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Abstract Recent advances in semantic image analysis have brought forth generic
methodologies to support concept learning at large scale. The attained performance
however is highly variable, reflecting effects related to similarities and variations in
the visual manifestations of semantically distinct concepts, much as to the limitations
issuing from considering semantics solely in the form of perceptual representations.
Aiming to enhance performance and improve robustness, we investigate a fuzzy
DLs-based reasoning framework, which enables the integration of scene and object
classifications into a semantically consistent interpretation by capturing and utilising
the underlying semantic associations. Evaluation with two sets of input classifiers,
configured so as to vary with respect to the wealth of concepts’ interrelations,
outlines the potential of the proposed approach in the presence of semantically rich
associations, while delineating the issues and challenges involved.

Keywords Fuzzy reasoning · Semantic image analysis · Semantic integration ·
Fuzzy DLs · Inconsistency handling

1 Introduction

Extracting semantic image descriptions is an intricate problem, challenging re-
searchers for decades in the quest for generalisable, yet robust, approaches to

S. Dasiopoulou (B) · I. Kompatsiaris · M. G. Strintzis
Informatics and Telematics Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece
e-mail: dasiop@iti.gr

I. Kompatsiaris
e-mail: ikom@iti.gr

M. G. Strintzis
e-mail: strintzis@iti.gr



168 Multimed Tools Appl (2010) 49:167–194

alleviate the so called semantic gap and support content management services at a
level closer to user needs [14, 26, 41]. A factor partially accountable for the challenges
pertaining to this endeavor lies in the very nature of it, namely in the fact that it
involves the handling of significant amount of imprecise and incomplete information.
Leaving out issues related to the subjective interpretations that different users may
attribute to conveyed meaning, intention, etc., imprecision relates intrinsically to a
number of tasks including segmentation, feature extraction, intra- and inter-class
variability. Inevitably, managing imprecision is critical not only when dealing with
the aforementioned tasks, but also for the subsequent processing that realises the
extraction of semantic descriptions.

Towards this direction, machine learning approaches have gained growing popu-
larity in the past couples of years, as they provide convenient means for discovering
and handling knowledge either incomplete or too complex to be explicitly handled.
Support Vector Machines (SVMs) and Bayesian networks constitute characteristic
examples in this direction, allowing one to learn in a generic fashion classifiers for a
significant number of concepts (referring to objects, events, scene descriptions, etc.)
[1, 25, 42, 51]. Despite the reports of successful applications, the performance remains
still highly variable and deteriorates rather dramatically as the number of supported
concepts increases. Among the principal causes for the variable performance are
effects related to similarities between visual manifestations of semantically distinct
concepts and to the variance in the possible manifestations a single concept may
have. These effects issue directly to a large extent from the fundamental assumption
underlying learning approaches, i.e. that the addressed semantics is captured to a
satisfactory degree by features pertaining to their visual manifestations.

Since in many cases semantics goes beyond the capacity of perceptual features,
discrepancies result between the learned associations and the intended ones. Con-
sequently, the learnt classifiers often result in the extraction of complementary,
overlapping, incomplete, as well as conflicting descriptions. Evidence can be found
not only in individual evaluations of research studies in the relevant literature, but
also in large scale benchmarks, such as the TRECVID challenge [40], sponsored by
the National Institute of Standards and Technology (NIST). Two main challenges
confronted repeatedly in the series of annual TRECVID evaluation activities include
the deterioration of performance as the number of addressed concepts increases
and the variable correspondence between the semantics of the content retrieved
using the learned detectors and the semantics alleged by the detectors per se [15, 43].
The efforts during the last edition included the enhancement of robustness, even for
a reduced number of concepts, through the utilisation of complementary information
beyond visual features, either in the form of taxonomic relations as captured in the
LSCOM ontology [27] or through detector combinations [28, 44].

Induced by the aforementioned, we investigate the utilisation of formal se-
mantics in order to interpret the outcome of statistically learned classifiers into
a semantically consistent image interpretation. Focusing on approaches deploying
perceptual similarity against learned concept models, viz. where the confidence of
the extracted descriptions reflects the membership to a concept class, we propose
a fuzzy Description Logic (DL) based framework to capture and reason over the
extracted descriptions, while handling the underlying vagueness. The input image
classifications may be either scene or object level, and their interpretation is realised
in three steps, namely designation of scene level characterisation, identification and
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resolution of inconsistencies with respect to possibly conflicting classifications, and
enrichment, where additional inferred descriptions are made explicit.

The rest of the paper is structured as follows. Section 2 explicates the reasons that
motivated our investigation into a fuzzy DL based reasoning approach and outlines
the contribution with respect to the relevant literature. Section 3 provides a brief
introduction into fuzzy DLs and delineates features pertaining to reasoning within
the context of image interpretation. Section 4 presents the proposed framework
architecture and the details of the individual reasoning tasks involved. Evaluation is
given in Section 5, where the proposed framework is assessed against two experimen-
tal settings that consider input classifications of loose and rich semantic associations.
Additionally, initial results are presented with respect to enriching the background
knowledge with co-occurrence information in the form of fuzzy implication. Finally,
Section 6 summarises the paper and discusses future directions.

2 Motivation and contribution

Learning based approaches provide a number of appealing traits, such as generic
learning mechanisms and the capability to capture and utilise associations hidden in
the examined input data whose explicit handling might otherwise be too complex
and strenuous to be effective. Despite their unquestionable role in semantic image
analysis tasks, one cannot overlook the limitations that conduce to the variability
of the attained performance. As mentioned previously, the problem lies to a large
extent in the rather poor utilisation of the semantics underlying the learned concepts
and in the imprecision involved in the constituent tasks. Aiming to enhance perfor-
mance, we focus on a twofold goal, addressing the utilisation of concept semantics
while providing the means to cope with imprecision.

The use of explicit knowledge for the purpose of introducing concept semantics
is not a new idea. Going back to the 80s and early 90s one finds an extensively
rich literature [8, 35] that investigates a wide gamut of knowledge representation
schemes, as rigorous as first order logic [36] and as intuitive as the early semantic
networks [32]. Among the weaknesses of the early knowledge-directed paradigms
were the lack of common representations and reasoning mechanisms that prohib-
ited interoperability and reuse of knowledge. The Semantic Web (SW) initiative1

changed the scenery, advocating explicit semantics and corresponding representation
languages to capture meaning in a formal and interoperable fashion. Since 2004,
the Resource Description Framework Schema (RDFS) [7] and the Web Ontology
Language (OWL) [4] constitute formal W3C recommendations, while substantial
interest has revived in Description Logics (DLs), as it underpins the semantics of
the SW languages.

In analogy to the different expressivity features provided by the various knowl-
edge representation formalisms, a critical factor regarding the handling of im-
precision concerns the nature of its semantics. Examining the relevant literature,
imprecision may manifest in the extracted descriptions either as uncertainty regard-
ing the presence of a specific entity (e.g. the presence of a sky region), or as vagueness

1http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/
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regarding the degree to which the statement about the presence of the entity is
true. Uncertainty characterises probabilistic approaches such as Bayesian nets, while
vagueness is encountered in approaches that deploy similarity (distance) metrics
against feature models acquired through training, such as SVMs. The confidence
values of the latter reflect the extent of matching against the learned concept models,
and as such each model can be taken as a fuzzy set, with distance metrics serving the
role of the membership function.

