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Abstract—In this paper, a 3D shape-based approach is presented for the efficient search, retrieval, and classification of protein

molecules. The method relies primarily on the geometric 3D structure of the proteins, which is produced from the corresponding PDB

files and secondarily on their primary and secondary structure. After proper positioning of the 3D structures, in terms of translation and

scaling, the Spherical Trace Transform is applied to them so as to produce geometry-based descriptor vectors, which are completely

rotation invariant and perfectly describe their 3D shape. Additionally, characteristic attributes of the primary and secondary structure of

the protein molecules are extracted, forming attribute-based descriptor vectors. The descriptor vectors are weighted and an integrated

descriptor vector is produced. Three classification methods are tested. A part of the FSSP/DALI database, which provides a structural

classification of the proteins, is used as the ground truth in order to evaluate the classification accuracy of the proposed method. The

experimental results show that the proposed method achieves more than 99 percent classification accuracy while remaining much

simpler and faster than the DALI method.

Index Terms—Information search and retrieval, classification, protein databases.
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1 INTRODUCTION

THE structure of a molecule in 3D space is the main factor
which determines its chemical properties as well as its

function. All information required for a protein to be folded
in its natural 3D structure is coded in its amino acid
sequence. Therefore, the 3D representation of a residue
sequence and the way this sequence folds in the 3D space
are very important in order to be able to understand the
“logic” in which a function or biological action of a
protein is based on. With the technology innovation and
the rapid development of X-Ray crystallography methods
and NMR spectrum analysis techniques, a high number
of new 3D structures of protein molecules is determined
[2]. The 3D structures are stored in the world-wide
repository Protein Data Bank (PDB) [1]. The number of the
3D molecular structure data increases rapidly since almost
200 new structures are stored per month in PDB. Today
there are more than 24,000 3D proteins and nucleic acid
molecules in this repository.

The Protein Data Bank [1], [12] is the primary repository

for experimentally determined 3D protein structures. It was

created in 1971 at Brookhaven National Laboratories (BNL)

in the USA and contained seven macromolecule structures.

These structures were created using crystallography meth-

ods. During the 1970s, the increase rate of entries was

relatively low. Since 1980, the increase rate has become
dramatically high due to the rapid technological develop-
ment. In addition to the atom coordinates, PDB entries may
contain additional information such as references, structure
details, or other features. Every new structure undergoes a
correctness control by using appropriate software. After its
successful evaluation, the protein is given an ID (code
number) and it becomes available for public use.

Since 1958, when the first 3D structure of the protein
myoglobin was determined, up to now, the complexity and
the variety of the protein structures has increased as the
number of the new determined macromolecules has. There-
fore, a need for a classification of proteins is obvious, which
may result in a better understanding of these complicated
structures, their functions, and the deeper evolutionary
procedures that led to their creation. In molecular biology,
many classification schemata and databases are available.
These are briefly reviewed below.

The SCOP (Structural Classification of Proteins) protein
database, which is held at the Laboratory of Molecular
Biology of the Medical Research Council (MRC) in Cam-
bridge, England, describes the structural and evolutionary
relationships between proteins of known structure [4]. Since
the existing automatic tools for the comparison of second-
ary structure elements cannot guarantee 100 percent success
in the identification of protein structures, SCOP uses
experts’ experience to carry out this task. This is not a
simple task considering the complexity of protein struc-
tures, which vary from single structural elements to vast
multidomain complexes.

Proteins are classified in a hierarchical manner that
reflects their structural and evolutionary relationship. The
main levels of the hierarchy are “Family” (based on the
proteins’ evolutionary relationships), “Superfamily” (based
on some common structural characteristics), and “Fold”
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(based on secondary structure elements). There are four
main structural classes of proteins according to the way of
folding their secondary structure elements:

1. all-a (consist of a-helices),
2. all-b (consist of b-sheets),
3. a/b (a-helixes and b-sheets alternating in protein

structure), and
4. a+b (a-helixes and b-sheets located in specific parts

of the structure).

The CATH (Class, Architecture, Topology, and Homo-
logous superfamily) database [5], which is held at the UCL
University of London, contains hierarchically classified
structural elements (domains) of the proteins stored in the
PDB (Protein Data Bank) database [1]. The CATH system
uses automatic methods for the classification of domains, as
well as experts’ contribution, where automatic methods fail
to give reliable results. For the classification of structural
elements, five main hierarchical levels are used:

. Class: The class is determined by the percentage of
secondary structure elements and their packing.

