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Abstract

An architecture is proposed where the layers of cells that lie in front of the photosensitive cells of the human retina
are interpreted to be estimators of the first and second order derivatives of the brightness of the imaged scene. Such an
architecture bypasses the problems of estimating derivatives from sampled and digitised data, as they are estimated directly
from the scene. It also offers an explanation on why the photosensitive sensors of the human eye are placed at the back of the
eye, behind four other layers of cells.

1. Introduction

In many image processing and computer vision opera-
tions we have to use the brightness derivatives of the ob-
served scene. Examples of such operations include all
methods that rely on gradient estimation, Laplacian esti-
mation or estimation of higher order fluctuations. Appli-
cations include edge detection, multiresolution image rep-
resentation using the Laplacian pyramid, all methods that
rely on anisotropic (or isotropic) diffusion approaches and
even wavelet-based methods. In all these cases the deriva-
tives needed are calculated from the discrete data. Discreti-
sation, however, introduces significant errors in the calcu-
lation of differentials. An example is shown in figure 1,
taken from [17]. The signal shown in 1a lasts 5.12sec. Its
first half is the sum of 10 cosines with frequencies 1,2,...,10
Hz. The second half is the sum of 5 cosines with frequen-
cies 11,...,15 Hz. The amplitudes of the cosines are nor-
malised so that the two halves have the same energy. The
sampling frequency is 50 Hz and the number of samples is
256. The discrete wavelet transform analysis of the signal is
shown in 1b. We can hardly identify the dominant frequen-
cies present in the signal. The continuous wavelet transform
of the signal is shown in 1c. This is a much more accu-
rate representation of the frequency contents of the signal,
as judged from 1a. The mother wavelet used in both cases
was the quadratic biorthogonal spline with 7 vanishing mo-
ments and the discrete wavelet transform was applied up
to the fifth level of decomposition. The reader is reminded

that the wavelet transform is computed using signal/image
convolutions with high-pass differentiating filters.

Figure 1. A signal and its discrete (left) and
continuous (right) wavelet transform.

In recent years a realisation has started to emerge about
the importance of the continuous signal we are dealing with,
through the sampling data we have. Going back to the con-
tinuous scene to perform our processing, rather than forget-
ting it once the digital data have been gathered, has been
shown to have many advantages. For example, Joshi [6] has



shown that much better histogram estimates of the data may
be obtained by upsampling and interpolating the data be-
fore calculating the histograms. Thus, the probability den-
sity functions of the various distributions needed for further
image processing may be estimated much more accurately
this way. Splines [19] is a very versatile and powerful tool
for representing the discrete data in the continuous domain.
However, there have also been cases where people try to go
back to the continuous domain by emulating “continuous”
sensors. In [18] virtual cameras were introduced, with spec-
tral responses in between the discrete spectral responses of
actual cameras, in order to improve colour segmentation. In
[4] virtual sensors measuring the potential at border points
of a 2D vector field were introduced in order to improve the
vector field reconstruction using the inverse Radon trans-
form.

It is not necessary, however, for the extra sensors intro-
duced to measure the same value as the existing sensors.
It is true, that a much denser array of CCDs will sample
the brightness of the scene much better than a not so dense
array, and it will make the estimated quantities approach
more the true ones that refer to the continuous scene. There
is another, option, however: it may be possible to use ex-
tra sensors that measure the desired quantities directly from
the continuous scene. I started by mentioning the signifi-
cant role differentiation plays in image processing. I would
suggest that we may incorporate sensors in our imaging de-
vices that measure the first and second derivatives of the
scene directly, as they measure the brightness of the scene.
This may be done densely and for different colour bands.
The information from the derivative sensors may be used
for subsequent processing as extra information alongside
the brightness information, for example in the form of extra
image bands, or it may be used to construct a very accurate
representation of the scene, much more accurate than a sin-
gle layer of brightness sensors may do on their own. This
interlacing of sensors of different types and different sen-
sitivities appears to sound too complicated, but it may be
what nature has implemented for us.

It is well known that the retina responds to changes of
light and not directly to light [3, 20]. Apparently this is
based on studies which showed that when the tremor of the
eye was switched off, the person went blind. This indicates
that the eye works like a spatial differentiator of the scene.