Based on the aforementioned, our initial specifications consisted in the selection
of a representation formalism with well-defined semantics and the designation of the
targeted imprecision semantics. Perceptual-based similarity approaches constitute a
fundamental element in statistical learning for image interpretation, and as such in
the current investigation we focused on vague rather than probabilistic information.
In this context, the concrete incentives of the proposed fuzzy DLs based reasoning
framework issue form the specific traits characterising the application of SVM-based
concept classifiers, namely contradictory descriptions that pertain to semantically
different interpretations and incomplete descriptions, even at the presence of cor-
responding classifiers.

To put into perspective in an intuitive manner the implications involved, let
us consider two example images and the respective descriptions extracted using
the SVM based classifiers of [33], shown in Fig. 1. The extracted descriptions
are expressed following the fuzzy DL notation. A statement of the form (im :
∃contains.Concepti) ≥ ni denotes that the image represented by the individual im
contains a region depicting an instance of Concepti with a degree ≥ ni, while a
statement (im : Concept j) ≥ n j denotes that the image at scene level constitutes an
instance of Concept j to a degree ≥ n j. As illustrated more than one scene level
concepts may be assigned to a single image, and the same may be the case for the

(image : Countryside_buildings) ≥ 0.65 (image : Rockyside) ≥ 0.42
(image : Roadside) ≥ 0.57 (image : Countryside_buildings) ≥ 0.52
(image : Rockyside) ≥ 0.44 (image : Seaside) ≥ 0.51

(image : Forest) ≥ 0.45 (image : Forest) ≥ 0.52
(image : Seaside) ≥ 0.47 (image : Roadside) ≥ 0.71

(image : ∃contains.Sand) ≥ 0.66 (image : ∃contains.Sky) ≥ 0.98
(image : ∃contains.Sky) ≥ 0.95 (image : ∃contains.Sea) ≥ 0.73

(image : ∃contains.Person) ≥ 0.62 (image : ∃ contains.Person) ≥ 0.60
(image : ∃contains.Foliage) ≥ 0.70 (image : ∃contains.Sand) ≥ 0.75

Fig. 1 Example outdoor images and respective descriptions extracted following SVM-based analysis
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concept classifiers performing at object level. Furthermore, we note that since object
level classification is performed per image segment, it is possible to have more than
one assertions referring to the same concept with varying degrees.

In the case of the first image, the scene level concept Countryside_buildings
appears as the prevalent one. This is not only because the corresponding scene
description is the one with the highest degree among the extracted scene level
descriptions, but also because the object level descriptions neither contradict it nor
imply preference of any other scene description. To assess the latter, one needs to
be aware of the logical associations of the concepts involved. Even in this example,
where the utilisation of semantics has the same effect as selecting the description
with the highest confidence, the potential for additional enhancement is manifested.
Specifically, exploiting the semantics of the Countryside_buildings concept, one can
infer that the image contains a building depiction, thus that there is a missing
assertion that needs to be added. Analogously, one can determine that the extracted
Sand description is semantically unrelated, and hence should be removed.

Moreover, the exploitation of semantics enables the overall image description
to be further enriched, allowing the addition of descriptions referring to concepts
such as Landscape and Outdoor. The latter, though quite trivial for the considered
example, can be of great value in the general case as it alleviates the need for training
and learning detectors for all concepts of interest, as long as they are semantically
connected to other concepts. We note that in the absence of confidence degrees,
it would not be possible to acquire ranked estimations regarding the plausibility of
the different interpretations. As a result, on one hand all classifications would be
rendered equally probable, and preference could be established only on the grounds
of the descriptions that would have to be removed (respectively added), risking
rather artificial interpretations. On the other hand, depriving all information about
perceptual similarity would leave out substantial knowledge regarding the validity of
the choices considering the removal or addition of descriptions.

Similar considerations apply for the case of the second image. Taking into account
solely the explicit scene level descriptions, the Roadside assertion appears to be the
more plausible. Going through the object level descriptions and taking into account
the semantics of the concepts involved, the simultaneous presence of Sea and Sand
descriptions entails the presence of a Beach scene, an implication that implicitly con-
tradicts the dominant Roadside assertion. The remaining object level classifications,
i.e. the Person and Sky ones, do not provide any additional knowledge regarding
the plausibility of scene level descriptions. Hence, since the implied confidence with
respect to Beach appears to be larger than the told degree of Roadside, it would
be desirable to be able to assess Beach, and by consequence Seaside, as the more
plausible image interpretations.

The aforementioned examples, though quite simplistic, outline the potential and
motivation for employing explicit semantics while providing the means to handle
imprecision. Furthermore, they designate additional specifications regarding the
selection of an appropriate knowledge representation formalism, namely the ability
to capture expressive semantic associations (including disjointness, subsumption,
conjunction) and to handle the vagueness introduced by the accompanying degrees.
Based on these considerations, we chose to investigate a reasoning framework based
on fuzzy Description Logics (DLs) [47–49] as they present two very appealing traits.
First, they are strongly related to OWL (particularly the Lite and DL species); thus
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they benefit from the Semantic Web initiative towards knowledge sharing, reuse and
interoperability, both regarding the background knowledge comprising the domain
semantics and the produced image annotations. Second, extending classical DLs,
they provide the means to handle vagueness in a formal way, while providing for well-
defined reasoning services. The current stage of the relevant literature, presented
in the next subsection, elucidates further the motivation underlying the proposed
reasoning framework, and outlines its contribution.

2.1 Relevant work

Going through the relevant literature, one notices that despite the significant amount
of imprecision involved, a substantial share of the reported logic-based investigations
towards the use of explicit knowledge adopts crisp approaches. In the series of works
presented in [22, 30], crisp DLs are proposed for inferring complex descriptions that
are modelled in the form of aggregates, i.e. conceptual entities modelled by parts sat-
isfying specific constraints. Interpretation is realised as a deductive process, assuming
the availability of primitive descriptions that do not contradict each other. Crisp DLs
are also considered in [3], in combination with rules, for video annotation; again,
possible conflicts or missed descriptions are not addressed. In [38] DLs are used
to interpret perceptual descriptions pertaining to colour, texture and background
knowledge into semantic objects. To this end a pseudo fuzzy algorithm is presented
to reason over the calculated feature values with respect to the prototypical values
constituting the definition of semantic objects. In [11], DLs have been combined with
rules in order to perform abductive inference over crisp descriptions and acquire
plausible interpretations, which are ranked using cost criteria involving the number
of assertions that can be explained and the number of assertions that need to be
hypothesised.

There also exist ontology-based approaches that focus more on formalising the
transition from low-level descriptors to domain concepts include [16, 21] and [34].
Ontology languages are used to represent both domain specific concepts and visual
features such colour, texture and shape, and to link them in a formal fashion.
Although such approaches can be very useful for purposes of sharing and reusing
knowledge regarding low and high level relations, the reasoning supported with
respect to logical relations among the high-level concepts is not addressed. This is not
a matter of the limited datatype support currently provided by ontology languages,
but in principle because of the non logical nature of the problem at hand, i.e. the
estimation of distance between a given data structure that constitutes a feature model
and the measurable feature values.

Indicative works addressing probabilistic information include the following. In
[31], a probabilistic approach is suggested as a possible solution to the handling of the
ambiguity introduced during the analysis stage; however, no description of relevant
experimentation or evaluation is provided. Other works that address probabilistic
knowledge include Markov logic networks [37], where first order logic is combined
with graphical probabilistic models into a uniform representation; although tested
on knowledge about the university domain, the experiences drawn are applicable to
information extractions tasks such as image interpretation too. In [29], a Bayesian ap-
proach is proposed in order to model and integrate probabilistic dependencies among
aggregates connected by hierarchical relations, within a DLs scene interpretation



Multimed Tools Appl (2010) 49:167–194 173

framework; however, no evaluation results are available as implementation is still
under way. In [10], a probabilistic framework for robotic applications is presented
that tackles uncertainty issuing from noisy sensor data and missing information,
employing relational hidden Markov models for the purpose of spatio-temporal
reasoning.