. Architecture: Describes the organization of the sec-
ondary structure elements.

. Topology: Provides a complete description of the hole
schema and the way the secondary structure
elements are connected.

. Homologous Superfamily: Structural elements that have
at least 35 percent amino-acid sequence identity
belong to the same Homologous Superfamily.

. Sequence: At this last level of hierarchy, the structures
of the same Homologous Superfamily are further
classified according to the similarity of their amino-
acid sequences.

The FSSP (Families of Structurally Similar Proteins)
database, which was created according to the DALI
classification method [6], [7] and is held at the European
Bioinformatics Institute (EBI) [8], provides a sophisticated
classification method. The similarity between two proteins
is based on their secondary structure. The evaluation of a
pair of proteins is a highly time consuming task, so the
comparison between a macromolecule and all the macro-
molecules of the database requires days. Therefore, one
representative protein for each class is defined. Every new
protein is compared only to the representative protein of
each class. However, for an all-to-all comparison of the
385 representative proteins of the database, an entire day is
needed [29].

The classification method of the DALI algorithm [6], [7] is
based on the best alignment of protein structures. The
3D coordinates of every protein are used for the creation of
distance matrices that contain the distance between amino
acids (the distance between theirCalpha � Calpha atoms). These
matrices are, first, decomposed into elementary formats, e.g.,
hexapeptidic-hexapeptidic submatrices. Similar formats
make pairs and the emerging formats create new coherent
pairs. Finally, a Monte Carlo procedure is used for the
optimization of the similarity measure concerning the
inner-molecular distances. The DALI method contains a
definition of representatives, which are proteins with

some special characteristics so that no two representatives
have more than 25 percent amino-acid sequence identity.

This method is very time-consuming due to the many
different alignments performed, the optimization proce-
dures, and the extremely high number of distances between
amino acids since a protein may consist of thousands of
amino acids.

The protein databases may contain either protein
collections or proteins accompanied by annotation. An
example of the latter is the SWISS-PROT database [9], with
195,000 entries, where, in addition to the protein sequences,
information about their function and biological action is
also available.

The PROSITE [10], [11] is a database for the classifica-
tion of proteins into families of proteinic sequences and
sequence domains. It is based on the observation that,
despite the vast number of different proteins, those can
be classified into a small number of families, according to
their sequence similarities. Protein sequences or sequence
domains that belong to the same family have the same
functions and a common ancestor. It is obvious that
proteins of the same family have parts of their sequence
preserved during their evolution.

A lot of research has been performed in recent years
for the classification of amino acid sequences using
different approaches. In [13], a data-mining approach
for motif-based classification of proteins is presented.
Motifs are either short amino acid chains with a specific
order or representations of multiple sequence alignments
using Hidden Markov Models [14]. Motifs can be used for
the prediction of proteins’ properties since the behavior of a
protein is a function of many motifs. By using motifs stored
in several databases, such as the PROSITE database,
classification rules that associate motifs with protein classes
are applied. The data to be processed are in the form of a
prefix tree acceptor (PTA), a tree-shaped automation. The
method utilizes a Finite State Automata (FSA) algorithm to
induce classification rules into a training data set. The rules
are finally applied to a test data set.

As it is not feasible to study experimentally every protein
in all genomes, the function and biological role of a newly
sequenced protein is usually inferred from a characterized
protein using sequence and/or structure comparison
methods. In recent years, many methods for pairwise
protein structure alignment have been proposed and are
now available on the World Wide Web. In [24], a state-of-
the-art survey on new methods for protein comparison that
have recently been published is presented.

In [25], a method to measure structural similarity of
proteins is presented. According to this method, a finite
number of representative local feature (LF) patterns is
extracted from the distance matrices of all protein fold
families by medoid analysis. Then, each distance matrix of a
protein structure is encoded by labeling all its submatrices
by the index of the nearest representative LF patterns.
Finally, the structure is represented by the frequency
distribution of these indices, which forms the LF frequency
(LFF) profile of the protein, which is, in fact, a vector of
common length K. The fold similarity between a pair of
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proteins can be computed by the Euclidean distance
between two corresponding LFF profile vectors.

