidden
polygons), the 3-D object’s pose normalization, the retrieval
accuracy, etc. The first problem is usually tackled successfully
by applying a triangulation algorithm (e.g., Delaunnay trian-
gulation) or a hole filling algorithm [8]. Concerning the pose
normalization problem, there are two widely acceptable solu-
tions presented in the literature: the natively rotation invariant
description of the 3-D object (e.g., using spherical harmonics
[9] histogram-based descriptors [10]) or natively rotation
invariant matching (e.g., light field descriptor [11]) and the ro-
tation normalization of the object in a preprocessing step. Both
approaches present major advantages and serious drawbacks:
Firstly, the vast majority of the utilized rotation normalization
approaches are based on the PCA (e.g., continuous PCA [12]).

Although algorithms that utilize pose normalization using
PCA usually result in descriptors with higher discriminative
power, some similar objects are not usually normalized in a
similar manner [13]. In contrast, natively rotation invariant
object description [9] usually involves an integration-like
technique which leads to descriptors which are not adequately
discriminant [12]. Table II summarizes the properties of some
approaches presented in the literature.

B. Motivation and Contributions of the Proposed Work

As it was earlier mentioned, one of the major problems of the
global approaches is the trade-off between rotation invariance
and highly discriminative shape information. In this paper, new
geometric descriptors are proposed, which are based on the el-
lipsoidal harmonics. Ellipsoidal harmonics offer a compact and
discriminative object representation that is appropriate for 3-D
content-based search and retrieval. The proposed approach can
be utilized using both surface-based and volumetric-based 3-D
object representation and is invariant under scaling and transla-
tion of the 3-D object, using relative distances to the parameters
of the bounding ellipsoid. For rotation normalization, an appro-
priate normalization approach is introduced (without using the
well-known traditional PCA). Then, ellipsoidal harmonics anal-
ysis is extended and applied to local 3-D descriptors, leading to
the generalized ellipsoidal harmonics descriptor. Finally, the di-
rectional information of the ellipsoidal harmonic descriptors is
combined with spherical harmonics in order to produce a na-
tively rotation invariant descriptor that inherits the properties of
both descriptors.

The major contributions of the proposed approach are the fol-
lowing.
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* Compact representation: The resulting descriptor set is
very compact, i.e., the descriptor vector dimensionality is
small.

» Better object approximation: The approximation of a 3-D
object using ellipsoids is better than using spheres.

* The method is applicable on both volumetric and surface-
expressed 3-D objects.

* The method can easily be generalized in order to utilize
any local descriptor.

* The method can easily be combined with spherical har-
monics in order to produce natively rotation invariant de-
scriptors.

* The proposed methods are not sensitive to minor shape
changes.

The rest of this paper is organized as follows: In Section II,
the theory of ellipsoidal harmonics is briefly reviewed. In
Section III, the various instances of ellipsoidal harmonics de-
scriptors are described and in Section IV, ellipsoidal harmonics
are combined with spherical harmonics. The utilized matching
method is presented in Section V, and the experimental results
are given in Section VII. Finally, the conclusions are drawn in
Section VIIL

II. ELLIPSOIDAL HARMONICS

The ellipsoidal harmonics are special functions that have been
utilized in the field of astronomy [30] for describing surrounding
force-fields of non-spherical objects. In this paper, the theory of
ellipsoidal harmonics is adapted and applied to the field of 3-D
shape analysis and description. The basic motivation behind the
selection of ellipsoidal harmonics for 3-D object description re-
lies on the intuition that an ellipsoid forms a better approxima-
tion of the shape of a 3-D object when compared to the approxi-
mation using spheres. The theoretical problem of the ellipsoidal
harmonics has been targeted by mathematicians for many years
in the early 1900s. Thus, many variations in the notation of ellip-
soidal harmonics can be found in the literature (e.g., [31], [32]).
For the needs of this paper, the notation utilized in [31] has been
adopted, due to its simplicity. For the sake of completeness, the
theory of ellipsoidal harmonics is briefly reviewed.

A. Ellipsoidal Coordinates

Intuitively, one of the basis functions in the space of ellip-
soidal coordinates has to be an ellipsoid. The latter is verified
by the definition of the ellipsoidal coordinates, which are de-
fined using a reference ellipsoid with axes length a, b, c:

S T (0

(a) (b) (0)

Fig. 1. Ellipsoid A} = const (a), the one-sheet hyperboloid (b) A3 = const,
and the two-sheet hyperboloid (¢) A2 = const.

Without any loss of the generality of the approach, it is as-
sumed that a > b > c. By setting )\? =a%, h? = a? — b2, and
k? = a® — c?, the above equation can be transformed to

II)2 y2 2,2
Tt ety —e=L )

For any given point in the Euclidean 3-D space P(z, ¥, z), (2)
with respect to A\?, has three discrete solutions, \? € [k?, +00),
A3 € [h?, k%], and A3 € [0,h?], which are called ellipsoidal
coordinates. The ellipsoidal coordinates form an orthogonal
basis for a curved space that is created by homofocal ellipsoids.
For a given (h, k), the family of ellipsoids, obtained for dif-
ferent values of \?, are homofocal. The equations \? = const,
A3 = const, and \3 = const define an ellipsoid, a hyperboloid
of one sheet, and a hyperboloid of two sheets, respectively
(Fig. 1). Although the mapping between ellipsoidal and Carte-
sian coordinates is not one-to-one (because of the squares), this
problem can easily be avoided (further information is provided
in Section III-D).

B. Lame Polynomials

Ellipsoidal harmonics are the solutions of the Laplace equa-
tion in ellipsoidal coordinates V2V = 0. The main advantages
of this approach (from the mathematical scope of the problem)
is spotted in the fact that the solutions of Laplace’s equation are
orthogonal and separable, i.e., see equation (3) and (4) at the
bottom of the page, where §(.) is the Kronecker ¢ function.
The Laplace equation in the space of ellipsoidal coordinates is
simplified to [30]

BB, ()

d\?

dEn()‘i)

d\;

+ (p—n(n+ 1A E,(\;) = 0. )

(AF = h*)(AF = k?)

+ X207 — h? — k?)

For every n, (5) has exactly 2n solutions, the polynomials
EP?(.) (are known both as ellipsoidal harmonics and lame poly-
nomials), where n = 0...00oand p = 0...2n. E£(.) form a
complete set of basis functions of the curved space of ellipsoidal

EL (A1, A2, A3) = EF (A1) EF (A2) EE (A3) 3)

n

/ / E? (As) BY, (A) B2 (As) 2, (As) dS = 8 (m — n,p — q) 4



coordinates. The nth-degree lame polynomials are nth-degree
polynomials of A? and can be classified in four families ac-
cording to (6), where » = |n/2]. There are r + 1 polynomials
that belong to the family K, n — r polynomials that belong to
the families L and M, and r polynomials that belong to family
N. See (6) at the bottom of the page.

Due to the polynomial nature of lame polynomials (6) and the
values of A1, A and A3, the values of a; are rapidly vanishing as
7 increases. Although, theoretically, this is not a major issue, in
practice, the limited accuracy of existing computational systems
results in inaccurate values of a; for j > A, where A depends
on the arithmetic precision utilized. In order to prevent the latter,
the above (6) are usually transformed in the form (7) [30]. See
(7) at the bottom of the page.

In (7), the equations involve polynomials of f = (1—\2/h?),
which is valued 0 < f < 1for A = A3 and 1 — k?/h? < f <
0 for A = As. Using this computation scheme, the values of
parameters b; are not quickly vanishing, allowing more accurate
results for higher order polynomials.
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nates O(A1, A2, \3) can be expressed as a weighted sum of the
lame polynomials, i.e.,

oo 2n

>N T RER(AM)EL(A)ER(Xs)  (8)

n=0 p=0

O(M, A2, A3) =

where

o = / / OO s As)EF (\0) EZ(Ag)dS.  (9)
. JS

The of values can fully characterize every function defined
in the space of ellipsoidal coordinates for A\; < a. For A\; > a,
(8) is modified as

oo 2n
Both para.rneters aj and bj. for every el.llpso¥dal harmoplc de- O(A1, Az, As) = Z Z o2 TP (A1) EZ (A1) EE(A2) EP(A3)
gree are easily computed using appropriate eigenanalysis. De- "0 p=0
tailed computational issues of ellipsoidal harmonics are above (10)
the scope of this paper and the reader is referred to [30] and [31].  where
C. Ellipsoidal Harmonics Expansion
Taking advantage of the lame’s polynomials orthogonality, () = / o dt (11
every 3-D function defined in the space of ellipsoidal coordi- " A ER (1) \/ ( h?)( k2)'
( “ .
K (A)=A""2" 3 aj % p=[0,7]
j=0
r—1 .
L(A) = A nF2r JIN2 — h2| 37 ajA% p=[r+1,n]
E5()) = g ©)

r—1
M (\) = Al=m42r /N = 7 )
Jj=

aj\% p=[n+1,2n—r]

N () = A= ] =

\

VR

r—2 .
k2| > ajA¥ p=[2n—r+1,2n]
i=0

A) =AY b (1
7=0

M (\) =M D22 (1
j=0

)\2 J
- ﬁ) p= [071"]
L(\) =20 /]2 — 2] Z b; <1
j=0

)\2 )
_h_2> p:[’l“—}—l/n]

22 J
_h_2> p=[n+12n—r]

2

r J
N (A=A /N =2 /2= k2] S b, <1 - }%) p=1[2n—r+1,20n] )
]
i=0
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Fig. 2. Ellipsoidal harmonic expansion (in ellipsoidal coordinates).