We stress out again the discrimination between the probabilistic and the fuzzy
perspective, as this is critical for the motivation and grounding of the reasoning
approach proposed in this paper. A probability of 0.5 regarding a positive sea
classification denotes our ignorance with respect to its presence or not; it does not
imply anything about how blue the sea may be. A degree of 0.5 on the other hand,
denotes how close the colour of this sea region is with respect to the specific colour
attached to the notion of sea in the given context. For further reading on the two
perspectives the reader is referred to [9]. Consequently, approaches such as the
aforementioned ones that address probabilistic knowledge are in fact complementary
to the aspects considered in this paper.

Finally, there are works utilising fuzzy DLs, and in this sense closer to the
proposed fuzzy DLs based framework. Specifically, fuzzy DLs have been proposed in
[52] for the purpose of semantic multimedia retrieval; the fuzzy annotations however
are assumed to be available. In the context of semantic analysis, fuzzy DLs have
been only recently explored in [39], where fuzzy DLs are used for inferring semantic
concepts based on part-of relations and merging of the respective image regions, and
in [24] for document classification; none of the approaches however addresses the
possibility of inconsistency in the initially extracted descriptions.

Given the aforementioned, the contribution of the fuzzy DLs based reasoning
framework presented in this paper can be summarised in the following.

– The uncertainty, in the form of vagueness, which characterises learning-based
extracted descriptions is formally handled and intergraded in the process of
image interpretation. Thus, the valuable information encompassed in the ex-
tracted degrees can be utilised for computing and ranking the different plausible
interpretations.

– The inconsistencies, explicit or implicit, which issued from conflicting descrip-
tions are identified and resolved, contrary to the assumption taken by relevant
works regarding consistent initial classifications.

3 Fuzzy DLs

Description Logics (DLs) [2] is a family of knowledge representation formalisms
characterised by logically grounded semantics and well-defined inference services.
Starting from the basic notions of atomic concepts and atomic roles, arbitrary
complex concepts can be described through the application of constructors (e.g., ¬,
�, ∀). Terminological axioms (TBox) allow to capture equivalence and subsumption
semantics between concepts and relations, while real world entities are modelled
through concept (a : C) and role (R(a, b)) assertions (ABox). The semantics of DLs
is formally defined through an interpretation I. An interpretation consists of an
non-empty set �I (the domain of interpretation) and an interpretation function .I ,
which assigns to every atomic concept A a set AI ⊆ �I and to every atomic role
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Table 1 Fuzzy interpretation
of DL constructors under
Zadeh semantics [47]

� I = 1
⊥ I = 0
(¬ C)I = 1-CI(d)

(C � D)I = min{CI(d),DI(d)}
(C 	 D)I = max{CI(d),DI(d)}
(∀ R.C)I = infd′ ∈�É max{1 − RI(d, d

′
), CI(d

′
)}

(∃ R.C)I = supd′ ∈�É min{RI(d, d
′
), CI(d

′
)}

R a binary relation RI ⊆ �I × �I . The interpretation of complex concepts follows
inductively [2].

In addition to the means for representing knowledge about concepts and asser-
tions, DLs come with a powerful set of inference services that make explicit the
knowledge implicit in the TBox and ABox. Satisfiability, subsumption, equivalence
and disjointness constitute the core TBox inferences. Satisfiability allows to check
for concepts that correspond to the empty set, subsumption and equivalence check
whether a concept is more specific or respectively identical to another, while disjoint-
ness refers to concepts whose conjunction is the empty set. Regarding the ABox,
the main inferences are consistency checking, which assesses whether there exists a
model that satisfies the given knowledge base, and entailment, which checks whether
an assertion ensues from a given knowledge base.

Fuzzy DLs consider the extension of DL languages with fuzzy set theory [18, 53].
More specifically, in the case of a fuzzy DL language, a TBox is defined as a finite set
of fuzzy concept inclusion and equality axioms, while the ABox consists a finite set
of fuzzy assertions. A fuzzy assertion [48] is of the form a : C � n and (a, b) : R � n,
where � stands for ≥, >, ≤, and <.2 Assertions defined by > and ≥ are called positive
assertions, while assertions defined by > and ≤ are called negative.

A fuzzy set C ⊆ D is defined by its membership function (μC), which given an
object of the universe D returns the membership degree of that object with respect
to the set C. By using membership functions, the notion of the interpretation function
is extended to that of a fuzzy interpretation function. In accordance to the crisp DLs
case, the fuzzy interpretation function is a pair I = (�I, .I) where �I is a non-empty
set of objects called the domain of interpretation, and .I is a fuzzy, this time, interpre-
tation function which maps: an individual a to an element aI ∈ �I , i.e., as in the crisp
case, a concept name A to a membership function AI : �I → [0, 1], and a role name
R to a membership function RI : �I × �I → [0, 1] [48, 49]. Several fuzzy operators
exist in the literature that implement the functions (t-norms, co-norms, negation and
implication) which extend the classical Boolean conjunction, disjunction, negation
and implication to the fuzzy case. Table 1 shows the corresponding semantics for
the language f-SHIN under Zadeh logic. The reasoning services definitions are
adapted analogously. For example, concept satisfiability requires the existence of an
interpretation under which there will be an individual belonging to this concept with
a degree n ∈ (0, 1].

Two main efforts exist currently that address formally both the semantics and the
corresponding reasoning algorithms. In [45–47], the DL language SHIN has been

2Intuitively a fuzzy assertion of the form a : C ≥ n means that the membership degree of the
individual a to the concept C is at least equal to n.
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extended according to fuzzy set theory leading to the so called f-SHIN. The fuzzy
extensions address the assertion of individuals and the extension of the language
semantics. In [50], a fuzzy extension of SHOIN(D) is presented, which constitutes a
continuation of earlier works of the authors on extending ALC, SHIF, and SHIF(D)
to fuzzy versions [48, 49]. In addition to extending the SHOIN(D) semantics to
f-SHOIN(D), the authors present a set of interesting features: concrete domains as
fuzzy sets, fuzzy modifiers such as very and slightly, and fuzziness in entailment and
subsumption relations.

In addition to the theoretic foundations for the fuzzy extensions, the correspond-
ing reasoning algorithms have been presented and implemented, namely the Fuzzy
Reasoning Engine3 (FiRE) and the fuzzyDL4 engine. FiRE [39] supports querying an
f-SHIN knowledge base for satisfiability, consistency, subsumption, and entailment
under Zadeh’s semantics; general concept inclusions, roles and datatype support are
among the planned future extensions; fuzzyDL [6] supports fuzzy SHIF semantics
extended by the aforementioned features. It supports the Łukasiewicz’s and Gödel’s
t-norms, t-conorms and fuzzy implications, as well as the Kleene-Dienes implication.

As already implied by the examples presented in Section 2, fuzzy DLs can be
straightforwardly used to manage the output of classifiers with respect to background
domain knowledge. Using the available constructors and corresponding inclusion
and equality axioms, one can construct the terminological knowledge (TBox)
that captures the semantics of the examined application domain. The assertional
knowledge (ABox) that includes the fuzzy assertions corresponds to the analysis
extracted descriptions. Typical DL inference services can be used afterwards to check
whether the extracted descriptions violate the logical model of the domain leading
to an inconsistency, or to compute the concepts to which a certain image instance
belongs to.