The algorithm described in [26] aims to combine the
results of several existing sequence and structure compar-
ison tools in order to map domains within protein
structures with their homologs in an existing classification
scheme. The comparison tools incorporated in the algo-
rithm each utilize a different methodology for identifying
homologous domains and, consequently, these tools have
different advantages and limitations. The algorithm has
been developed to find the homologs already classified in
the SCOP database and, thus, determine classification
assignments, but it can be applied to any other evolu-
tionary-based classification scheme as well.

In [27], an information theoretic model called “coherent
subgraph” mining has been developed in order to find
characteristic substructural patterns within protein struc-
tural families. Protein structures are represented by graphs
where the nodes are residues and the edges connect
residues found within a certain distance from each other.
An experimental study has been conducted in which all
coherent subgraphs were identified in several protein
structural families annotated in the SCOP database and a
Support Vector Machine algorithm was used to classify
proteins from different families under the binary classifica-
tion scheme.

In [28], an approach to the problem of automatically
clustering protein sequences and discovering protein
families, subfamilies, etc., based on the theory of infinite
Gaussian mixture models is described. The method allows
the data itself to dictate how many mixture components are
required to model it and provides a measure of the
probability that two proteins belong to the same cluster.
Finally, a classification of sequences of known structure is
obtained which both reflects and extends their SCOP
classifications.

Considering that proteins with similar 3D structures
have similar functions, a geometric filtering can lead
biologists to the investigation of new protein functions. In
[15], proteins are represented as 3D models on the surface
of which sample points are defined. After a translation,
scaling, and rotation normalization, the models are seg-
mented to concentric spheres and sectors and the number of
sampled points is calculated per each sector and per each
sphere. After this procedure, descriptor vectors are created
and compared using a quadratic form distance function.
The nearest neighbor indicates the class assigned to the
query protein. In [16], geometric features based on geo-
metric moments and the Fourier Transform [17] are
extracted, after a translation, scaling, and rotation normal-
ization. Descriptors are also extracted from PDB files based
on primary and secondary structure characteristics. Both of
the aforementioned methods use a portion of the FSSP
database as ground truth and achieve a percentage of
around 90 percent classification accuracy, which is very
satisfactory, considering that they are less complicated than
the DALI algorithm.

Another method that utilizes the geometric properties of
secondary structures is based on indexing [18]. Triplets
(three linear segments) of secondary structures, extracted

from the 3D structures of the PDB database, are used to
index 3D hash tables. The hash tables are built after
computation of the angles and distances of all triplets of
linear segments. In [30], a fast computational framework for
classification of proteins is developed, using a series of
secondary structure geometric parameter represented by an
unexplored dihedral angle of a protein sequence. The
comparison of two such series of dihedral angles, each
representing a different protein structure, is accomplished
by a similarity-search mechanism based on a translational
and scale invariant indexing schema. The method is tested
over 25 randomly selected proteins belonging to five
different families and achieves a classification accuracy of
88 percent.

Following the same concept, we propose a new
combined structure-geometric comparison algorithm, based
primarily on the 3D shape of a protein and secondarily on
its structure characteristics (primary, secondary structure).
The method was introduced in [19] and [33] and dealt with
efficient 3D model content-based search and retrieval. In
this paper, the method is adapted to protein classification.
More specifically, a part of the Spherical Trace Transform
presented in [19] is proposed in this paper for the extraction
of a vector efficiently describing the 3D structure of each
protein. Having as input the PDB files, the 3D coordinates
of the main atoms composing the amino acids are taken into
account in order to construct a 3D model that describes the
protein. These 3D protein forms are further processed in a
way to be applicable to the Spherical Trace Transform. This
methodology leads to the creation of completely rotation
invariant descriptor vectors that perfectly describe the
3D shape of the proteins. Additionally, from the PDB files,
characteristics which describe the primary and secondary
structure of the proteins are also extracted. The geometrical
descriptors, along with the structural descriptors, form a
compound descriptor vector. This compound descriptor
vector serves as input to a classification method which is
used to categorize unclassified protein molecules. The
classification methods used, are: 1) the Euclidean distance
measure, 2) the Mean Euclidean distance measure, and 3) a
variance of the Bayesian probability measure.