So, one may speculate that what the eye does is not (or
at least not only) to measure the brightness of a scene, but
the derivatives of the scene too. Apart from the derivative
information being valuable in its own right, integration may
be used to work out a much more accurate representation of
the signal than it can be recorded by the brightness sensors
themselves. Integration requires values for the constants of
integration. I will analyse next the roles of the constants
of integration and show how they may lead to an imaging

architecture that resembles very much the human retina, at
least in appearance and topological structure.

2. Constants of integration

Assume that we know the second derivative d2f(x)/dx2

of a function f(x). What are the values of function f(x)?
We have to integrate d2f(x)/dx2 twice: first we find the
first derivative of the function

df(x)

dx
=

∫

d2f(x)

dx2
dx + c1 (1)

where c1 is a constant of integration. Then we have to inte-
grate df(x)/dx once more to derive function f(x)

f(x) =

∫
(

∫

d2f(x)

dx2
dx + c1

)

dx + c2

=

∫
(

∫

d2f(x)

dx2
dx

)

dx + c1x + c2 (2)

where c2 is a constant of integration.
Note that the constants of integration appear because we

perform an indefinite integral. When we perform definite
integrals between pre-specified lower and upper limits, say
a and b, the result we get is a numerical value of the area
under the curve of the integrand between these two limits.

Now, let us consider digital integration. In the digital
domain, differentiation is replaced by differencing and in-
tegration by summation. The summation, however, is be-
tween specific values of the summation index, and so it re-
ally corresponds to the definite integration of the continuous
domain. What in the digital domain corresponds to the in-
definite integration of the continuous domain is the recovery
of the values of the differenced function at all sample posi-
tions, by propagating a starting value. I will explain this
with a specific example.

Assume that the true values of a function in a succession
of sampling points are:

x1, x2, x3, x4, . . . , xN (3)

Assume that I am given only the first difference values at
each of the sampling points, defined as di ≡ xi − xi−1:

?, d2, d3, d4, . . . , dN ≡

?, x2 − x1, x3 − x2, x4 − x3, . . . , xN − xN−1 (4)

Here the question mark means that I do not have the value at
the first point due to the definition I used for di. Note that if
I had used the alternative definition, di ≡ xi+1−xi, I would
still have to have a question mark, but this time referring to
the last point of the sampling sequence. Also note, that usu-
ally, in image processing problems, we ignore this fact by
assuming that the signal repeats itself ad infinitum, and so



the first point becomes the last plus 1 point and the last point
becomes the first minus 1 point. When such an assumption
is made, there are no points for which we do not have a next
door neighbour to compute the first difference, whichever
definition we use. This of course is a trick of convenience
in computing and it has nothing to do with reality. In reality
we are always going to have a sample (either the first or the
last) with no difference value.

Let us stick to the case depicted by equation (4), and let
us try to recover the values of the original sequence, from
the knowledge of the d values. To do that we hypothesise
that the first value of the sequence is c1. Then, the recovered
values are:

c1, c1 + d1, c1 + d1 + d2, c1 + d1 + d2 + d3,

c1 + d1 + d2 + d3 + d4, . . . , c1 + d1 + d2 + . . . + dN (5)

This process corresponds to the indefinite integration of the
continuous case, with constant of integration the guessed
original value c1.

There are three important observations to make.

• Without the knowledge of c1 it is impossible to re-
construct the sequence.

• To recover the value at a single point we need to add
the values of several input points.

• As the sequence is built sample by sample, any error
in any of the samples is carried forward and is accu-
mulated to the subsequent samples, so the N th sam-
ple will be the one with the most erroneous value.

There are two conclusions that can be drawn from the
above observations.

• Such reconstructions cannot be too long, as very
quickly the error of reconstruction accumulates and
the reconstruction becomes useless. So, for the re-
construction of a long sequence, one has to consider
many small sequences in succession, and possibly
with overlapping parts.

• If one has a series of sensors that return the local dif-
ference value of the observed scene, one needs an-
other series of sensors that return the value of c1 ev-
ery so often in the sequence, ie at the beginning of
every small reconstruction sequence.

Next, suppose that the array of sensors we have does not
measure the first difference of the sequence, but the sec-
ond difference, ddi ≡ di − di−1. Then we must apply the
above process of reconstruction once in order to get the se-
quence di and then once more to get the xi values. Note that
this implies that we must have a series of sensors that every
so often in the long sequence of ddi will supply the start-
ing constant we need, which in this case is denoted by c2.

This constant is actually a first difference, so these sensors
should measure the first difference at several locations.