However, in order to address the issues described in Section 2, namely the
determination of the more plausible scene level description, the subsequent removal
of incoherent descriptions and further enrichment of the overall interpretation, a
reasoning framework coordinating the evoked DL inferences is needed. Towards
this end, handling inconsistency constitutes a central requirement. As illustrated in
Section 2, such inconsistency may refer to assertions at the same level of granularity,
between scene level descriptions, or between object level description, or to assertions
pertaining to different levels. Handling inconsistencies in DLs knowledge bases
usually refers to approaches targeting revision of the terminological axioms [13, 17].
In the examined problem however, the inconsistencies result from the limitations
in associating semantics with visual features. Thus it is the ABox that needs to
be appropriately managed. The adopted methodology is described in the following
section, where the proposed fuzzy DLs based reasoning framework is detailed.

4 A fuzzy DL-based reasoning framework for enhancing semantic analysis

Figure 2 depicts the architecture of the proposed fuzzy DLs-based reasoning frame-
work. The input consists of a set of scene and object level assertions representing the

3http://www.image.ece.ntua.gr/∼nsimou
4http://faure.isti.cnr.it/∼straccia/software/fuzzyDL/fuzzyDL.html

http://www.image.ece.ntua.gr/~nsimou
http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html


176 Multimed Tools Appl (2010) 49:167–194

Scene & Object
Level Classification

Domain Knowledge

Final Assertions

Initial Assertions

Fuzzy DLs-Based
Reasoning

Scene Level Interpretation

Inconsistency handling   

Enrichment            

Fig. 2 Architecture of the proposed fuzzy DLs based reasoning framework

descriptions extracted through the application of learning-based analysis techniques.
No assumptions are made with respect to the particular implementation followed.
The interpretation of the initial assertions integrates them into a consistent semantic
image interpretation, and entails three steps. First, the more plausible scene level
descriptions are determined, by utilising the subsumption relations among the con-
sidered scene level concepts. Next, the inconsistencies in the initial descriptions with
respect to the previously computed scene level interpretation are resolved, resulting
in a ranked list of plausible interpretations. Finally, the highest ranked interpretation
is passed to the last step, where by means of logical entailment the inferred assertions
are made explicit.

The first two steps constitute a special case of knowledge integration, in which
only assertions, but no axioms, are allowed to be removed. The reason for this, as
also discussed in Section 5, lies in the fact that the axioms address domain-specific
yet generic knowledge, rather than conceptualisations customised to specific traits
of the examined dataset. As knowledge integration and inconsistency resolving for
DLs ontologies have been extensively treated in the literature [5, 12], the approach
followed within the proposed reasoning framework builds on existing results by
appropriately adjusting them in order to meet the peculiarities introduced within
the examined application context. In the sequel, the details of the individual tasks
are given.

4.1 Scene level interpretation

The possible logical associations between concepts at the object level and concepts
at the scene level entail that all assertions need to be taken into account in order to
infer the degrees of confidence pertaining to scene level descriptions. To accomplish
this, all disjointness axioms are removed. Thereby, we allow for the exploitation of
all interrelations implicit in the initial descriptions. The next step consists in the
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bottom-up traversal of the scene level concept hierarchy for the purpose of deter-
mining the more plausible scene descriptions.

More specifically, at each level of the hierarchy, we check whether the concepts for
which (told or inferred) assertions exist are disjoint. In the presence of disjointness,
the assertion with the highest degree of confidence is preserved as more plausible,
while the rest are marked as inconsistent. Once the examination at a given level is
completed, consistency is examined between the set of currently selected assertions
SAi and those computed at previous hierarchy level SAi−1. If an assertion a of
SAi−1 contradicts the assertions belonging in SAi, then a is marked as inconsistent.
The process is repeated until the root of the hierarchy is reached and results in
discriminating the scene level concept assertions into two sets, namely the set of
scene descriptions comprising the more plausible interpretation, and the set of scene
descriptions marked as inconsistent. Table 2 summarises the described procedure,
where S denotes the list of scene level concepts and A the complete list of assertions
extracted by means of analysis.

The reason for prioritising scene level assertions over object level ones lies in the
different nature of the semantics involved. Scene level concepts and, to be more
precise, sub-trees in the scene level concept hierarchy, comprise mutually excluding
sub-domains. Contrariwise, multiple configurations of assertions at object level may
be consistent to a specific sub-domain. To illustrate this in a more intuitive manner,
consider an image for which the extracted descriptions are: (im : ∃contains.Sea) ≥
0.67, (im : ∃contains.Sand) ≥ 0.74 and (im : Rockyside ≥ 0.85), and assume a TBox
consisting of the axioms Beach ≡ (∃contains.Sea) � (∃contains.Sand) and Beach �
Rockyside � ⊥. Both interpretations pertaining to the Rockyside sub-domain, i.e.
{ (im :∃contains.Sea) ≥ 0.67, (im : Rockyside ≥ 0.85) }, and { (im : ∃contains.Sand) ≥
0.74), (im : Rockyside ≥ 0.85) } rank higher than the one pertaining to beach
sub-domain, i.e. { (im : ∃contains.Sea) ≥ 0.67, (im : ∃contains.Sand) ≥ 0.74, (im :
Beach ≥ 0.67) }, in terms of plausibility as captured by the corresponding degrees.

Table 2 Scene level interpretation

Scene level interpretation algorithm

Input: scene level concepts hierarchy HSC , input assertions A (scene and object level)
Output: glb for the path of scene level concept hierarchy with highest confidence

1: populate scene concept hierarchy (compute inferred degrees)
2: for all hierarchy levels Li starting from the most specific
3: for all scene level concepts SCij ∈ Li

4: if (disjoint SCik SCil ... ){
5: add assertion SCij with dij = max{dik, dil , ...} to scene interpretation list
6: move remaining SCik, k�=j, assertions to inconsistent scene concept list
7: }
8: if Li different than lower hierarchy level{
9: if SCij ∈ Li is disjoint to SC(i−1) j ∈ Li−1

10: move SC(i−1) j and its subsumes to inconsistent scene concept list
11: if SCij ∈ Li subsumes SC(i−1) j ∈ Li−1

12: if dij < d(i−1) j

13: dij := d(i−1) j

14: }
15: return scene interpretation list
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4.2 Inconsistency handling

Having computed the most plausible scene level interpretation, the next step is
to resolve the possible inconsistencies. In the current implementation, the regions
depicting an object level concept are represented implicitly through statements of
the form (im : ∃contains.Concepti) ≥ ni, and thus inconsistencies may arise either
among scene level assertions or between scene and object level assertions. The first
step towards the identification of inconsistencies is to restore the disjointness axioms
that were removed during the scene interpretation task. In order to avoid halting the
reasoner, the disjointness axioms are rewritten with respect to the scene level con-
cepts selected at the previous step in the form of subsumption relations to respective
no-concepts. Practically, given a set of selected scene level concepts {Si, S j, ..}, each
axiom of the form Ck � S j � ⊥ is translated into Ck � noS j. Furthermore, for all
noS j concepts we introduce an axiom of the form noS j � NoConcept. Consequently,
resolving the possible inconsistencies amounts to tracking the assertions that led to
the inference of NoConcept instances.