The presence of IZ(.) ensures the stability of the result for
A1 > «, because

lim EZ(\) = 0.
A — oo

Fig. 2 depicts the first nine basis functions of ellipsoidal har-
monics in the non-Euclidian space defined by ellispoidal har-
monics. In fact, every 3-D function is decomposed into a set of
surfaces derived from the general three-variable quadratic equa-
tion (the curious reader may observe that E7 is a two-sheet hy-
perboloid, Eg is a saddle surface, and so on).

III. 3-D OBJECT DESCRIPTION USING
ELLIPSOIDAL HARMONICS

In this paper, the use of the theory of ellipsoidal harmonics for
3-D object representation is proposed. The extracted ellipsoidal
harmonics descriptors can then be utilized for 3-D search and
retrieval applications. The major advantages of the ellipsoidal
harmonics are identified as follows.

 FEllipsoids are better approximations for the majority of
the 3-D objects. Spheres are the isotropic special cases of
the ellipsoids and, thus, the approximation errors in some
models are relatively large [33]. In contrast, an ellipsoidal
implicit surface can alter its aspect ratio so as to fit better in
a given model, resulting in reduced approximation errors.
Thus, ellipsoidal harmonics are expected to result in a set
of descriptors which has higher discriminative power when
compared to similar approaches (e.g., spheres).

* Ellipsoidal harmonics result in a compact 3-D shape rep-
resentation. The experiments performed proved that only
few descriptors are required for accurate 3-D object repre-
sentation.

 FEllipsoidal harmonics can be applied to 3-D objects that
are expressed either on a surface representation or in a vol-
umetric representation; thus, any error carried during the
creation of an object can be avoided.

The key point in the extraction of the ellipsoidal harmonic
descriptor is the appropriate selection of the function O(.) (8)
which will be transformed according to the approach presented
in Section II. In this virtue, three different approaches for the
application of ellipsoidal harmonics are proposed: The surface
ellipsoidal harmonics descriptor, which is applied in 3-D objects
represented by surfaces, the volumetric ellipsoidal harmonics
descriptor (VEHD), which is applied in the 3-D objects repre-
sented as volumetric functions and the generalized ellipsoidal
harmonic descriptor (GEHD), applicable to any local feature of
the 3-D object.

A. Ellipsoidal Harmonics Descriptor for Surface Represented
3-D Objects

The surface ellipsoidal harmonics descriptor (SEHD) can be
computed as follows.

Firstly, the minimum bounding ellipsoid of the 3-D object
is estimated and is considered as the reference ellipsoid of the
object, i.e., the nine parameters of an ellipsoid are estimated:

Tyl 42 oy (12)

where

SR (13)

Ny

and the nine parameters are: a, b, and ¢ which define the size of
each axis of the ellipsoid, the three Euler angles represented by
the 3 x 3 rotation matrix R, and the three parameters that repre-
sent the absolute position of the ellipsoid’s center in the global
coordinate system (3 x 1 translation vector v). The criterion is



the estimation of the bounding ellipsoid with minimum volume,
ie.,

4
Ve = gwabc — min (14)
and
w2 yE A
2 + I + - <1 (15)
where (z;,y;,2;), @ = 1,... N are the points of the 3-D object

and V,y; is the ellipsoid’s volume.

A very important result of this approach is the automatic es-
timation of the scaling, absolute, and relative position of the ob-
ject in the 3-D space. Thus, a preprocessing step for normal-
ization with respect to rotation, scaling, and translation is not
required, as it is performed automatically during the minimiza-
tion of (14).

Then, the surface representation is transformed so as to be
expressed in the ellipsoidal coordinates. In the sequel, assuming
that the input function O(.) in ellipsoidal harmonics analysis is
O(A1, A2, A3) = A1, the descriptors o?, are computed according
to (9).

It should be stated here that estimation of R and v can be also
performed using principal component analysis of low order geo-
metric moments. However, the resulting parameters a, b, ¢ do
not fulfill the criterion of (15). By definition, when PCA is uti-
lized the estimated ellipsoidal parameters define the best fitted
ellipsoid, which is different by the minimum volume bounding
ellipsoid (Fig. 3).

B. Ellipsoidal Harmonics Descriptor for Volumetric
3-D Objects

The VEHD can be computed as follows.

Firstly, the minimum bounding ellipsoid of the 3-D object is
estimated and is considered as the reference ellipsoid of the ob-
ject. The estimation procedure is the same with the procedure
of SEHD. Based on the reference ellipsoid, N ellipsoids are
assumed at different scales and the intersection of the volume
with every ellipsoid is considered. Then, every intersection is
transformed so as to be expressed in the ellipsoidal coordinates
and form a binary function O(.) in the curvilinear space of el-
lipsoidal coordinates. Finally, the descriptors of are computed
according to (9).
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e
(a) (b)

Fig. 3. (a) Bounding ellipsoid (in purple) using the proposed analysis and (b)
the best-fitted ellipsoid (in green) using PCA of the same object.

C. Minimum Bounding Ellipsoid of the 3-D Object

The minimum bounding ellipsoid of every object is estimated
using the Computational Geometry Algorithms Library [34].
This computation estimates the absolute position of the object
v, the rotation matrix R, and the parameters a, b, ¢ of the ob-
ject’s reference ellipsoid. By doing so, normalization with re-
spect to rotation and translation is automatically achieved, and
thus, the rest of the process is invariant to rotation and trans-
lation. Moreover, using relative coordinates to the size of the
ellipsoid, scaling invariance can also be achieved.

D. Computation of o, Coefficients

Although the computation of of coefficient seems trivial
and rather straightforward, the handling of the coordinates in a
curvilinear space is rather tricky.

More specifically, a major problem during the computation of
o is identified in the fact that the mapping between the Carte-
sian and ellipsoidal coordinates is not a one-to-one procedure.
The initial solution for this problem is presented in [32], which
extends the ellipsoidal coordinates (A1, A2, A3) to the normal-
ized ellipsoidal coordinates «, (3, . However, this solution in-
volves the computation of complete and incomplete 1st kind
elliptic integrals and elliptic functions sn(.), en(.), and dn(.)
many times during the integration, which is time-consuming.
As it is stated in [30], although the signs of \; are not known,
the ambiguity which is being introduced can be easily overcome
using the following notation:

Eﬁ(}\27)\3) = \1127)1,()‘27)\3,37,?/72)]75()‘2)])15)()\3) (16)

where

7)

and WP (A, A2, A3, 2, y, 2) is given by (18) at the bottom of the
page.

\I}g(/\27/\37$7y7z) =

e Y oy

— h?)yz

(hkz)
(hkz)' = =2") hy\/E2 — R2
(hkz)
(hkz)™~

0<p<n—r
n—r+1<p<n
n+1<p<2n—r
2n—r+1<p<2n

(K family)

(L family)

(M family)
(N family)

(18)
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Fig. 4. Basic principle of the GEHD.

Pi Hexahedron

(a) (b) (c)

Fig. 5. Three instances of the generalized ellipsoidal harmonics using (a) a ray,
(b) a tangent plane, and (c) a hexaedron.

Using (16) the computation of of, coefficients overcomes the
ambiguity of the non one-to-one mapping between the ellip-
soidal and the Cartesian coordinates:

02://O()\17)\2,)\3)\112()\27)\37:1:7:‘/72)
S

x PE(A2)PE(A3)dS. (19)

E. Generalized Ellipsoidal Harmonic Descriptor for any Kind
of 3-D Object

The GEHD is the extension of SEHD and VEHD, so as the
resulting descriptor captures more intuitive information.

For the computation of GEHD, firstly, N ellipsoids
FEy,k = 1,...,N, confocal to the minimum bounding el-
lipsoid are defined and every ellipsoid Ey, is sampled producing
a set of sample points P = {p;,4 = 1, ..., S}. For each sample
point p;, an area A; centered in point p; is considered (Fig. 4).
The part of the initial 3-D object which is included in the area
A, is analyzed using one or more local or global features (such
as Fourier Descriptor, Zernike Descriptor [17], Wavelets, and
Generalized Radon Transform [16]).

Let us assume that for the 3-D object ), @ 4, is the part of
the 3-D object that lies in A;. @) 4, is analyzed using L different
single-valued features F;(Qa4,), 7 = 1,...,L (if a feature is
multi-valued, then each value is a separate feature). Every func-
tion F;(Q.4,) can be considered as Fj;(p;), which can be an-
alyzed using the ellipsoidal harmonics procedure according to
(9) leading to descriptors o (k, ). Fig. 4 depicts the sampling
process and the selection of a single area A;.