3. A novel imaging architecture

A device that functions according to the principles dis-
cussed above, has to consist of five layers, as shown in fig-
ure 2.

Now, suppose that the sensors that detect the constants
c2 at the same time act as adders, ie they add what they de-
tect to the signal they receive from the dd sensors. Then the
device will look like the one in figure 3. This structure may
be re-modelled as shown in figure 4. The function of this
structure effectively repeats twice: below the dashed line we
have the first integration, outputting above the dashed line
the values of the first difference it computes, and above the
dashed line we have the second integration, integrating the
first differences it receives and outputting the signal values.
Figure 5 shows for comparison a cross section of the human
retina. The topology of the structure of figure 4 is strikingly
similar to the observed structure of the human retina!

4. Extension to 2D

The analysis done in the previous two sections is in 1D.
However, images are 2D. This has some serious implica-
tions, particularly for the c2 sensors.

From the mathematical point of view, once we move to
2D, we are dealing with 2D integrals, not 1D. A 2D inte-
gration implies spatially dependant constants of integration.
For a start, a 2D function f(x, y) has two spatial derivatives,
∂f/∂x and ∂f/∂y. Let us assume that we know both of
them and we wish to recover function f(x, y) by integra-
tion. Integrating the first one of them will yield

f(x, y) =

∫

∂f

∂x
dx + cx(y) (6)

where cx(y) is a function of y, which, as far as integration
over x is concerned, is a constant. Differentiating result (6)
with respect to y should yield ∂f/∂y, which is known, and
this can help us work out constant cx(y) as a function of y.

There is an alternative route to work out f(x, y). Inte-
grating the partial derivative with respect to y we get

f(x, y) =

∫

∂f

∂y
dy + cy(x) (7)

where cy(x) is a function of x, which as far as integration
over y is concerned, is a constant. Differentiating result (7)
with respect to x should yield ∂f/∂x, which is known, and
this can help us work out constant cy(x) as a function of x.



Obviously, both routes should yield the same answer. In
the digital domain, this corresponds to reconstruction of the
2D signal either line by line or column by column. So, let
us assume that the true values of the 2D digital signal are
gij . However, we do not have these values, but we are given
instead the first differences of the digital signal along both
directions. So, we assume that we have dxij ≡ gij − gi−1,j

and dyij ≡ gij−gi,j−1. We can construct the signal column
by column as follows. First column:

g12 = dy12 + cy(1)

g13 = dy13 + dy12 + cy(1)

. . .

Second column:

g22 = dy22 + cy(2)

g23 = dy23 + dy22 + cy(2)

. . .

And similarly for the rest of the columns. This is shown in
figure 6a. In a similar way, the signal may be reconstructed
along rows. First row:

g21 = dx21 + cx(1)

g31 = dx31 + dx21 + cx(1)

. . .

2nd integrators

Constructed sequence
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Figure 2. A five layer sensor device
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Figure 3. When sensors for c2 also act as adders
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Second row:

g22 = dx22 + cx(2)

g32 = dx32 + dx22 + cx(2)

. . .

And similarly for the rest of the rows. This is shown in
figure 6b.

Of course, these reconstructions should be equivalent, ie
one expects that g22 = dy22 + cy(2) = dx22 + cx(2). One
may also reconstruct the signal by using a combination of
rows and columns, and again, the reconstruction should be
the same irrespective of the path followed. This is shown in
figure 6c.

There are two problems with the above analysis: in prac-
tise the alternative reconstructions are never identical due
to noise. This is something well known from digital image
processing. The other problem is the use of two directions
which creates an anisotropic grid, as there are two preferred
orientations. Along these two orientations, the samples used
are at a fixed distance from each other. However, if we con-
sider samples that are aligned along the diagonal of these
two orientations, their distance is

√
2 times that of the sam-

ples along the preferred orientations. This anisotropy is not
desirable. The third problem we can see is that such a re-
construction has to proceed along parallel lines where we
first reconstruct the cy(i) values, for example, and then use
them to propagate the solution in the orthogonal direction.
Not desirable logistics.

The above approach is compatible with the conventional
CCD sensors that consist of rectangular cells, ie rectangular
pixels. The cones in the fovea region of the retina, however,
have a hexagonal structure, as shown in figure 7a. At first
sight this does not look very useful. However, instead of
considering the cells, consider their centres as the sampling
points of a grid. The nodes in the grid shown in figure 7b
are the points where the reconstruction has to take place.