First, we address inconsistencies incurred directly by told descriptions. This trans-
lates into checking whether there exist asserted individuals that refer to Ck concepts
participating in the introduced Ck � noS j axioms. The handling of such assertions
is rather straightforward and results in their immediate removal. Clearly, addressing
asserted individuals first, prunes the search space during the subsequent tracking of
the inferences that lead to an inconsistency.

Next, we consider assertions referring to complex object- and scene-level con-
cepts. Again we start with object-level concepts in order to account for cases of
conflicts at the scene level that are triggered through inference upon object level
assertions. Contrary to the previous case, we now need to analyse the involved
axioms in order to track the asserted descriptions that cause the inconsistency.
Furthermore, these axioms determine which of the descriptions should be removed
so as to reach a consistent interpretation. To accomplish this, we build on relevant
works presented for resolving unsatisfiable DL ontologies [19], and employ a re-
versed tableaux expansion procedure. We note that the main difference with respect
to the relevant literature is that, in our application framework, we consider solely
the removal of assertions, rather than the removal or weakening of terminological
axioms. Table 3 summarises the procedure for handling inconsistencies while Table 4
summarises the expansion rules.

The expansion procedure starts having as root node the (im : NoConcept ≥ di}
assertion, where di is the computed inferred degree, and continues until no expansion
rule can be applied. As illustrated, in the case of inconsistencies caused by axioms
involving the conjunction of concepts, there is more than one way to resolve the
inconsistency and reach a consistent interpretation. Specifically, there are many
alternative interpretations as the number of all possible disjunctions of size k =
1, .., N, where N is the number of conjuncts. In order to choose among them, we rank
the set of solutions according to the number of assertions that need to be removed
and the average value of the respective degrees.

We note that since all role assertions referring to the role contains are assumed
to hold with a degree ≥ 1.0, and the regions that depict object level concepts are not
explicitly represented, expansion rules are required only for the case of the � and
	 constructors. Consequently, in the case of a domain TBox that utilises additional
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Table 3 Inconsistency handling

Inconsistency tracking and resolution algorithm

Input: scene interpretation list SL, input assertions A (scene and object level), domain TBox T
Output: ranked alternative interpretations

1: for all scene level concepts SCi ∈ SL
2: if C j � SCi � ⊥ ∈ T
3: add C j � noSCi in T and C j to disjoint list
4: for all noSCi ∈ T
5: add noSCi � noConcept in T
6: for all C j for which C j � SCi � ⊥ ∈ T
7: remove told assertions
8: while (T,A) |= im : NoConcept {
9: apply expansion rules (Table 4)
10: resolve inconsistencies arising from disjoint object concepts
11: resolve inconsistencies arising from disjoint scene concepts
12: }
13: compute number of assertions removed and average their degrees
14: return ranked list of alternative consistent interpretations

constructors or when fuzzy role assertions are also considered, the expansion rules
would have to be appropriately extended.

4.3 Enrichment

The final step considers the enrichment of the descriptions by means of entailment
and is the most straightforward of the three tasks, as it amounts to typical fuzzy DLs
reasoning. Once the scene level concepts are selected, and the assertions causing
inconsistencies (either directly or through complex definitions), are resolved, we
end up with a semantically consistent set of assertions, whose communication to the
fuzzy DLs reasoning engine results in the determination of the final semantic image
description. To render the inferred descriptions explicit, corresponding queries
are formulated and the responses constitute the final outcome of the proposed
framework.

Figure 3 shows an example application of the proposed reasoning framework.
As illustrated, the applied concept detectors assess the image as both a Rockyside
and Seaside scene. The respective object level descriptions include the concepts

Table 4 Expansion rules for
computing the alternative sets
of consistent assertions

�-rule if (a : C1 � C2) ∈ L(x)
then L(y)=L(x)\ {(a : C1)} and

L(z)=L(x)\{(a : C2)} and
L(w)=L(x)\{(a : C1 � C2)}

	-rule if (a : C1 	 C2) ∈ L(x)
then L(x)=L(x)\{(a : C1 	 C2)}

where Ci −→ A | C � D | ∃R.D
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Inconsistency
handling

Final Assertions
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Outdoor = 0.86 

Seaside = 0.64 
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Fig. 3 Example application of the proposed fuzzy DLs based reasoning framework

Sky, Sea and Sand. Removing the disjointness axioms from the TBox, we obtain
the inferred assertions for the concepts Beach, Landscape and Outdoor, where the
inferred assertions are grouped with respect to the asserted ones that triggered their
inference. The left bottom part of Fig. 3 depicts the scene level concept hierar-
chy that corresponds to the depicted domain TBox extract, as well as the inferred
degrees.

Following the afore described procedure, we start from the lowest level of
the hierarchy and add the Beach concept assertion to the list of plausible scene
descriptions. Moving to the next level, there are assertions referring to the Rockyside
and Seaside concepts. Since the two concepts are disjoint, we select the assertion with
the highest degree, namely the one referring to the Rockyside concept, and add it to
the list of plausible scene descriptions. Checking against the previous level, it is the
case that Rockyside and Beach are disjoint. Thus, the Beach assertion is removed
from the list of plausible descriptions and marked as inconsistent. At the next step,
the top level of the hierarchy is reached, which causes the addition of the Outdoor
concept assertion in the scene interpretation.

Hence, upon the completion of the scene level interpretation step, the scene
level concept hierarchy has been populated, and the sub-tree with the highest
degrees is identified, which in our example amounts to the concepts Rockyside
and Outdoor. The inconsistency handling step that follows results in removing the
told descriptions referring to the Sand and Seaside concepts, and thereby the Sea
and Beach descriptions are also removed. For instance, in the case of the Beach ≡
Seaside � ∃contains.Sand axiom presented in the example of Fig. 3, there are three
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alternatives that lead to a consistent interpretation, obtained by removing either the
Seaside assertion, or the ∃contains.Sand assertion, or both. In the example of Fig. 3,
enrichment amounts to the addition of the (image:Outdoor)≥0.86 assertion, and to
the update of the (image:∃.contains.Rock) assertion degree to 0.78 from the initial
value of 0.67.

5 Experimental results and evaluation

To evaluate the feasibility and potential of the proposed fuzzy DLs based reasoning
framework, we carried out an experimental implementation, using fuzzyDL as the
core fuzzy DLs inference engine. The specific reasoner was chosen as it meets the
expressivity requirements of the representation.

Opting for a generic performance assessment, we experimented in the domain of
outdoor images, as it allows for rich semantics and it is sufficiently broad to avoid
hard to generalise observations typical of close domains such as medical imaging.
The data set we considered includes images of forests, beaches, seaside landscapes,
mountain sceneries, roadside scenes, countryside buildings, and urban scenes. An
extract of the TBox developed to capture the underlying semantics is illustrated
in Table 5. The 700 images that constitute the data set, were divided into two non
overlapping sets of 350 images each for training and testing purposes. The ground
truth has been manually generated for the complete dataset at scene and object level.