It should be noted that there is no limitation in the selection
of the area A;, except for A; = A; Vi # j. A sphere, a box,
and a N-hedron centered in p; [Fig. 5(c)], a plane tangent to p;
[Fig. 5(b)], or aray from the center of the ellipsoid that includes
p: [Fig. 5(a)] are only few indicative types of the areas A; that
can be used. Furthermore, there is no limitation in the selection
of the features computed in every Q 4, .

A curious reader may notice that both VEHD and SEHD are
special cases of the generalized ellipsoidal harmonic descriptor,
where the functionals are the volume density and the distance
from the center of the ellipsoid for VEHD and SEHD, respec-
tively.

For the needs of this paper, the area A; has been selected to
be a cubic box, sized 5 X 5 X 5 voxels, centered at p;. The
selected functionals are appropriately selected coefficients of
the 3-D wavelet transform, using Daubechies filters.

F. Example of Ellipsoidal Harmonics Descriptor Extraction

Let us assume that M is the 3-D object presented in Fig. 6.
In this section, the process of extracting the VEHD will be thor-
oughly presented. The other two instances of ellipsoidal har-
monic descriptors (SEHD and VEHD) are extracted in a similar
manner.

The VEHD extraction process of M (Fig. 6, top-left) is as
follows.

* The minimum bounding ellipsoid of the 3-D object is esti-
mated according to [34] and is considered as the reference
ellipsoid (Fig. 6, top-right).

» Then, 24 ellipsoids of different scales are defined and
their intersections with the 3-D object are extracted. Fig. 6
(second line) depicts two intersections as examples.

o The ith intersection (i = 1,...,N) is a function defined
on the surface of an ellipsoid. (Fig. 6, second line, presents
two indicative intersections). It is transformed to the non-
Euclidean space of ellipsoidal coordinates by solving (2)
for every 3-D point forming a function O;(.).

* Functions O,(.) (¢ = 1,..., N) are analyzed in their ellip-
soidal harmonics coefficients (Fig. 6, last line), resulting in
the descriptor vector.

In the last line of the example presented in Fig. 6 is depicted
the differences in the ellipsoidal harmonic expansion of two dif-
ferent functions. In cases where the expanded function does not
present variations, the significant coefficients are few. The sig-
nificant coefficients are more, when the function presents sig-
nificant variations.

IV. COMBINED SPHERICAL—ELLIPSOIDAL
HARMONIC DESCRIPTION

An innovative combination of spherical and ellipsoidal har-
monics can be produced by performing multiple computation of
ellipsoidal harmonics by placing the bounding ellipsoid in var-
ious orientations #, ¢ of spherical coordinates and computing
the spherical harmonic coefficients of every ellipsoidal coeffi-
cient (Fig. 7). The reference ellipsoid is rotated and ellipsoidal
harmonics are computed at various orientations. Then, for every
0;" coefficient, the spherical harmonics transformation is per-
formed. The basic motivation behind this combination is to pro-
duce a novel 3-D feature that inherits both the “directional” in-
formation captured by ellipsoidal harmonics and the rotation in-
variant properties of spherical harmonics.

Specifically, the descriptor extraction procedure is the fol-
lowing: Initially, the nine parameters of the minimum bounding
ellipsoid are estimated, according to the methodology pre-
sented in the previous section. The ellipsoid is placed in the
appropriate position; however, rotation normalization is not
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Fig. 6. Extraction process: The minimum bounding ellipsoid of the initial object (top left) is estimated (top right). A function defined in an ellipsoid is defined,
in this example two intersections of the ellipsoid with 3-D object are presented (second line). The dark red areas of the ellipsoid are valued with zero and the light
areas are valued with a non-zero value. These function is analyzed according to ellipsoidal harmonics basis functions as can be seen in the last line.

Spherical Function

Fig. 7. Combining spherical and ellipsoidal harmonics.

performed. In the sequel, various orientations of the reference
ellipsoid are considered. For each orientation, ellipsoidal har-
monic descriptors are computed, using either VEHD, GEHD,
or SEHD (Fig. 7). Every ellipsoidal harmonic descriptor from
all orientations forms a spherical function defined in 6, ¢
of spherical coordinates. Finally, every spherical function is
analyzed according to spherical harmonics analysis, and the
resulting coefficients are forming the descriptor vector of the
3-D object, the combined spherical and ellipsoidal harmonics
descriptor (SH + EHD).

It should be noted that every ellipsoidal harmonic descriptor
can be extended to the combined spherical-ellipsoidal har-
monics descriptor. The major advantage of the latter approach

is the computation of native rotation invariant descriptors,
which overcome the errors posed from incorrect rotation esti-
mation of the initial 3-D object.

Lemma: Combined Spherical-Ellipsoidal Harmonic
Description Is Rotation Invariant:

Proof: Let O be a 3-D object and oy, (6, ¢) its ellipsoidal
harmonic descriptors, when the reference ellipsoid major axis is
placed on 6, ¢ of spherical coordinates.

Let also OF be the same 3-D object rotated around an arbi-
trary axis by R and Ro;(ﬂ, ¢) its ellipsoidal harmonic descrip-
tors. It is obvious that V(6, ¢)3(0r, ¢r) which is the result of
the rotating the axis (6, ¢) around the same axis by R, where
or(0,¢) =" 07 (0r,$r) and that o7 (0 + 60,4 + 6¢) ="
on(0r + 60, ¢r + 6¢). In fact, the function o (.) is a rotated
version of o ().

Let T[.] be the transformation of a spherical function to
its rotation invariant spherical harmonic expansion. Then,

T[%op ()] = Tlop()].

V. MATCHING METHOD

Let us assume that two 3-D objects O; and O, are described
using the ellipsoid harmonics descriptors oﬁ(l) and oﬁ(Z), re-

spectively. In order to calculate a similarity metric between the
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two objects, the normalized Minkowski L distance has been
utilized:

n=Np,—1p=2n

L1(01,0,5) = 'p(2) (20)
where
p(i)
(i) _ On
0”? - n=N,—1p=2n (i) (21)
On
n=0 p;O

and IV, is the maximum order of harmonics.

VI. COMPUTATIONAL ASPECTS

The computational cost of the SEHD and VEHD methods can
be analyzed as follows.

1) Minimum Bounding Ellipsoid Estimation: This part of
the procedure is crucial, because it defines the basis of the
curvilinear coordinate system. This computation is performed
only once and according to the CGAL [34], its complexity is
O(9k(e~! + In3 + Inlnk)), where k is the number of model
points. In practice, this part of the procedure is completed in
less than 0.01 s for a typical 3-D object in the testing machine.

2) Computation of of. Coefficients: The computation of the
coefficients depends on two factors.

* The integration algorithm: For the integration, the tradi-
tional brute-force approach has been followed (i.e., sum-
mation of the values in every sample). Thus, a smart sam-
pling approach has been adopted, where S = 5200 sam-
ples are uniformly selected over the surface of the ellip-
soid for VEHD and SEHD. Using more sample points, the
computational time is increased, while there is no serious
affect in the retrieval performance of the approach. For the
GEHD, the sampling rate is S = 1300 samples per ellip-
soid, which is smaller due to the fact that GEHD is based
on an area around the sample point, resulting in local de-
scriptors that comprise information of the surrounding area
of the sample.

* The algorithm for polynomial PZ(.) computation: one
of the most efficient algorithms has been adopted for the
needs of this paper, the simple Horner’s rule that requires
exactly n» multiplications and n additions for every value
of P().

The computational complexity of the proposed approach

SH + EHD is due to:

* computation of lame polynomials (once);

» computation of ellipsoidal harmonics coefficients for all
possible directions of the ellipsoid;

» computation of spherical harmonics (once).

A major advantage of the SH + EHD is identified by the fact
that the computation of ellipsoidal harmonics coefficients for all
possible directions is a procedure which can be easily performed
using multithreaded processing.

TABLE III
COMPUTATION TIMES FOR THE VARIOUS INSTANCES
OF ELLIPSOIDAL HARMONIC DESCRIPTOR

Method Mean Computation Time

SEHD 1.02 secs

VEHD 1.57 secs

GEHD 1.95 secs
SH+EHD 6.37 secs

REXT 0.58 secs

GEDT 2.4 secs

LFD 2.77 secs

VII. EXPERIMENTAL RESULTS

The proposed approach has been evaluated for its retrieval
performance using the Princeton Shape Benchmark (PSB) [35],
the Engineering Shape Benchmark (ESB) [36] and the ITI 3-D
model’s database [16] (the ITI database can be downloaded
from http://www.victory-eu.org) and has been compared to
well-known approaches of Gaussian Euclidean distance trans-
form (GEDT), which is based on the comparison of a 3-D
function, whose value at each point is given by composition of
a Gaussian with the Euclidean distance transform of the surface
[9], the Light field descriptor (LFD) where a representation
of a model as a collection of images rendered from uniformly
sampled positions on a view sphere is utilized [11], and the
Radialized spherical extent function (REXT) where a collection
of spherical functions giving the maximal distance from center
of mass as a function of spherical angle and radius is utilized
[12]. The retrieval accuracy has been evaluated using the pre-
cision-recall diagrams, where precision is defined as the ratio
of the relevant retrieved objects and the total number of the
retrieved objects, and recall is the ration of the relevant retrieved
objects and the total relevant objects in the database. For the
ESB and PSB datasets, which adopt multilevel classification
schemes, an object is considered similar to the query if both
objects belong to the same subclass.