The paper is organized as follows: The necessary
preprocessing steps are described in Section 2. The
proposed method and the functionals used are described
in detail in Section 3. Section 4 presents the classification
schemes used in order to evaluate the classification
accuracy of the method. Experimental results evaluating
the proposed method are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 PREPROCESSING

A protein P is mainly composed of Carbon (C), Nitrogen
(N), Oxygen (O), Hydrogen (H), and Sulfur (S) atoms. In
Fig. 1, the 3D representation of a protein is depicted. The
colors used and the atomic radii are listed in Table 1. The
atoms in HETATM fields are not depicted.

Since the exact 3D position of each atom and its radius
are known, it may be represented by a sphere. Next, the
surface of each sphere is triangulated by employing
3D modeling techniques. In this way, a sphere consists of
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a small set of vertices and a set of connections between the
vertices. Finally, a protein P is comprised of a set of
spheres, along with the corresponding vertices V and the
connections among them.

Then, the center of mass of P is calculated and each V

is translated so that the new center of mass is at the
origin. The distance dmax between the new origin and the
most distant vertex is computed and P is scaled so that
dmax ¼ 1. The translated and scaled P is then placed into
a bounding cube, which is partitioned in ð2 �NÞ3 equal
cube shaped voxels uui with centers vvi ¼ ½xi; yi; zi�, where
i ¼ 1; . . . ; ð2 �NÞ3. Let U be the set of all voxels inside the
bounding cube and U1 � U be the set of all voxels belonging
to the bounding cube and lying inside P .1 Then, the discrete
binary volume function fbðvviÞ of P , is defined as:

fbðvviÞ ¼
1; when uui 2 U1

0; otherwise:

�
ð1Þ

A coarser mesh is then constructed by combining every
eight neighboring voxels, uui, to form a bigger voxel ��k with
centers ��k, k ¼ 1; . . . ; N3. The discrete integer volume
function fð��kÞ of M is defined as:

fð��kÞ ¼
X8

n¼1

fbðvvnÞ : uun 2 ��k: ð2Þ

Thus, the domain of fð��kÞ is ½0; . . . ; 8�.

3 THE PROPOSED METHOD

The method proposed in this paper is based on the
“Spherical Trace Transform” introduced in [19], which is
further exploited to extract descriptors to be used for
classification purposes and it is presented in the sequel for
sake of completeness.

Let us define plane �ð��; �Þ ¼ fvvjvvT � �� ¼ �g to be tangen-
tial to the sphere S� with radius � and center at the origin, at
the point ð��; �Þ, where �� ¼ ½cos�sin�; sin�sin�; cos�� is the
unit vector in R3, and � a real positive number (Fig. 2).

The intersection of �ð��; �Þ with fð��Þ produces a
2D function f̂ða; bÞ, ða; b 2 �ð��; �Þ \ fð��ÞÞ, which is then

sampled and its discrete form f̂ði; jÞ ði; j ¼ 1; 2; . . . ; NÞ is

produced. N is the number of voxels that the bounding

cube is partitioned along each dimension.
The “Spherical Trace Transform” proposed in this paper

can be described using the general formula:

SphTrace½T ;F ; f̂ � ¼ T ðF ðf̂ði; jÞÞÞ; ð3Þ

where F ð��; �Þ denotes an “Initial Functional,” which can be

applied to each f̂ði; jÞ, i.e., F ð��; �Þ ¼ F ðf̂ði; jÞÞ. The set of

F ð��; �Þ is treated as a collection of spherical functions

fF�ð��Þg� parameterized by �.
Then, a set of “Spherical Functionals” T ð�Þ is applied to

each F�ð��Þ, producing a descriptor vector D1 ¼ T ðF�ð��ÞÞ.
Let us now examine the conditions that must be satisfied

by the functionals in order to produce rotation invariant

descriptor vectors. Under a 3D object rotation governed by

a 3D rotation matrix R, the points �� will be rotated:

��0 ¼ R � ��; ð4Þ

therefore,

F ð��0; �Þ ¼ F ðR � ��; �Þ; ð5Þ

and, thus, rotation invariant T functionals must be applied

so that T ðF ð��0; �ÞÞ ¼ T ðF ð��; �ÞÞ (Fig. 3).
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1. “Lying inside P” means that the corresponding voxel lies in the region
that is enclosed by a sphere, which represents the atom of one of the
proteins.

Fig. 1. The protein 1DD5.

TABLE 1
Main Atoms of a Protein

Fig. 2. Planes tangential to concentric spheres.