Utilising the developed TBox, performance is estimated by comparing the reli-
ability of the image descriptions extracted through machine learning to that of the
descriptions resulting after the application of the proposed reasoning framework. To

Table 5 Example extract of
the outdoor image domain
TBox constructed for
evaluation purposes

Countryside_buildings � Landscape
∃contains.Buildings � Countryside_buildings
Countryside_buildings � ∃contains.Buildings
Grass 	 Tree � Vegetation
Rockyside � Mountainous
Rockyside � ∃contains.Rock
Forest � ∃contains.Tree
∃contains.Vegetation � Landscape
Roadside � ∃contains.Road
Roadside � Landscape
Forest � Landscape
∃contains.Sea ≡ Seaside
Beach ≡ Seaside � ∃contains.Sand
∃contains.Sky � Outdoor
Landscape � Outdoor
Trunk � Tree
Forest � (Roadside 	 Countryside_buildings) � ⊥
Roadside � Countryside_buildings � ⊥
Rockyside � Seaside � ⊥
Forest � (Wave 	 Sea 	 Sand 	 Road) � ⊥
Rockyside � (Wave 	 Sea 	 Sand 	 Boat) � ⊥
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Table 6 Description of scene
level concepts for the
considered outdoor
images dataset

Natural : Outdoor images of natural scenes, including
: landscape, mountainous, and seaside ones

Landscape : Roadside, rural buildings and forest scenes
Mountainous : Mountain and rockyside scenes
Seaside : Coastal and beach scenes
ManMade : Outdoor images of manmade scenes
Cityscape : Urban scenes

this end, we adopted the precision, recall, and F-measure metrics, using the following
definitions.

– recall (r): the number of correct assertions extracted/inferred per concept divided
by the number of the given concept assertions present in the ground truth image
descriptions.

– precision (p): the number of correct assertions extracted/inferred per concept
divided by the number of assertions that were extracted/inferred for the given
concept.

– F-measure: 2 ∗ p ∗ r/(p + r).

Two experiments were designed to evaluate the performance of the proposed rea-
soning framework in the presence of weak and rich semantics. In the first experiment
the employed concept classifiers are rather poorly related, in terms of both scene
and object level concepts; in the second experiment, the employed classifiers address
concepts whose interrelations go beyond simple subsumption axioms, hence allowing
for more complex inferences. Furthermore, we present initial results with respect the
use of fuzzy implication as the meas to model co-occurrence information.

5.1 Experiment I

In the first experiment, the sets of scene (Cscene) and object (Cob ject) level concepts
addressed by the classifiers are Cscene ={Outdoor, Natural, ManMade, Landscape,
Mountainous, Beach} and Cob ject ={Building, Grass, Vegetation, Rock, Tree, Sea,
Sand, Conifers, Boat, Road, Ground, Sky, Trunk, Person}. Table 6 provides the
definition of the scene level concepts of the outdoor images considered.

Beach Mountainous Landscape Cityscape

Fig. 4 Experiment I—Example images of the concepts addressed by the learned scene level
classifiers
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Table 7 Experiment I—evaluation of analysis and reasoning performance for scene level concepts,
and concept distribution in the dataset

Concept Ground Truth (%) Analysis Reasoning

Train Test Recall Precision F-M Recall Precision F-M

Outdoor 100.00 100.00 0.99 0.99 0.99 0.99 0.99 0.99
Natural 91.51 93.70 0.97 0.96 0.97 0.98 0.96 0.97
ManMade 8.49 6.30 0.18 0.40 0.25 0.18 0.40 0.25
Cityscape 8.49 6.30 0.18 0.40 0.25 0.18 0.40 0.25
Landscape 55.12 55.84 0.75 0.63 0.68 0.76 0.68 0.71
Mountainous 18.15 11.88 0.64 0.28 0.39 0.48 0.30 0.37
Beach 10.26 8.52 0.89 0.26 0.40 0.90 0.31 0.47
Seaside 18.24 18.98 – – – 0.86 0.49 0.63

Figure 4 shows example images of these scene level concepts. As described in
Table 6, the concept Natural encompasses images belonging to the Landscape,
Beach and Mountainous scenes, while the concept ManMade encompasses cityscape
images. The only additional concept supported by reasoning is Seaside, which repre-
sents coastal images that do not necessarily correspond to beach images. Statistical
information regarding the frequency distribution of each concept in the train and
test datasets is given in Tables 7 and 8. Since the employed object concept classifiers
perform at the segment level, the distribution of object level concepts is given with
respect to the overall number of segments.

Different implementations have been used for the employed classifiers, allowing
for overlapping descriptions. Specifically, for scene level classification, the SVM-
based approach of [20] and the randomised clustering trees approach of [23] have
been used. For segment level (object) classification, the distance based feature
matching approach based on prototypical values of [34], and the clustering trees
approach of [23] have been followed.

Table 8 Experiment I—evaluation of analysis and reasoning performance for object level concepts,
and concept distribution in the dataset

Concept Ground Truth (%) Analysis Reasoning

Train Test Recall Precision F-M Recall Precision F-M

Building 4.12 4.39 0.35 0.17 0.22 0.09 0.83 0.17
Grass 6.73 9.85 1.54 0.40 0.10 0.01 0.94 0.05
Vegetation 9.09 16.67 0.99 0.70 0.82 0.90 0.80 0.85
Rock 4.54 4.47 0.98 0.21 0.35 0.54 0.42 0.47
Tree 3.78 10.08 0.22 0.65 0.33 0.18 0.58 0.27
Sand 2.27 2.19 0.49 0.37 0.42 0.92 0.41 0.56
Sea 4.29 4.32 0.72 0.46 0.56 0.88 0.49 0.63
Conifers 1.01 0.90 1.00 0.01 0.02 0.50 0.02 0.03
Mountain 0.59 0.53 0.14 0.01 0.01 0.43 0.04 0.06
Boat 0.50 1.21 0.10 0.40 0.16 0.10 0.50 0.17
Road 4.04 4.32 0.15 0.50 0.23 0.02 0.25 0.03
Ground 27.27 4.39 0.06 0.57 0.19 0.11 0.57 0.19
Sky 19.02 18.04 0.93 0.87 0.89 0.93 0.87 0.89
Trunk 1.76 3.56 0.38 0.65 0.48 0.38 0.65 0.48
Person 8.67 11.97 0.49 0.54 0.52 0.49 0.54 0.52
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Tables 7 and 8 present the attained performance with respect to scene and object
level concepts, when applying solely the learned classifiers and when using the
proposed reasoning framework.

As illustrated, in the case of scene level concepts, the utilisation of reasoning
mostly matches the performance of the classifiers, while in some cases it intro-
duces a slight improvement. This behaviour is a direct result of the loose semantic
relations between the employed scene and object level classifiers. Going through
the corresponding TBox (Table 5), ones notices that the scene level concepts are
in their majority atomic, participating in subsumption axioms with one another.
Hence, additional inferences can issue only from relations involving object level
concepts. For the considered set of concept classifiers, though, the only type of
association between scene level concepts and object level concepts is disjointness.
As a result, object level assertions cannot have an effect on the plausibility of scene
level assertions.

To acquire a quantitative measure of the effect of reasoning in such a case, we
interpreted the response of the scene classifiers according to the respective scene
concept semantics. For example, if an image was classified as Landscape, it was
interpreted also as positive classification for the concepts Natural and Outdoor as
well. Thus, as long as a correct classification is attained at some level of the scene
concept hierarchy, it is propagated towards the more generic concepts. Following this
scheme we can observe how the application of reasoning compares to this “optimal”
scene classification interpretation, which includes subsumption relations. However,
we note that this optimistic perspective taken with respect to the acquired scene
classifications, does not reflect the actual behaviour of the classifiers, nor the general
case, as it is not uncommon to acquire positive classification results for semantically
disjoint concepts or to get negative responses for concepts that are subsumed by
concepts for which the classification was positive.

Examining the performance with respect to the object level concepts, the effects
induced through reasoning are more interesting. As illustrated in Table 8, four
patterns can be observed: i) cases where only the precision is improved, ii) cases
where only the recall is improved, iii) cases where both precision and recall improve,
and iv) cases where the performance remains unchanged with the application of
reasoning. As explained in the following, each pattern derives from the type of
axioms in which the respective concept participates.