The experiments performed using an Intel Core Duo running
at 1.5 GHz per core with 2 GB RAM, running Windows XP. The
source code has been compiled using Microsoft Visual Studio
8.0 SP1, utilizing multithreaded processing techniques. The re-
sults concerning the approaches of [9], [11], and [12] have been
derived using the executables provided by the authors of corre-
sponding articles.

The volumetric ellipsoidal harmonic descriptor and the gen-
eralized ellipsoidal harmonic descriptor have been computed for
3-D objects that are expressed in a 64 x 64 x 64 cubic voxel grid.
The number of the ellipsoids has been selected to be N = 24
(for VEHD) and N = 12 (for GEHD) and the maximum degree
of expansion N, = 6. The combined spherical-ellipsoidal de-
scriptor (SH + EHD) has been computed for N = 5 ellipsoids
and 342 different orientations.

Firstly, the computational complexity of the proposed ap-
proach has been evaluated in terms of execution time. Table III
presents the average computational time required for the com-
putation for the various instances of the ellipsoidal harmonics
descriptors and the methods of [9], [11], and [12].

The proposed methods require slightly more execution time
than the methods presented in the literature. However, the latter
cannot be considered as a major drawback because the execution
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Fig. 9. Comparative precision-recall diagrams for the ITI database.

times are small enough to be used in practical search problems,
and the hardware is continuously improved leading in smaller
execution times. Moreover, the descriptor extraction takes place
only once for each 3-D object and the descriptors are stored in
the database. During retrieval, the descriptors are retrieved from
the database and are compared to the query’s descriptors.

In the sequel, the rotation invariance of SH+EHD descriptor
is experimentally verified. A set of sample objects has been ar-
bitrarily rotated and the SH + EHD descriptors for both original
and rotated sets have been computed. The maximum difference
between the original and rotated version of the same object was
0.5%. The small differences are expected in practice due to the
discrimination of the continuous spherical harmonic process.

Fig. 8 depicts the comparative performance of the instances
of the ellipsoidal harmonic descriptor on the ITI database. It is
observed that GEHD’s retrieval accuracy outperforms VEHD’s
and SEHD which are comparable. This can be explained by
the fact that both VEHD and SEHD are trivial instances of
GEHD. When another kind of information is considered (e.g.,
the 3-D wavelet transform utilized in this paper), GEHD pro-
vides slightly better results. It is also obvious that the com-
bined spherical-ellipsoidal harmonic descriptor outperforms the
simple ellipsoidal and the generalized ellipsoidal harmonic de-
scriptors and, thus, is selected to be compared to the other ap-
proaches. Figs. 9—11 depict the comparative performance of the
best instance (SH+EHD) of the ellipsoidal harmonic descriptor
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for the three different databases compared to the approaches of
[9], [11], and [12]

By comparing the precision-recall diagrams for the three dif-
ferent databases, it is obvious that all the approaches have com-
pletely different behavior in different databases. The latter basi-
cally happened due to the different nature of each database, the
number of the 3-D objects it contains, and the way that the 3-D
objects have been classified.

The efficiency of ellipsoidal harmonics is depicted in the
combined spherical-ellipsoidal harmonic descriptor, which
outperforms all competitive approaches and any other ellip-
soidal harmonic descriptor. The combined spherical-ellipsoidal
harmonic descriptor combines the rotation invariant features
provided by the spherical harmonic analysis, with directional
features captured by the ellipsoidal harmonic analysis, and
thus, the resulting descriptor has significantly better retrieval
performance when compared to other approaches.

It is very interesting that the performance of the proposed
approach is significantly greater than the other approaches for
Recall > 0.4 in the CAD database (Fig. 11) and in the ITI
database (Fig. 9). The latter means that all relevant objects will
be presented earlier to the user when compared to other ap-
proaches. Both ITI and ESB are mainly composed of objects
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Fig. 12. Indicative retrieved results. The first column depicts the query 3-D
object while the rest are the first four retrieved objects.

having mainly directional information, and thus, the combina-
tion of the rotation invariant features provided by the spherical
harmonic analysis, with directional features captured by the el-
lipsoidal harmonic analysis, achieve better retrieval efficiency
in these databases.

In Fig. 12, selected retrieved results are shown. The first
column is the query model, while the rest are the first four
retrieved results. From the presented results, the geometric sim-
ilarity between the query and the retrieved objects is obvious;
however, there are semantic differences in some retrieved
results, e.g., in the last two lines of Fig. 12. When the query is
a “delta plane”, a conventional plane is ranked third, and when
the query is a helicopter, a fish is ranked in the fourth position.
Results of this kind are expected, since neither topology nor
high-level information has been taken into account that could
semantically discriminate these 3-D objects. From a geometric
perspective, the major difference between a helicopter and a
fish is located in the helicopter’s wings (the different scaling
has been discarded during normalization). In the proposed ap-
proach, intersections of the 3-D object with many ellipsoids are
utilized to extract the shape descriptors. When comparing the
intersections of a helicopter to the intersections of a fish, only
few intersections differ significantly, while a great majority is
highly similar, and thus, the mean dissimilarity score will be
low. Additionally, two objects of the same class may be nor-
malized in slightly different scale, and thus, few intersections
will present significantly high dissimilarity. As a result, scores
between some helicopters can potentially be comparable to the
scores between a helicopter and a fish, resulting in retrievals
similar to the one presented in the last line of Fig. 13, where a
fish is ranked fourth when the query is a helicopter.

VIII. CONCLUSIONS

In this paper, various novel descriptors based on ellipsoidal
harmonics were introduced. The combination of spherical and
ellipsoidal harmonics results in a more discriminative descriptor
set which is capable of performing robust 3-D content-based
search and retrieval for online applications. The experimental
results proved the efficiency of the proposed descriptors in per-
forming geometry-based 3-D object search and retrieval. Al-
though geometry-based content retrieval provides very good re-
sults, the geometry of a 3-D object may not always provide
the semantically similar results. In these cases, the geometry-
based results should be combined in a semantic-based frame-
work where the system is enhanced with external knowledge in
order to improve the retrieval performance.
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Ellipsoidal Harmonics for 3-D Shape
Description and Retrieval

Athanasios Mademlis, Petros Daras, Member, IEEE, Dimitrios Tzovaras, and
Michael Gerassimos Strintzis, Fellow, IEEE

Abstract—In this paper, a novel approach for 3-D Shape descrip-
tion and retrieval based on the theory of ellipsoidal harmonics is
presented. Four novel descriptors are introduced: the surface el-
lipsoidal harmonics descriptor, which concerns 3-D objects that
are described as polygonal surfaces; the volumetric ellipsoidal har-
monics descriptor, which is applicable to volumetric 3-D objects;
the generalized ellipsoidal harmonics descriptor that is applied to
any local 3-D object descriptors; and, finally, the combined ellip-
soidal-spherical harmonics descriptor, which leads to a compact
and powerful descriptor that inherits the advantages of both ap-
proaches: the rotation invariance properties of the spherical har-
monics and the directional information enclosed in ellipsoidal har-
monics. Experimental results performed using well-known 3-D ob-
ject databases prove the retrieval efficiency of the proposed ap-
proach.

Index Terms—3-D object retrieval, ellipsoidal harmonics, shape
description.

1. INTRODUCTION

HE 3-D object retrieval is a relatively new and very chal-

lenging research field and a major effort of the research
community has been devoted to the formulation of accurate and
efficient 3-D object search and retrieval algorithms. In the new
3-D era, the growth of the Internet along with the recent progress
in computer’s graphical units and the development of friendly
and easy-to-use 3-D content creation tools have led to the cre-
ation of huge repositories with 3-D objects. In this new environ-
ment, the demand for efficient tools that can quickly and accu-
rately retrieve the desired 3-D content is emerging.
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A. Related Work

In the last few years, a lot of work has been performed in the
area of accurate 3-D shape description for search and retrieval
applications. The presented approaches can be classified into
four major categories: global feature-based approaches, local
feature-based approaches, topology-based approaches, and
view-based approaches.

The global feature-based approaches, which are the first
methods that appear in the field of 3-D search and retrieval, aim
to capture the geometry of the whole object in a single repre-
sentation (usually a vector), using various methods: primitive
shape features [1], [2], moments (Krawtchouk [3], Zernike [4]),
transformations, etc. Local feature-based approaches attempt
to describe the complete 3-D object using local features. The
majority of the local feature-based approaches describes the
complete geometry using histograms; however, few attempts
to further exploit the local information have been recently
presented.

In topology-based approaches, the main feature of the 3-D
object is formed by its topology instead of its geometry. The
topology is usually represented in the form of a graph, and the
matching is performed using dedicated graph matching tech-
niques. The view-based approaches cannot be classified as na-
tive 3-D description methods. The object is decomposed to a
collection of 2-D views and the most powerful image descrip-
tors are utilized. Table I summarizes some important 3-D ob-
ject retrieval approaches. For more sophisticated analysis, the
reader is referred to the 3-D search and retrieval reviews [5],
[6]. More recently, the field of 3-D shape search and retrieval
has attracted more researchers and the competition on the field
has been increased significantly, mainly due to the Shape Re-
trieval Contest (SHREC), organized each year by the consor-
tium of Aim@ Shape EU-funded project [7].