In the specific case where the points �� lie on the axis of

rotation, the corresponding f̂ði; jÞwill be rotated (Fig. 4), i.e.,

f̂ 0ði; jÞ ¼ f̂ði0; j0Þ; ð6Þ

and, thus, 2D rotation invariant functionals must be applied

so that F ðf̂ 0ði; jÞÞ ¼ F ðf̂ði0; j0ÞÞ. Therefore, a general solution

is given using 2D rotation invariant functionals F and

rotation invariant spherical functionals T , producing

completely rotation invariant descriptor vectors.

3.1 Initial Functionals F

The set of the Initial Functionals F consists of several

harmonics of the Polar-Fourier Transform and several of the

Krawtchouk moments.

3.1.1 The Polar-Fourier Transform

The Discrete Fourier Transform (DFT) is computed for each

f̂tði; jÞ, where t ¼ 1; . . . ; NR and NR is the total number of

planes:

DFTtðk;mÞ ¼
XN�1

i¼0

XN�1

j¼0

f̂tði; jÞ exp �ĵ 2�ik

N
þ 2�jm

N

� �� �
; ð7Þ

where k;m ¼ 0; . . . ; N � 1. In the DFT, shifts in the spatial

domain cause corresponding linear shifts in the phase

component:

DFTtðk;mÞ exp½�ĵðakþ bmÞ� $ ftðiþ a; jþ bÞ: ð8Þ

Thus, the DFT magnitude is invariant to circular translation.

Therefore, using discrete polar coordinates:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1iþ c2Þ2 þ ðc1jþ c2Þ2

q
;

�ij ¼ tan�1 c1jþ c2
c1iþ c2

� �
;

c1 ¼
ffiffiffi
2
p

N � 1
� rmax;

c2 ¼ �
1ffiffiffi
2
p � rmax;

ð9Þ
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Fig. 3. Rotation of fðxxÞ rotates the F ð��; �Þ without rotating the

corresponding fði; jÞ (upper left image). Thus, F ð��2; �1Þ ¼ F ð��02; �1Þ.
Fig. 4. Rotation of fðxxÞ rotates the f̂ði; jÞ (upper left image) without

causing a rotation of the point ð��1; �1Þ.



where i; j ¼ 0; . . . ; N � 1. Then, (7) becomes:

DFTtðk;mÞ ¼
XN�1

i¼0

XN�1

j¼0

f̂tðrij; �ijÞ expð�ĵðkrij þm�ijÞÞ ð10Þ

and rotation is converted to a circular translation of �. Then,
the first K�M harmonic amplitudes jDFTtðk;mÞj, where
k ¼ 0; . . . ;K� 1 and m ¼ 0; . . . ;M� 1, are considered for
each f̂tði; jÞ. Since t refers to each plane which is described

in the 3D space by the couple ð��; �Þ, jDFTtðk;mÞj can be
denoted as F1kmð��; �Þ or F1�kmð��Þ.

3.1.2 Krawtchouk Moments

Krawtchouk moments [20] are a set of moments formed by
using Krawtchouk polynomials as the basis function set.
The nth order classical Krawtchouk polynomials are
defined as:

Knðx; p;NÞ ¼
XN
	¼0

a	;n;px
	 ¼2 F1 �n;�x;�N;

1

p

� �
; ð11Þ

where x; n� 0; 1; 2; . . . ; N , N > 0, p 2 ð0; 1Þ, 2F1 is the
hypergeometric function defined as:

2F1ða; b; c; zÞ ¼
X1
	¼0

ðaÞ	ðbÞ	
ðcÞk

z	

	!
ð12Þ

and ðaÞ	 is the Pochhammer symbol.
Following the analysis described in [19], the rotation

invariant Krawtchouk moments are computed for each
f̂tði; jÞ with spatial dimension N �N by:

~Qkm ¼ ½�ðkÞ�ðmÞ��ð1=2ÞXN�1

i¼0

XN�1

j¼0

ai;k;p1
aj;m;p2

�ij; ð13Þ

where the coefficients a	;n;p can be determined by (11) and
�ðkÞ; �ðmÞ can be calculated from the orthogonality condi-
tion [20]. It should be noted that, in our experiments, the

parameters p1; p2 were set to 0:5 [20].
Referring to each plane ð��; �Þ, the rotation invariant

Krawtchouk moments can be denoted as F2kmð��; �Þ or
F2�kmð��Þ.