Improvement on precision, as in the case of the Boat concept, relates strongly
to the utilisation of disjointness, since through the presented inconsistency handling
approach, it is ensured that the final assertions comply with the scene level inter-
pretation. Naturally, this harbours the risk of ending up with significantly distorted
final descriptions in the case of false scene level interpretations. The performance
deterioration with the respect to the concept Road constitutes an example of this,
as in this case the majority of images depicting road were attributed with greater
confidence to the Seaside or Forest. However, when considering such cases one needs
to bear in mind not the interpretation desired based on visual inspection of the image,
but rather the interpretation appearing more plausible on the grounds of the initial
descriptions provided by the classifiers.

Figure 5 illustrates such an example. The two most plausible scene level descrip-
tions are misleading, while the detected object level concepts, though accurate, are
not adequate to drive the inference of the corresponding scene concept. Additional
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Fig. 5 Example image and corresponding extracted descriptions where additional knowledge is
needed to perform inference

knowledge, such as co-occurrence of concepts could be exploited to assist and either
re-adjust the degrees or trigger an inference. This limitation constitutes one of the
reasons motivating, as future direction of research, the exploration of a reasoning
framework that combines fuzzy and probabilistic knowledge. Some very preliminary
investigations towards this directions are described in the following, where the
modelling of co-occurrence information in the form of fuzzy implication is discussed.

Object level concepts exhibiting improved recall rates, such as Building, Sand
and Grass, correspond to concepts that appear on the righthand side of axioms. In
practise, such concepts may be entailed either by scene level concepts, such is the
case for Building and Sand, or by other object level concepts, such as in the case of
Tree. Respectively, concepts whose recall is reduced reflect cases of wrongly inferred
scene level concepts that resulted in their removal due to disjointness axioms.

Cases where both precision and recall are improved correspond to concepts
appearing on the righthand side of general inclusion axioms, when the correct scene
level concepts have been inferred. Such concepts are characterised by rich semantics
and apparently benefit the most from the application of reasoning. Invariable perfor-
mance indicates atomic concepts participating solely on the left hand side of axioms
(e.g. the Trunk and Person concepts).

Table 9 summarises the average performance of the classifiers and of the proposed
reasoning framework for the experiment. The first line presents the performance
when all concepts are taken into account, while the second line presents the perfor-
mance when only concepts that participate in axioms are considered. As illustrated,
the application of reasoning bears a positive impact in terms of the precision, which

Table 9 Overall evaluation for Experiment I

Concept Analysis Reasoning

Recall Precision F-M Recall Precision F-M

All concepts 0.68 0.49 0.57 0.68 0.63 0.65
Concepts participating 0.70 0.49 0.58 0.70 0.64 0.67

in axioms
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Table 10 Experiment II—Evaluation of analysis and reasoning performance for scene level con-
cepts, and concept distribution in the dataset

Concept Ground Truth (%) Analysis Reasoning

Train Test Recall Precision F-M Recall Precision F-M

Countryside_buildings 16.42 16.05 0.30 1.0 0.46 0.60 0.86 0.71
Rockyside 17.15 17.88 0.68 0.70 0.69 0.68 0.79 0.74
Roadside 18.97 19.34 0.68 0.69 0.69 0.68 0.72 0.70
Forest 19.73 20.45 0.75 0.63 0.69 0.74 0.68 0.71
Seaside 18.24 18.98 0.85 0.67 0.75 0.86 0.72 0.78
Beach 10.26 8.52 – – – 0.45 0.76 0.57
Landscape 55.12 55.84 – – – 0.97 1.00 0.98
Mountainous 18.15 18.88 – – – 0.67 0.80 0.74
Outdoor 100.00 100.00 – – – 0.99 1.00 0.99

is increased from 0.49 to 0.63. Recall remains unchanged for the reasons explained
above.

5.2 Experiment II

In the second experiment, the sets of scene (Cscene) and object (Cob ject) level concepts
addressed by the learned classifiers are respectively Cscene ={Countryside_Buildings,
Roadside, Rockyside, Seaside, Forest} and Cob ject ={Building, Roof, Grass, Veg-
etation, Dried-Plant, Sky, Rock, Tree, Sea, Sand, Boat, Road, Ground, Person,
Trunk, Wave}. The additional concepts supported by reasoning are Landscape,
Mountainous, Beach, and Outdoor. Landscape is subsumed by Forest, Roadside
and Countryside_buildings, while Mountainous is subsumed by Rockyside. Statistical
information regarding the frequency distribution of each concept in the train and test
datasets is given in Tables 10 and 11. This time, a single classifier has been employed
per concept, following the SVM based approach of [33] (Fig. 6).

Table 11 Experiment II—Evaluation of analysis and reasoning performance for object level con-
cepts, and concept distribution in the dataset

Concept Ground truth (%) Analysis Reasoning

Train Test Recall Precision F-M Recall Precision F-M

Building 4.12 4.39 0.54 0.69 0.60 0.62 0.86 0.72
Roof 1.54 1.89 0.33 0.54 0.41 0.33 0.75 0.46
Grass 6.73 9.85 0.49 0.42 0.45 0.30 0.52 0.38
Vegetation 9.09 16.67 0.48 0.84 0.61 0.86 0.86 0.86
Dried-Plant 0.01 0.04 0.07 0.11 0.08 0.07 0.13 0.10
Rock 4.54 4.47 0.65 0.45 0.53 0.69 0.70 0.69
Tree 3.78 10.08 0.49 0.52 0.51 0.56 0.47 0.51
Sand 2.27 2.19 0.02 0.10 0.03 0.57 0.45 0.50
Sea 4.29 4.32 69 0.60 0.64 0.85 0.69 0.76
Boat 0.50 1.21 0.41 0.71 0.52 0.33 0.66 0.44
Road 4.04 4.32 0.50 0.69 0.58 0.69 0.71 0.70
Sky 19.02 18.04 0.95 0.93 0.94 0.95 0.93 0.94
Ground 27.27 4.39 0.26 0.33 0.29 0.26 0.33 0.29
Person 8.67 11.97 0.75 0.51 0.61 0.75 0.51 0.61
Trunk 1.76 3.56 0.26 0.28 0.27 0.26 0.28 0.27
Wave 0.75 1.14 0.0.25 0.5 0.33 0.25 0.5 0.33
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Seaside Rockyside Roadside Countryside Forest
buildings

Fig. 6 Experiment II—Example images of the concepts addressed by the learned scene level
classifiers

Table 10 compares the performance of the classifiers and of the proposed rea-
soning framework with respect to scene level concepts. Contrary to the previous
experiment, only explicitly generated classifications are considered. As illustrated,
apart from the expected improvement in terms of scene level concepts that are
acquired due to subsumption relations, the application of reasoning shows a more
noticeable effect compared to the first experiment. The reasons for this behaviour
lie again in the semantics of the concepts involved. Specifically, in this experimental
setting, the object level concepts addressed by the classifiers are semantically related
with scene level ones not only through disjointness axioms but also by general
concept inclusions, thus incurring the inference of scene level concepts from object
level ones. For example, the presence of a Building assertion triggers the inference
of a corresponding Countryside_buildings assertion, with an equal or greater degree
of confidence. Hence, in combination with the axioms that relate the concepts
Vegetation and Grass with Landscape scenes, the application of reasoning allows to
improve the recall for Countryside_buildings.