This sampling grid at first sight does not appear hexag-
onal, but rather based on equilateral triangles. However,
several hexagons of various scales can be perceived here.

Imagine now, that we have a device centred at the centre
of one of these hexagons. Imagine that the device vibrates
along the paths shown. Imagine that this device hangs from
a vertical nail above the centre of the hexagon, and consists
of three types of sensor hanging from the same string: the
bottom one measures second differences, the middle one
first differences, and the top one just values. As the string
swings like a pendulum, the bottom sensor swings more, the
middle less and the top not at all (see left of figure 4). This
will be consistent with the notion that the second difference
sensor needs to see larger part of the scene to do its job than
the first difference sensor, while the fixed sensor does not
need to swing at all to do its job. Note: it is mathematically

impossible to calculate any derivative if you consider only
a single sample. So, a device like the one shown in figure
4 swinging along one direction, will allow the reconstruc-
tion of the signal along that direction for several sampling
points. The amplitude of the swing and the range of recon-
struction performed by each single set of sensors are two
different things. The amplitude of the swing is for measur-
ing locally what is needed for the reconstruction. Swinging
along another direction, will measure the first and second
differences along that direction, and the signal will be re-
constructed along that direction, by using the propagation
techniques we discussed in the 1D case.

(a)

(c)

(b)
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Figure 6. Reconstruction from first difference
values in 2D can proceed along columns (a),
or rows (b), or along any path (c). The an-
swers should be equivalent.

There are many advantages of this approach: the recon-



struction grid is isotropic; we have no preferred directions;
the hexagons fit nicely with each other at all scales; the re-
construction along the lines of one hexagon can be com-
plemented by the reconstruction along the lines of other
hexagons that may be directly underneath other sets of sen-
sors hanging from our swinging strings; overlapping recon-
structions are expected to add robustness and super-acuity
(ie resolution higher than the sampling distance as deter-
mined by the spacing of the sensors); the reconstruction is
expected to be complete and very accurate.

path A
path B
path C

(a) (b)

Figure 7. (a) The arrangement of cells in the
mammalian retina. (b) The hexagonal sam-
pling grid.

5. Implications for the physiology of the retina

The proposed imaging structure has several implications.

• The light meets first the dd sensors (see figure 4) be-
cause the dd signal has to be known first before the
constant c2 is added by the c2 sensors. So, the ob-
served layering of the sensors in the retina is in agree-
ment with this theory (see figure 5).

• The dd sensors should have receptive fields that look
like (−1, 2,−1) (or (1,−2, 1)) so that they sense the
local second derivative. Ganglion cells (see figure 5)
are known to be spot detectors [5], i.e. they do have
such receptive fields.

• The sensors that sense the c1 constant do not have to
move. The sensors that sense the c2 constant have
to move less than the dd sensors, because the c2

constants are first order derivatives. Mathematically
you need to use a smaller patch to compute the first
derivative than the second derivative. Now, this says
that the dd sensors are further away from the wall
of the retina, so they swing more than the c2 sensors
which are closer to the wall, and which swing more
than the c1 sensors. The c1 sensors are fixed on the
retina wall, and most likely they are not moving at all

(figure 4). Probably tightly packed as well, so they
are not swinging.

• The c2 sensors have to estimate the first difference at
the points they see. This means that their receptive
fields have to be (−1, 1) or (1,−1), so when they are
shifted over an area, they get the first difference at the
central point.

Predictions that may be tested:

• The bipolar cells as well as the ganglion cells are
also light sensitive with receptive fields that look like
(−1, 1) or (1,−1).

• Tremor may have larger amplitude as we move away
from the retinal wall.

At the moment it is believed that the ganglion cells re-
ceive input from the cones in order to detect the 2nd dif-
ference. This would be absurd: why discretise first and
compute the derivative afterwards, if you can compute the
derivative directly from the continuous data? Discretisation
introduces errors. It is possible that the sensitivity of the
ganglion cells to light has not been observed yet because
the electrodes used in order to study them stabilise them. If
you stop the tremor, it is obvious that the 1st and the 2nd
order difference filters will give 0 response. The theory pre-
sented in this paper contradicts that: ganglion cells are spot
detectors directly from the scene, with no need of the cones
to send them information. It also predicts that bipolar cells
are photosensitive. If such radical ideas are correct, and
what we see is built up from its first and second derivatives,
then large regions with no sensory information may take
up longer time to be built up than small regions. This is
in agreement with several experiments where the so called
“in-filling” of large regions takes longer to be accomplished
[11, 14].