3.2 Spherical Functionals T

Then, the following set of spherical functionals T is applied
to each F�ð��Þ in order to produce the descriptor vector:

1. T1ð!Þ ¼ maxf!ð��jÞg,
2. T2ð!Þ ¼

PNs

j¼1 !
0ð��jÞ

�� ��,
3. T3ð!Þ ¼

PNs

j¼1 !ð��jÞ,
4. T4ð!Þ ¼ maxf!ð��jÞg �minf!ð��jÞg,

where j ¼ 1; . . . ; Ns, !ð��jÞ ¼ F�ð��jÞ, !0 its derivative, and
Ns ¼ NR

Nc
, where Nc is the total number of concentric

spheres, Ns is the total number of sampled points on a
sphere S� with radius �, and NR is the total number of
sampled points.

5. The amplitudes of the first L harmonics of the
Spherical Fourier Transform (SFT).

The fifth above T functional is generated using spherical
harmonics. Spherical harmonics are special functions on

the sphere, generally denoted by Ylmð��Þ, where l � 0 and
jmj � l [22].

Since spherical harmonics form a complete orthonormal
set on the unit sphere, if a function 
, parameterized by the
spherical coordinates ð��Þ, can be expanded as an infinite
Fourier series of spherical harmonics:


ð��iÞ ¼
X1
l¼0

Xl
m¼�l

�lmYlmð��iÞ; i ¼ 1; . . . ; Ns; ð14Þ

then the expansion coefficients �lm are uniquely deter-
mined by:

�lm ¼
XNs

i¼1


ð��iÞYlmð��iÞ
4�

Ns
: ð15Þ

In our case:


ð��Þ ¼ F1�kmð��Þ
F2�kmð��Þ:

�
ð16Þ

The expansions (14) are strictly convergent in the sense
that the error of the expansion reduces monotonically as l
tends to infinity. Hence, the leading terms of the series are
those with small values of l and m, which implies that, upon
truncation, the series at a sufficiently large value of l, L,
most of the detail of the function 
ð��Þ will be captured.

Further, if 
ð��Þ is rotated (
0ð��Þ with expansion coeffi-
cients �0lm), then, as is easily proven [22], the overall vector
length of �0lm coefficients with the same l is preserved under
rotation:

A2
l ¼

X
m

�
02
lm ¼

X
m

�2
lm; ð17Þ

where the quantities Al are known as the rotationally
invariant shape descriptors. In the proposed method, for
each l, the corresponding Al is a spherical functional T .
Therefore, the total number of spherical functionals T used
is Lþ 4 for each concentric sphere.

3.3 Descriptor Extraction

3.3.1 Geometrical Descriptor Extraction

In order to avoid possible sampling errors caused by using
the lines of latitude and longitude (since they are
concentrated too much toward the poles), each concentric
sphere is simulated by an icosahedron where each of the
20 main triangles is iteratively subdivided into q equal parts
to form subtriangles. The vertices of the subtriangles are the
sampled points Bt. Their total number Ns, for each
concentric sphere (icosahedron) Cs, with radius �s,
s ¼ 1; . . . ; Nc, where Nc is the total number of concentric
spheres, is easily seen to be:

Ns ¼ 10 � q2 þ 2: ð18Þ

Then, following the procedure described earlier, for each
functional F , the descriptor vectors D1F ðl1Þ ¼ T ðF�tð��tÞÞ
are produced, where l1 ¼ 1; . . . ; ðLþ 4Þ �Nc.

3.3.2 Structural Descriptor Extraction

Besides the geometric descriptor vectors, features that
characterize the primary and secondary structure of a
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protein are also extracted [16]. More specifically, concerning

the primary structure, the ratio of the amino acids’

occurrences relative to the total number of amino acids

(20 descriptors), the hydrophobic amino acids ratio

(one descriptor), and the ratio of the helix types’ occur-

rences (10 descriptors) contained in a protein are calculated.

Concerning the secondary structure, the number of Helices

(one descriptor), Sheets (one descriptor), and Turns

(one descriptor), contained in a protein are also calculated.

These features are listed in Table 2. All the aforementioned

information is included in each PDB file. A part of a PDB

file is depicted in Fig. 5.

The descriptor vector, D2, is then produced, with length

34. Thus, the length of the compound descriptor vector D ¼
D1

S
D2 is Nc � ðLþ 4Þ þ 34.