Table 11 compares the performance for descriptions at the object level. With the
exception of the Boat and Grass concepts, the application of reasoning improves
significantly on the performance obtained by the sole application of the classifiers.
Again, this is a direct consequence of the fact that the considered object level
concepts are characterised by richer semantics with respect to the scene level
concepts that constitute their context of appearance. The deterioration in the recall
rates of the Boat and Grass concepts is again indicative of the risks entailed by a false
scene level interpretation. Going through the images for which Boat assertions where
falsely removed, we observed that the prevailing scene level classifications were not
in compliance with the depicted scene. Similar observations hold for the concept
Grass. A possible way to alleviate such phenomena, apart from the investigation
of additional types of knowledge, could be the re-assessment of the terminological
axioms describing the domain. However, in such approach lurks the risk of ending
up with solutions customisable to a specific learning implementations or to specific
application domains and datasets.

Similar considerations emerge when examining the not so noticeable effect of
reasoning in the recall of scene level concepts such as Rockyside. Going through the
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images depicting rocky side scenes, but not recognised as such, we observed that in
all cases the classifiers had falsely detected another scene level concept instead; and
this, despite the fact that the instantiations of the Rock concept were successfully
detected generally. Adding the axiom ∃contains.Rock � Rockyside, would seem a
reasonable approach to improve recall for the Rockyside concept, especially since
in the examined dataset, the Seaside classifier tends to produce higher confidence
values than the Rockyside one for seaside images, where rock instance appear too.
However, it is easy to see that such an amendment would imbalance the trade
off between what constitutes domain semantics and what is mere tuning to the
peculiarities of a given dataset.

Finally, Table 12 summarises the average performance. As illustrated, the applica-
tion of reasoning has a stronger influence compared to the first experiment, reflected
on both recall and precision, which are significantly improved.

5.3 Investigating reasoning with additional knowledge

The previously described experimental configurations allowed us to assess the per-
formance of the proposed reasoning framework, and provided useful experiences
with respect to the issues and challenges involved. The lessons drawn could be
summarised in the two following observations. On one hand, the proposed reasoning
framework has the potential to enhance semantic image analysis towards more
consistent and complete descriptions, provided that the concepts involved bear
adequately rich semantic associations. On the other hand, the inference of the overall
description is liable to false interpretations in the presence of heavily distorted
classification results, both in terms of the concepts and of their computed degrees.
As already mentioned above, a possible way to assist inference in such cases would
be the use of additional knowledge. Such knowledge could consider for example the
percentage of an image assigned to a given description. Thereby, in cases like that of
Fig. 5, where normally no scene level concepts can be inferred based on the initial
assertions, a complementary mechanism could favour the Landscape concept and
its subclasses. Another approach would be be the joint utilisation of probabilistic
knowledge, regarding the concept co-occurrence patterns.

Since our focus is currently on the benefits and weaknesses pertaining to the
utilisation of fuzzy reasoning, we performed some additional experiments using fuzzy
implication to capture co-occurrence information. We note though, that due to the
early stage of this effort, no conclusive observations can be drawn. In the following,

Table 12 Collective evaluation for Experiment II

Concept Analysis Reasoning

Recall Precision F-M Recall Precision F-M

All concepts 0.37 0.65 0.47 0.77 0.81 0.79
Concepts participating 0.29 0.61 0.39 0.79 0.82 0.81

in axioms
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we briefly describe the semantics of fuzzy implication and present the outcomes of
this preliminary investigation.

Fuzzy implication is defined by a function of the form J : [0, 1] × [0, 1] → [0, 1]
[18]. In practise this means that the degree of the right hand side expression
does not depend only on the degree of the left hand side expression, but is in-
fluenced as well by the degree attributed to the implication itself. Thereby, fuzzy
implication can serve as a mean to introduce data set specific knowledge without
impairing the impact of the inferences drawn by the crisp axioms modelling generic
semantics.

To get an initial estimation of whether such an approach could be beneficial, we
experimented using the following scheme. First, we performed statistical analysis on
the manually constructed ground truth to obtain co-occurrence patterns between
scene level concepts and object level concepts. The latter share a significant char-
acteristic: although semantically related to specific scene level concepts, they do not
necessarily entail information regarding the presence of the respective scene level
concepts. Then, the observed concept patterns frequency was used in order to define
the degrees of the corresponding fuzzy implication axioms.

Two different schemes have been used for the calculation of the fuzzy implications
degrees. In the first case, concepts co-occurrence was measured with respect to
the ground truth annotations; thus it embodies, in a way, an ideal model of the
dataset specific knowledge. In the second case, co-occurrence was measured taking
into account the object level descriptions as obtained by the classifiers and the
scene level ground truth annotations. Consequently, in the second case the degrees
encompass additional information accounting to an extent for the effectiveness of the
classifiers, and thus for the errors introduced by them. Table 13 illustrates the effect
on the determination of image descriptions at scene level, using the Kleene-Dienes
implication [18], with respect to the two aforementioned schemes for determining
concept co-occurrence.

Although both schemes used for the determination of degrees are very simplistic,
the introduction of fuzzy implication appears to have the potential to provide a
further improvement when compared with the values in Table 10. As previously men-
tioned, these results are only preliminary, and as such do not allow any conclusions

Table 13 Evaluation for scene level concepts when using fuzzy implication to model co-occurrence
information

Concept Ground truth co-occurrence Classification co-occurrence

Recall Precision F-M Recall Precision F-M

Countryside_buildings 0.72 0.86 0.78 0.84 0.87 0.85
Rockyside 0.74 0.69 0.71 0.73 0.80 0.76
Roadside 0.68 0.68 0.68 0.69 0.76 0.75
Forest 0.66 0.75 0.70 0.73 0.73 0.73
Seaside 0.79 0.80 0.79 0.86 0.85 0.85

The fuzzy implication degrees are acquired from ground truth data and from the classifications
respectively
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to be drawn yet. Further investigation is required with respect to the methodology
used to calculate the degrees and the process of selecting which implications to
consider. The associations between the concepts aggravate further the difficulty in
finding a balance between compensating for classification errors (by opting for higher
implication degrees) and avoiding figurative increase in recall values (i.e. improved
recall accompanied by significant deterioration in precision).

6 Conclusions and future directions

In this paper, we presented a fuzzy DLs-based reasoning framework for the purpose
of enhancing the extraction of image semantics through the utilisation of formal
knowledge. The deployment of fuzzy DLs allows to formally handle the vague-
ness encountered in classifications acquired through statistical learning, while the
formal semantics allow the integration of the initial description into a semantically
coherent interpretation. The proposed reasoning framework exploits reasoning
not only in order to enrich the image descriptions by means of entailment, but
also in order to address and resolve inconsistencies in the initial classifications.
Thereby, and free of assumptions regarding the individual classifiers’ implemen-
tation, it provides the means to reach a consistent final image description and
to alleviate limitations often encountered in learning based approaches due to
poor semantics utilisation. The experiments, though not conclusive, show promising
results, while outlining a number of issues and challenges affecting the attained
performance.

Future directions include the extension of the framework in order to handle the
representation of individual image regions and spatial relations so as to allow the
utilisation of spatial reasoning. Furthermore, as outlined in the evaluation Section,
experimentation towards the possibilities of introducing additional knowledge, either
in the form of fuzzy implication or in a probabilistic manner, constitutes another
direction towards a more complete framework. The latter is of particular interest,
not only because both types of imprecision are met in semantic image analysis, but
mostly because they serve complementary purposes.
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