All of the existing approaches present advantages and draw-
backs. Topology-based approaches are the only approaches that
can capture topological information; however, few methods
exist that equally rely on both topology and geometry. Addi-
tionally, the majority of the topology-based approaches cannot
easily generalize to all kinds of 3-D objects and they are very
sensitive to minor shape changes (the topology can be seriously
altered); thus, their applicability is limited to few classes of 3-D
objects. Local feature-based approaches focus on acquiring
highly discriminant local representations, which are usually
integrated in a single (or multiple) histogram(s) and thus, their
discriminative power is seriously affected in the majority of
the approaches. View-based approaches provide very reliable
3-D shape representation; however, due to their nature, they
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TABLE 1
RELATED WORK PRESENTED IN THE LITERATURE

Global Feature
[18], [19], 3D angular radial transform (ART) [20]

Primitive shape features: Volume, area, moments [1], bounding box, cords, moments, wavelets [14], convex hull features
(crumpliness, packing and compactness) [2], Spatial Maps of volumetric features [15], [10]
Transformations: Generalized Radon Transform [16], Spherical Harmonics [9], 3D Zernike [17], complex spherical functions

Local Feature [23], Space partitioning histograms [10]

Forming Histograms: MPEG-7 shape index [21], Extended Gaussian Images [22], Complex Extended Gaussian Images

Spin Image Singatures [24], Priority-Driven Search [25].

Topology Based

Curve Skeletons [26], [27], Reeb Graphs[28], Medial Surfaces [29]

View Based Light-Field Descriptor [11]
TABLE II
COMPARISON OF RELATED WORK PRESENTED IN THE LITERATURE
Invariaance .
Method Rotation Translation Scale Articulation Genelig
[16] PCA Normalization Yes No Yes
[9] Yes Normalization | Normalization No Yes
[17] Yes Normalization | Normalization No Yes
[20] PCA Normalization | Normalization No Yes
[25] Yes Yes Yes Yes Yes
[28] Yes Yes Yes Yes Yes
[29] Yes Yes Yes Yes No
[26] Yes Yes Yes Yes No
[11] Search Normalization | Normalization No Yes
Legend:

PCA: Rotation Invariance is achieved using Principal Component Analysis. Normalization: A normalization step is required before applying the method. For
scale and translation normalization is robust. Search: the invariance is achieved during search using complex techniques.

are unable to capture features that cannot be seen from the
selected points of view. Also, their time performance during
retrieval can be considered as a serious disadvantage (N to N
matching is required). Global feature-based approaches are
more reliable when compared to topology-based and local
feature-based approaches due to their ability to capture mainly
the global geometry of the 3-D object discarding local features,
i.e., minor shape changes between two objects do not seriously
affect the global shape description. The latter is suitable for
the general purpose 3-D object retrieval applications where the
retrieval is based on global shape similarity. However, it can
also be considered as a potential drawback in some cases, when
there are objects of the same class that can dramatically change
their shape (non-rigid objects or, usually, articulated objects),
or objects from different classes that present major similarities
(e.g., spindle of the helicopters has similar geometry to a fish).

There are also other problems that pose obstacles in the effi-
ciency of the existing global-based approaches, such as the 3-D
object’s degeneracies (e.g., holes, missing polygons, hidden
polygons), the 3-D object’s pose normalization, the retrieval
accuracy, etc. The first problem is usually tackled successfully
by applying a triangulation algorithm (e.g., Delaunnay trian-
gulation) or a hole filling algorithm [8]. Concerning the pose
normalization problem, there are two widely acceptable solu-
tions presented in the literature: the natively rotation invariant
description of the 3-D object (e.g., using spherical harmonics
[9] histogram-based descriptors [10]) or natively rotation
invariant matching (e.g., light field descriptor [11]) and the ro-
tation normalization of the object in a preprocessing step. Both
approaches present major advantages and serious drawbacks:
Firstly, the vast majority of the utilized rotation normalization
approaches are based on the PCA (e.g., continuous PCA [12]).

Although algorithms that utilize pose normalization using
PCA usually result in descriptors with higher discriminative
power, some similar objects are not usually normalized in a
similar manner [13]. In contrast, natively rotation invariant
object description [9] usually involves an integration-like
technique which leads to descriptors which are not adequately
discriminant [12]. Table II summarizes the properties of some
approaches presented in the literature.

B. Motivation and Contributions of the Proposed Work

As it was earlier mentioned, one of the major problems of the
global approaches is the trade-off between rotation invariance
and highly discriminative shape information. In this paper, new
geometric descriptors are proposed, which are based on the el-
lipsoidal harmonics. Ellipsoidal harmonics offer a compact and
discriminative object representation that is appropriate for 3-D
content-based search and retrieval. The proposed approach can
be utilized using both surface-based and volumetric-based 3-D
object representation and is invariant under scaling and transla-
tion of the 3-D object, using relative distances to the parameters
of the bounding ellipsoid. For rotation normalization, an appro-
priate normalization approach is introduced (without using the
well-known traditional PCA). Then, ellipsoidal harmonics anal-
ysis is extended and applied to local 3-D descriptors, leading to
the generalized ellipsoidal harmonics descriptor. Finally, the di-
rectional information of the ellipsoidal harmonic descriptors is
combined with spherical harmonics in order to produce a na-
tively rotation invariant descriptor that inherits the properties of
both descriptors.

The major contributions of the proposed approach are the fol-
lowing.
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* Compact representation: The resulting descriptor set is
very compact, i.e., the descriptor vector dimensionality is
small.

» Better object approximation: The approximation of a 3-D
object using ellipsoids is better than using spheres.

* The method is applicable on both volumetric and surface-
expressed 3-D objects.

* The method can easily be generalized in order to utilize
any local descriptor.

* The method can easily be combined with spherical har-
monics in order to produce natively rotation invariant de-
scriptors.

* The proposed methods are not sensitive to minor shape
changes.

The rest of this paper is organized as follows: In Section II,
the theory of ellipsoidal harmonics is briefly reviewed. In
Section III, the various instances of ellipsoidal harmonics de-
scriptors are described and in Section IV, ellipsoidal harmonics
are combined with spherical harmonics. The utilized matching
method is presented in Section V, and the experimental results
are given in Section VII. Finally, the conclusions are drawn in
Section VIIL

II. ELLIPSOIDAL HARMONICS

The ellipsoidal harmonics are special functions that have been
utilized in the field of astronomy [30] for describing surrounding
force-fields of non-spherical objects. In this paper, the theory of
ellipsoidal harmonics is adapted and applied to the field of 3-D
shape analysis and description. The basic motivation behind the
selection of ellipsoidal harmonics for 3-D object description re-
lies on the intuition that an ellipsoid forms a better approxima-
tion of the shape of a 3-D object when compared to the approxi-
mation using spheres. The theoretical problem of the ellipsoidal
harmonics has been targeted by mathematicians for many years
in the early 1900s. Thus, many variations in the notation of ellip-
soidal harmonics can be found in the literature (e.g., [31], [32]).
For the needs of this paper, the notation utilized in [31] has been
adopted, due to its simplicity. For the sake of completeness, the
theory of ellipsoidal harmonics is briefly reviewed.

A. Ellipsoidal Coordinates

Intuitively, one of the basis functions in the space of ellip-
soidal coordinates has to be an ellipsoid. The latter is verified
by the definition of the ellipsoidal coordinates, which are de-
fined using a reference ellipsoid with axes length a, b, c:

S T (1

(a) (b) (0)

Fig. 1. Ellipsoid A} = const (a), the one-sheet hyperboloid (b) A3 = const,
and the two-sheet hyperboloid (¢) A2 = const.

Without any loss of the generality of the approach, it is as-
sumed that a > b > c. By setting )\? =a%, h? = a? — b2, and
k? = a® — c?, the above equation can be transformed to

II)2 y2 2,2
Tt ety —e=L )

For any given point in the Euclidean 3-D space P(z, ¥, z), (2)
with respect to A\?, has three discrete solutions, \? € [k?, +00),
A3 € [h?, k%], and A3 € [0,h?], which are called ellipsoidal
coordinates. The ellipsoidal coordinates form an orthogonal
basis for a curved space that is created by homofocal ellipsoids.
For a given (h, k), the family of ellipsoids, obtained for dif-
ferent values of \?, are homofocal. The equations \? = const,
A3 = const, and \3 = const define an ellipsoid, a hyperboloid
of one sheet, and a hyperboloid of two sheets, respectively
(Fig. 1). Although the mapping between ellipsoidal and Carte-
sian coordinates is not one-to-one (because of the squares), this
problem can easily be avoided (further information is provided
in Section III-D).

B. Lame Polynomials

Ellipsoidal harmonics are the solutions of the Laplace equa-
tion in ellipsoidal coordinates V2V = 0. The main advantages
of this approach (from the mathematical scope of the problem)
is spotted in the fact that the solutions of Laplace’s equation are
orthogonal and separable, i.e., see equation (3) and (4) at the
bottom of the page, where §(.) is the Kronecker ¢ function.
The Laplace equation in the space of ellipsoidal coordinates is
simplified to [30]

BB, ()

d\?

dEn()‘i)

d\;

+ (p—n(n+ 1A E,(\;) = 0. )

(AF = h*)(AF = k?)