6. Implications for the philosophy of mind

The fundamental question that pre-occupies cognitive
philosophers on vision is whether a perfect image of the
viewed scene exists somewhere inside the human brain. The
idea that such an image exists is known as Cartesian materi-
alism [21], and the place where it exists is known as Carte-
sian theatre. Most cognitive philosophers nowadays reject
this idea as absurd [1]. There are several philosophers, how-
ever, who support instead the idea of analytic isomorphism:
in simple words, they do not accept that an image of the
scene is constructed by the brain, but rather that there is
a one-to-one correspondence between the state of the neu-
rons and the perception created [16]. The basic argument
is: why should the brain create a perfect picture if nobody



needs it? All the brain needs is to be able to deal with the
information received and translate it into actions. There are
also philosophers who even dispute this isomorphism, and
accept that it is possible the mapping from sensors to per-
ceptions and actions not to be one-to-one at all [12]. The
ideas presented here imply that the human retina may act as
a device that creates an accurate and complete image of the
viewed scene. This assertion may be interpreted as Carte-
sian materialism. However, the ideas presented do not enter
into these arguments. For example, the information gath-
ered by the retina may not at all be used to build a 2D image.
The vibrating sensors that measure first and second deriva-
tives as well as the level of brightness at a point, may only
do local reconstructions along 1D lines about their central
position. It may be that it is only these local reconstructions
that are mapped to perceptions and actions, with the global
picture being an “illusion” of the high level processing of
the brain-a matter of which combination of such local re-
constructions/sensations we call, for example, a “lake” as
opposed to reconstructing actually the 2D image of a lake
in our brain.

The ideas presented here can further explain the time re-
versal effect [22] (the so called Colour Phi phenomenon):
when two stimuli are rapidly flashed on the screen, in some
cases, the second stimulus is perceived before the first! Two
explanations have been proposed for this. The so called
Stalinisque explanation (according to which there is buffer
in the brain where information is kept and the incoming sec-
ond stimulus affects the stored information from the first
stimulus during the time lag of perception) and the Or-
wellian explanation (according to which the error happens
in the recall rather than during reception/perception). Both
names of the explanations are due to Dennett who rejects
both of them [1, 21]. This phenomenon may be explained
if when the integration of the stimuli takes place, the con-
stants of integration change and affect the result. This ex-
planation is similar to the Stalinisque explanation, except
the interference happens when the sensors are building the
incoming information rather than due to the existence of a
buffer, (which buffer may be identified with the Cartesian
theatre, the existence of which is mostly disputed).

7. Implications for the construction of novel
imaging devices

The use of a hexagonal grids as a better way of perform-
ing image processing has been known for some time, and
several authors have done a lot of research on them [10, 2].
Also, the use of vibration as a way of improving image
quality has been investigated both theoretically and imple-
mented in practice in imaging devices [7, 9, 13]. There
have also been developed devices that can measure the first
scene derivative [8, 15]. However, no device has been con-

structed yet for measuring the second image derivatives di-
rectly from the scene. Such a device, when constructed, it
will revolutionarise the way we perform image processing.

8. Conclusions

The ideas presented here challenge our understanding
on the way retina gathers information rather than our un-
derstanding on what happens to this information from there
on. The fundamental understanding this paper questions is
that the only photosensitive cells in the retina are the cones
and the rodes, and that ganglion cells receive information
from the cones in order to respond to spatial variations and
thus act as spot detectors. The predictions of this theory
may or may not be proven right by the appropriate physi-
ological experiments. However, either the human retina is
constructed as discussed here, or as it is thought by cur-
rent conventional thinking, this is irrelevant to whether we
should construct such imaging devices or not. The basic
questions that will have to be addressed by physicists and
engineers are: 1) can we develop sensors that can estimate
the first and second derivatives directly from the scene? 2)
will the outputs of these sensors be more accurate and re-
silient to noise than the calculations of the derivatives from
the sampled data? These questions have to be answered by
sensor scientists, as they cannot be answered theoretically.
There is no doubt that if the answer is “yes” to both these
questions, the image processing that we shall be able to do
with such devices will be much more reliable and accurate
than the image processing we are doing now.
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