+ X207 — h? — k?)

For every n, (5) has exactly 2n solutions, the polynomials
EP?(.) (are known both as ellipsoidal harmonics and lame poly-
nomials), where n = 0...00and p = 0...2n. E£(.) form a
complete set of basis functions of the curved space of ellipsoidal

EL (A1, A2, A3) = EF (A1) EF (A2) EE (A3) 3)

n

/ / E? (As) BY, (A) B2 (As) 2, (As) dS = 8 (m — n,p — q) 4



coordinates. The nth-degree lame polynomials are nth-degree
polynomials of A? and can be classified in four families ac-
cording to (6), where » = |n/2]. There are r + 1 polynomials
that belong to the family K, n — r polynomials that belong to
the families L and M, and r polynomials that belong to family
N. See (6) at the bottom of the page.

Due to the polynomial nature of lame polynomials (6) and the
values of A1, A and A3, the values of a; are rapidly vanishing as
7 increases. Although, theoretically, this is not a major issue, in
practice, the limited accuracy of existing computational systems
results in inaccurate values of a; for j > A, where A depends
on the arithmetic precision utilized. In order to prevent the latter,
the above (6) are usually transformed in the form (7) [30]. See
(7) at the bottom of the page.

In (7), the equations involve polynomials of f = (1—\2/h?),
which is valued 0 < f < 1for A = A3 and 1 — k?/h? < f <
0 for A = As. Using this computation scheme, the values of
parameters b; are not quickly vanishing, allowing more accurate
results for higher order polynomials.
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nates O(A1, A2, \3) can be expressed as a weighted sum of the
lame polynomials, i.e.,

oo 2n

>N T RER(AM)EL(A)ER(Xs)  (8)

n=0 p=0

O(M, A2, A3) =

where

o = / / OO s As)EF (\0) EZ(Ag)dS.  (9)
. JS

The of values can fully characterize every function defined
in the space of ellipsoidal coordinates for A\; < a. For A\; > a,
(8) is modified as

oo 2n
Both para.rneters aj and bj. for every el.llpso¥dal harmoplc de- O(A1, Az, As) = Z Z o2 TP (A1) EZ (A1) EE(A2) EP(A3)
gree are easily computed using appropriate eigenanalysis. De- "0 p=0
tailed computational issues of ellipsoidal harmonics are above (10)
the scope of this paper and the reader is referred to [30] and [31].  where
C. Ellipsoidal Harmonics Expansion
Taking advantage of the lame’s polynomials orthogonality, () = / o dt (11
every 3-D function defined in the space of ellipsoidal coordi- " A ER (1) \/ ( h?)( k2)'
( “ .
K (A)=A""2" 3 aj % p=[0,7]
j=0
r—1 .
L(A) = A nF2r JIN2 — h2| 37 ajA% p=[r+1,n]
E5()) = g ©)

r—1
M (\) = Al=m42r /N = 7 )
Jj=

aj\% p=[n+1,2n—r]

N () = A= ] =

\

PV =

r—2 .
k2 > ajA¥ p=[2n—r+1,2n]
i=0

A) =AY b (1
7=0

M (\) =MD — B2 (1
j=0

)\2 J
- ﬁ) p= [07T]
L) =M /]2 — w2 > (1
j=0
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2
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Fig. 2. Ellipsoidal harmonic expansion (in ellipsoidal coordinates).

The presence of IZ(.) ensures the stability of the result for
A1 > «, because

lim EZ(\) = 0.
A — oo

Fig. 2 depicts the first nine basis functions of ellipsoidal har-
monics in the non-Euclidian space defined by ellispoidal har-
monics. In fact, every 3-D function is decomposed into a set of
surfaces derived from the general three-variable quadratic equa-
tion (the curious reader may observe that E7 is a two-sheet hy-
perboloid, Eg is a saddle surface, and so on).

III. 3-D OBJECT DESCRIPTION USING
ELLIPSOIDAL HARMONICS

In this paper, the use of the theory of ellipsoidal harmonics for
3-D object representation is proposed. The extracted ellipsoidal
harmonics descriptors can then be utilized for 3-D search and
retrieval applications. The major advantages of the ellipsoidal
harmonics are identified as follows.

 FEllipsoids are better approximations for the majority of
the 3-D objects. Spheres are the isotropic special cases of
the ellipsoids and, thus, the approximation errors in some
models are relatively large [33]. In contrast, an ellipsoidal
implicit surface can alter its aspect ratio so as to fit better in
a given model, resulting in reduced approximation errors.
Thus, ellipsoidal harmonics are expected to result in a set
of descriptors which has higher discriminative power when
compared to similar approaches (e.g., spheres).

* Ellipsoidal harmonics result in a compact 3-D shape rep-
resentation. The experiments performed proved that only
few descriptors are required for accurate 3-D object repre-
sentation.

 FEllipsoidal harmonics can be applied to 3-D objects that
are expressed either on a surface representation or in a vol-
umetric representation; thus, any error carried during the
creation of an object can be avoided.

The key point in the extraction of the ellipsoidal harmonic
descriptor is the appropriate selection of the function O(.) (8)
which will be transformed according to the approach presented
in Section II. In this virtue, three different approaches for the
application of ellipsoidal harmonics are proposed: The surface
ellipsoidal harmonics descriptor, which is applied in 3-D objects
represented by surfaces, the volumetric ellipsoidal harmonics
descriptor (VEHD), which is applied in the 3-D objects repre-
sented as volumetric functions and the generalized ellipsoidal
harmonic descriptor (GEHD), applicable to any local feature of
the 3-D object.

A. Ellipsoidal Harmonics Descriptor for Surface Represented
3-D Objects

The surface ellipsoidal harmonics descriptor (SEHD) can be
computed as follows.

Firstly, the minimum bounding ellipsoid of the 3-D object
is estimated and is considered as the reference ellipsoid of the
object, i.e., the nine parameters of an ellipsoid are estimated:

Tyl 42 oy (12)

where

SR (13)

Ny

and the nine parameters are: a, b, and ¢ which define the size of
each axis of the ellipsoid, the three Euler angles represented by
the 3 x 3 rotation matrix R, and the three parameters that repre-
sent the absolute position of the ellipsoid’s center in the global
coordinate system (3 x 1 translation vector v). The criterion is



the estimation of the bounding ellipsoid with minimum volume,
ie.,

4
Ve = gwabc — min (14)
and
w2 yE A
2 + I + - <1 (15)
where (z;,y;,2;), @ = 1,... N are the points of the 3-D object

and V,y; is the ellipsoid’s volume.

A very important result of this approach is the automatic es-
timation of the scaling, absolute, and relative position of the ob-
ject in the 3-D space. Thus, a preprocessing step for normal-
ization with respect to rotation, scaling, and translation is not
required, as it is performed automatically during the minimiza-
tion of (14).

Then, the surface representation is transformed so as to be
expressed in the ellipsoidal coordinates. In the sequel, assuming
that the input function O(.) in ellipsoidal harmonics analysis is
O(A1, A2, A3) = A1, the descriptors o?, are computed according
to (9).

It should be stated here that estimation of R and v can be also
performed using principal component analysis of low order geo-
metric moments. However, the resulting parameters a, b, ¢ do
not fulfill the criterion of (15). By definition, when PCA is uti-
lized the estimated ellipsoidal parameters define the best fitted
ellipsoid, which is different by the minimum volume bounding
ellipsoid (Fig. 3).

B. Ellipsoidal Harmonics Descriptor for Volumetric
3-D Objects

The VEHD can be computed as follows.

Firstly, the minimum bounding ellipsoid of the 3-D object is
estimated and is considered as the reference ellipsoid of the ob-
ject. The estimation procedure is the same with the procedure
of SEHD. Based on the reference ellipsoid, N ellipsoids are
assumed at different scales and the intersection of the volume
with every ellipsoid is considered. Then, every intersection is
transformed so as to be expressed in the ellipsoidal coordinates
and form a binary function O(.) in the curvilinear space of el-
lipsoidal coordinates. Finally, the descriptors of are computed
according to (9).
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a B

(a) (b)

Fig. 3. (a) Bounding ellipsoid (in purple) using the proposed analysis and (b)
the best-fitted ellipsoid (in green) using PCA of the same object.

C. Minimum Bounding Ellipsoid of the 3-D Object

The minimum bounding ellipsoid of every object is estimated
using the Computational Geometry Algorithms Library [34].
This computation estimates the absolute position of the object
v, the rotation matrix R, and the parameters a, b, ¢ of the ob-
ject’s reference ellipsoid. By doing so, normalization with re-
spect to rotation and translation is automatically achieved, and
thus, the rest of the process is invariant to rotation and trans-
lation. Moreover, using relative coordinates to the size of the
ellipsoid, scaling invariance can also be achieved.

D. Computation of o, Coefficients

Although the computation of of coefficient seems trivial
and rather straightforward, the handling of the coordinates in a
curvilinear space is rather tricky.

More specifically, a major problem during the computation of
o is identified in the fact that the mapping between the Carte-
sian and ellipsoidal coordinates is not a one-to-one procedure.
The initial solution for this problem is presented in [32], which
extends the ellipsoidal coordinates (A1, A2, A3) to the normal-
ized ellipsoidal coordinates «, (3, . However, this solution in-
volves the computation of complete and incomplete 1st kind
elliptic integrals and elliptic functions sn(.), en(.), and dn(.)
many times during the integration, which is time-consuming.
As it is stated in [30], although the signs of \; are not known,
the ambiguity which is being introduced can be easily overcome
using the following notation:

Eﬁ(}\27)\3) = \1127)1,()‘27)\3,37,?/72)]75()‘2)])15)()\3) (16)

where

7)

and WP (A1, Ao, A3, 2, y, 2) is given by (18) at the bottom of the
page.

\I}g(/\27/\37$7y7z) =

) Y oy

— h?)yz

(hkz)
(hkxz)' = =2 hy\/E2 — R2
(hkz)
(hkz)™~

0<p<n—r
n—r+1<p<n
n+1<p<2n—r
2n—r+1<p<2n

(K family)

(L family)

(M family)
(N family)

(18)
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Fig. 4. Basic principle of the GEHD.

Pi Hexahedron

(a) (b) (c)

Fig. 5. Three instances of the generalized ellipsoidal harmonics using (a) a ray,
(b) a tangent plane, and (c) a hexaedron.

Using (16) the computation of of, coefficients overcomes the
ambiguity of the non one-to-one mapping between the ellip-
soidal and the Cartesian coordinates:

02://O()\17)\2,)\3)\112()\27)\37:1:7:‘/72)
S

x PE(A2)PE(A3)dS. (19)

E. Generalized Ellipsoidal Harmonic Descriptor for any Kind
of 3-D Object

The GEHD is the extension of SEHD and VEHD, so as the
resulting descriptor captures more intuitive information.

For the computation of GEHD, firstly, N ellipsoids
FEy,k = 1,...,N, confocal to the minimum bounding el-
lipsoid are defined and every ellipsoid Ey, is sampled producing
a set of sample points P = {p;,4 = 1, ..., S}. For each sample
point p;, an area A; centered in point p; is considered (Fig. 4).
The part of the initial 3-D object which is included in the area
A, is analyzed using one or more local or global features (such
as Fourier Descriptor, Zernike Descriptor [17], Wavelets, and
Generalized Radon Transform [16]).

Let us assume that for the 3-D object ), @ 4, is the part of
the 3-D object that lies in A;. @) 4, is analyzed using L different
single-valued features F;(Qa4,), 7 = 1,...,L (if a feature is
multi-valued, then each value is a separate feature). Every func-
tion F;(Q.4,) can be considered as Fj;(p;), which can be an-
alyzed using the ellipsoidal harmonics procedure according to
(9) leading to descriptors o® (k, ). Fig. 4 depicts the sampling
process and the selection of a single area A;.

It should be noted that there is no limitation in the selection
of the area A;, except for A; = A; Vi # j. A sphere, a box,
and a N-hedron centered in p; [Fig. 5(c)], a plane tangent to p;
[Fig. 5(b)], or aray from the center of the ellipsoid that includes
p: [Fig. 5(a)] are only few indicative types of the areas A; that
can be used. Furthermore, there is no limitation in the selection
of the features computed in every Q 4, .

A curious reader may notice that both VEHD and SEHD are
special cases of the generalized ellipsoidal harmonic descriptor,
where the functionals are the volume density and the distance
from the center of the ellipsoid for VEHD and SEHD, respec-
tively.

For the needs of this paper, the area A; has been selected to
be a cubic box, sized 5 X 5 X 5 voxels, centered at p;. The
selected functionals are appropriately selected coefficients of
the 3-D wavelet transform, using Daubechies filters.

F. Example of Ellipsoidal Harmonics Descriptor Extraction

Let us assume that M is the 3-D object presented in Fig. 6.
In this section, the process of extracting the VEHD will be thor-
oughly presented. The other two instances of ellipsoidal har-
monic descriptors (SEHD and VEHD) are extracted in a similar
manner.

The VEHD extraction process of M (Fig. 6, top-left) is as
follows.

* The minimum bounding ellipsoid of the 3-D object is esti-
mated according to [34] and is considered as the reference
ellipsoid (Fig. 6, top-right).

» Then, 24 ellipsoids of different scales are defined and
their intersections with the 3-D object are extracted. Fig. 6
(second line) depicts two intersections as examples.

o The ith intersection (i = 1,...,N) is a function defined
on the surface of an ellipsoid. (Fig. 6, second line, presents
two indicative intersections). It is transformed to the non-
Euclidean space of ellipsoidal coordinates by solving (2)
for every 3-D point forming a function O;(.).

* Functions O,(.) (¢ = 1,..., N) are analyzed in their ellip-
soidal harmonics coefficients (Fig. 6, last line), resulting in
the descriptor vector.

In the last line of the example presented in Fig. 6 is depicted
the differences in the ellipsoidal harmonic expansion of two dif-
ferent functions. In cases where the expanded function does not
present variations, the significant coefficients are few. The sig-
nificant coefficients are more, when the function presents sig-
nificant variations.

IV. COMBINED SPHERICAL—ELLIPSOIDAL
HARMONIC DESCRIPTION

An innovative combination of spherical and ellipsoidal har-
monics can be produced by performing multiple computation of
ellipsoidal harmonics by placing the bounding ellipsoid in var-
ious orientations #, ¢ of spherical coordinates and computing
the spherical harmonic coefficients of every ellipsoidal coeffi-
cient (Fig. 7). The reference ellipsoid is rotated and ellipsoidal
harmonics are computed at various orientations. Then, for every
0;" coefficient, the spherical harmonics transformation is per-
formed. The basic motivation behind this combination is to pro-
duce a novel 3-D feature that inherits both the “directional” in-
formation captured by ellipsoidal harmonics and the rotation in-
variant properties of spherical harmonics.

Specifically, the descriptor extraction procedure is the fol-
lowing: Initially, the nine parameters of the minimum bounding
ellipsoid are estimated, according to the methodology pre-
sented in the previous section. The ellipsoid is placed in the
appropriate position; however, rotation normalization is not
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Fig. 6. Extraction process: The minimum bounding ellipsoid of the initial object (top left) is estimated (top right). A function defined in an ellipsoid is defined,
in this example two intersections of the ellipsoid with 3-D object are presented (second line). The dark red areas of the ellipsoid are valued with zero and the light
areas are valued with a non-zero value. These function is analyzed according to ellipsoidal harmonics basis functions as can be seen in the last line.

Spherical Function

Fig. 7. Combining spherical and ellipsoidal harmonics.

performed. In the sequel, various orientations of the reference
ellipsoid are considered. For each orientation, ellipsoidal har-
monic descriptors are computed, using either VEHD, GEHD,
or SEHD (Fig. 7). Every ellipsoidal harmonic descriptor from
all orientations forms a spherical function defined in 6, ¢
of spherical coordinates. Finally, every spherical function is
analyzed according to spherical harmonics analysis, and the
resulting coefficients are forming the descriptor vector of the
3-D object, the combined spherical and ellipsoidal harmonics
descriptor (SH + EHD).

It should be noted that every ellipsoidal harmonic descriptor
can be extended to the combined spherical-ellipsoidal har-
monics descriptor. The major advantage of the latter approach

is the computation of native rotation invariant descriptors,
which overcome the errors posed from incorrect rotation esti-
mation of the initial 3-D object.

Lemma: Combined Spherical-Ellipsoidal Harmonic
Description Is Rotation Invariant:

Proof: Let O be a 3-D object and oy, (6, ¢) its ellipsoidal
harmonic descriptors, when the reference ellipsoid major axis is
placed on 6, ¢ of spherical coordinates.

Let also OF be the same 3-D object rotated around an arbi-
trary axis by R and Ro;(ﬂ, ¢) its ellipsoidal harmonic descrip-
tors. It is obvious that V(6, ¢)3(0r, ¢r) which is the result of
the rotating the axis (6, ¢) around the same axis by R, where
or(0,¢) =" 07(0r,Pr) and that o7 (0 + 60,4 + 6¢) =
0(0r + 60, ¢r + 6¢). In fact, the function o (.) is a rotated
version of o ().

Let T[.] be the transformation of a spherical function to
its rotation invariant spherical harmonic expansion. Then,

T[%op ()] = Tlop()].

V. MATCHING METHOD

Let us assume that two 3-D objects O; and O, are described
using the ellipsoid harmonics descriptors oﬁ(l) and oﬁ(Z), re-

spectively. In order to calculate a similarity metric between the
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two objects, the normalized Minkowski L distance has been
utilized:

n=Np,—1p=2n

L1(01,0,5) = 'p(2) (20)
where
p(i)
(i) _ On
0”? - n=N,—1p=2n (i) (21)
On
n=0 p;O

and IV, is the maximum order of harmonics.

VI. COMPUTATIONAL ASPECTS

The computational cost of the SEHD and VEHD methods can
be analyzed as follows.

1) Minimum Bounding Ellipsoid Estimation: This part of
the procedure is crucial, because it defines the basis of the
curvilinear coordinate system. This computation is performed
only once and according to the CGAL [34], its complexity is
O(9k(e~! + In3 + Inlnk)), where k is the number of model
points. In practice, this part of the procedure is completed in
less than 0.01 s for a typical 3-D object in the testing machine.

2) Computation of of. Coefficients: The computation of the
coefficients depends on two factors.

* The integration algorithm: For the integration, the tradi-
tional brute-force approach has been followed (i.e., sum-
mation of the values in every sample). Thus, a smart sam-
pling approach has been adopted, where S = 5200 sam-
ples are uniformly selected over the surface of the ellip-
soid for VEHD and SEHD. Using more sample points, the
computational time is increased, while there is no serious
affect in the retrieval performance of the approach. For the
GEHD, the sampling rate is S = 1300 samples per ellip-
soid, which is smaller due to the fact that GEHD is based
on an area around the sample point, resulting in local de-
scriptors that comprise information of the surrounding area
of the sample.

* The algorithm for polynomial PZ(.) computation: one
of the most efficient algorithms has been adopted for the
needs of this paper, the simple Horner’s rule that requires
exactly n» multiplications and n additions for every value
of P().

The computational complexity of the proposed approach

SH + EHD is due to:

* computation of lame polynomials (once);

» computation of ellipsoidal harmonics coefficients for all
possible directions of the ellipsoid;

» computation of spherical harmonics (once).

A major advantage of the SH + EHD is identified by the fact
that the computation of ellipsoidal harmonics coefficients for all
possible directions is a procedure which can be easily performed
using multithreaded processing.

TABLE III
COMPUTATION TIMES FOR THE VARIOUS INSTANCES
OF ELLIPSOIDAL HARMONIC DESCRIPTOR

Method Mean Computation Time

SEHD 1.02 secs

VEHD 1.57 secs

GEHD 1.95 secs
SH+EHD 6.37 secs

REXT 0.58 secs

GEDT 2.4 secs

LFD 2.77 secs

VII. EXPERIMENTAL RESULTS

The proposed approach has been evaluated for its retrieval
performance using the Princeton Shape Benchmark (PSB) [35],
the Engineering Shape Benchmark (ESB) [36] and the ITI 3-D
model’s database [16] (the ITI database can be downloaded
from http://www.victory-eu.org) and has been compared to
well-known approaches of Gaussian Euclidean distance trans-
form (GEDT), which is based on the comparison of a 3-D
function, whose value at each point is given by composition of
a Gaussian with the Euclidean distance transform of the surface
[9], the Light field descriptor (LFD) where a representation
of a model as a collection of images rendered from uniformly
sampled positions on a view sphere is utilized [11], and the
Radialized spherical extent function (REXT) where a collection
of spherical functions giving the maximal distance from center
of mass as a function of spherical angle and radius is utilized
[12]. The retrieval accuracy has been evaluated using the pre-
cision-recall diagrams, where precision is defined as the ratio
of the relevant retrieved objects and the total number of the
retrieved objects, and recall is the ration of the relevant retrieved
objects and the total relevant objects in the database. For the
ESB and PSB datasets, which adopt multilevel classification
schemes, an object is considered similar to the query if both
objects belong to the same subclass.

The experiments performed using an Intel Core Duo running
at 1.5 GHz per core with 2 GB RAM, running Windows XP. The
source code has been compiled using Microsoft Visual Studio
8.0 SP1, utilizing multithreaded processing techniques. The re-
sults concerning the approaches of [9], [11], and [12] have been
derived using the executables provided by the authors of corre-
sponding articles.

The volumetric ellipsoidal harmonic descriptor and the gen-
eralized ellipsoidal harmonic descriptor have been computed for
3-D objects that are expressed in a 64 x 64 x 64 cubic voxel grid.
The number of the ellipsoids has been selected to be N = 24
(for VEHD) and N = 12 (for GEHD) and the maximum degree
of expansion N, = 6. The combined spherical-ellipsoidal de-
scriptor (SH + EHD) has been computed for N = 5 ellipsoids
and 342 different orientations.

Firstly, the computational complexity of the proposed ap-
proach has been evaluated in terms of execution time. Table III
presents the average computational time required for the com-
putation for the various instances of the ellipsoidal harmonics
descriptors and the methods of [9], [11], and [12].

The proposed methods require slightly more execution time
than the methods presented in the literature. However, the latter
cannot be considered as a major drawback because the execution
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Fig. 9. Comparative precision-recall diagrams for the ITI database.

times are small enough to be used in practical search problems,
and the hardware is continuously improved leading in smaller
execution times. Moreover, the descriptor extraction takes place
only once for each 3-D object and the descriptors are stored in
the database. During retrieval, the descriptors are retrieved from
the database and are compared to the query’s descriptors.

In the sequel, the rotation invariance of SH+EHD descriptor
is experimentally verified. A set of sample objects has been ar-
bitrarily rotated and the SH + EHD descriptors for both original
and rotated sets have been computed. The maximum difference
between the original and rotated version of the same object was
0.5%. The small differences are expected in practice due to the
discrimination of the continuous spherical harmonic process.

Fig. 8 depicts the comparative performance of the instances
of the ellipsoidal harmonic descriptor on the ITI database. It is
observed that GEHD'’s retrieval accuracy outperforms VEHD’s
and SEHD which are comparable. This can be explained by
the fact that both VEHD and SEHD are trivial instances of
GEHD. When another kind of information is considered (e.g.,
the 3-D wavelet transform utilized in this paper), GEHD pro-
vides slightly better results. It is also obvious that the com-
bined spherical-ellipsoidal harmonic descriptor outperforms the
simple ellipsoidal and the generalized ellipsoidal harmonic de-
scriptors and, thus, is selected to be compared to the other ap-
proaches. Figs. 9—11 depict the comparative performance of the
best instance (SH+EHD) of the ellipsoidal harmonic descriptor
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for the three different databases compared to the approaches of
[9], [11], and [12]

By comparing the precision-recall diagrams for the three dif-
ferent databases, it is obvious that all the approaches have com-
pletely different behavior in different databases. The latter basi-
cally happened due to the different nature of each database, the
number of the 3-D objects it contains, and the way that the 3-D
objects have been classified.

The efficiency of ellipsoidal harmonics is depicted in the
combined spherical-ellipsoidal harmonic descriptor, which
outperforms all competitive approaches and any other ellip-
soidal harmonic descriptor. The combined spherical-ellipsoidal
harmonic descriptor combines the rotation invariant features
provided by the spherical harmonic analysis, with directional
features captured by the ellipsoidal harmonic analysis, and
thus, the resulting descriptor has significantly better retrieval
performance when compared to other approaches.

It is very interesting that the performance of the proposed
approach is significantly greater than the other approaches for
Recall > 0.4 in the CAD database (Fig. 11) and in the ITI
database (Fig. 9). The latter means that all relevant objects will
be presented earlier to the user when compared to other ap-
proaches. Both ITI and ESB are mainly composed of objects
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Fig. 12. Indicative retrieved results. The first column depicts the query 3-D
object while the rest are the first four retrieved objects.

having mainly directional information, and thus, the combina-
tion of the rotation invariant features provided by the spherical
harmonic analysis, with directional features captured by the el-
lipsoidal harmonic analysis, achieve better retrieval efficiency
in these databases.

In Fig. 12, selected retrieved results are shown. The first
column is the query model, while the rest are the first four
retrieved results. From the presented results, the geometric sim-
ilarity between the query and the retrieved objects is obvious;
however, there are semantic differences in some retrieved
results, e.g., in the last two lines of Fig. 12. When the query is
a “delta plane”, a conventional plane is ranked third, and when
the query is a helicopter, a fish is ranked in the fourth position.
Results of this kind are expected, since neither topology nor
high-level information has been taken into account that could
semantically discriminate these 3-D objects. From a geometric
perspective, the major difference between a helicopter and a
fish is located in the helicopter’s wings (the different scaling
has been discarded during normalization). In the proposed ap-
proach, intersections of the 3-D object with many ellipsoids are
utilized to extract the shape descriptors. When comparing the
intersections of a helicopter to the intersections of a fish, only
few intersections differ significantly, while a great majority is
highly similar, and thus, the mean dissimilarity score will be
low. Additionally, two objects of the same class may be nor-
malized in slightly different scale, and thus, few intersections
will present significantly high dissimilarity. As a result, scores
between some helicopters can potentially be comparable to the
scores between a helicopter and a fish, resulting in retrievals
similar to the one presented in the last line of Fig. 13, where a
fish is ranked fourth when the query is a helicopter.

VIII. CONCLUSIONS

In this paper, various novel descriptors based on ellipsoidal
harmonics were introduced. The combination of spherical and
ellipsoidal harmonics results in a more discriminative descriptor
set which is capable of performing robust 3-D content-based
search and retrieval for online applications. The experimental
results proved the efficiency of the proposed descriptors in per-
forming geometry-based 3-D object search and retrieval. Al-
though geometry-based content retrieval provides very good re-
sults, the geometry of a 3-D object may not always provide
the semantically similar results. In these cases, the geometry-
based results should be combined in a semantic-based frame-
work where the system is enhanced with external knowledge in
order to improve the retrieval performance.
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