Our experiments presented in the sequel were performed

using the values: Ns ¼ 2; 562, Nc ¼ 20, L ¼ 26, and N ¼ 64,

whereN is the number of sampled points for each dimension

of each tangential plane �ð��; �Þ. The total number of sampled

points on each tangential plane is N �N .

4 CLASSIFICATION

4.1 Matching Algorithm

Let A;B be two 3D models (proteins). Also, let

DAðkÞ ¼ ½DA1ðk1Þ;DA2ðk1Þ;DA3ðk2Þ�T ;
DBðkÞ ¼ ½DB1ðk1Þ;DB2ðk1Þ;DB3ðk2Þ�T

be two descriptor vectors, where A1; B1 denotes the

descriptor vector extracted using Polar-Fourier Transform,

A2; B2 denotes the descriptor vector extracted using

Krawtchouk moments, A3; B3 denotes the descriptor vector

extracted taking into account the primary and secondary

structure of each protein, k1 ¼ Nc � ðLþ 4Þ, and k2 ¼ 34. The

geometrical descriptors are compared in pairs using their

L1-distance:

D1similarity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNc�ðLþ4Þ

k1¼1

jDA1ðk1Þ �DB1ðk1Þj

vuut ð19Þ
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TABLE 2
Structural Features and Their Weights

Fig. 5. A PDB file.



and

D2similarity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNc�ðLþ4Þ

k1¼1

jDA2ðk2Þ �DB2ðk2Þj

vuut : ð20Þ

The overall geometrical similarity measure is determined by:

DGsimilarity ¼ a1 �D1similarity þ a2 �D2similarity; ð21Þ

where a1; a2 are descriptor vector percentage factors, which
are calculated as follows: Let us assume that A belongs to a
class C, which contains NC models. Also let Ntotal be the
total number of models contained in the database. Then, the
factor a1 is calculated as:

a1 ¼
PNC

i¼1 diPNtotal�NC

j¼1 dj
; ð22Þ

where di is the L1-distance of the descriptor vector DA1 of
each model A from the descriptor vector DA10 of a model A0

which also belongs to C and dj is the L1-distance of the
descriptor vector DA1 of the model A from the descriptor
vector DA100 of a model A00 which does not belong to C.
Descriptor vectors DA1 with small values of di and large
values of dj are clearly appropriate for class C, in terms of
successful retrieved results. The percentage factor a2 is
calculated similarly, taking into account the descriptor
vector DA2. Then, a1 and a2 are normalized so that
1=a1 þ 1=a2 ¼ 100.

Following the above approach, the discriminant power
of each descriptor vector per different class is taken into
account.

The structural similarity is evaluated using:

DSsimilarity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX34

k2¼1

jDA3ðk2Þ �DB3ðk2Þj

vuut : ð23Þ

The overall similarity measure is determined by:

Dsimilarity ¼ b1 �DGsimilarity þ b2 �DSsimilarity: ð24Þ

The weights assigned to the different kind of descriptors are
b1 ¼ 90% for the geometrical descriptors and b2 ¼ 10% for
the structural descriptors. The weight allocation regarding
the latest formula is listed in Table 2.

4.2 Classification Methods

In order to evaluate the classification accuracy of the
proposed method, three classification schemes were used.
A description of these schemes is given below.

Let DiðjÞ ¼ ½Dið1Þ; . . . ; DiðNdÞ� be a compound descrip-
tor vector, where i ¼ 1; . . . ; Ntotal. Ntotal is the total number
of proteins and Nd is the total number of descriptors per
descriptor vector (Nd ¼ Nc � ðLþ 4Þ þ 34). Also, let C be a
class with descriptor vectors:

MC ¼

D1ð1Þ; . . . ; D1ðkÞ; . . . ; D1ðSÞ
. . . ; . . . ; . . . ; . . . ; . . . ;
Dið1Þ; . . . ; DiðkÞ; . . . ; DiðSÞ

. . . . . . ; . . . ; . . . ; . . . ;
DNC ð1Þ; . . . ; DNC ðkÞ; . . . ; DNC ðSÞ

2
66664

3
77775;

where NC is the number of 3D models which belong to class
C. Then, the feature vectors fC1; . . . ; fCk; . . . ; fCS are formed,
where C ¼ 1; . . . ; Nclass, fCk ¼ ½D1ðkÞ . . .DiðkÞ . . .DNC ðkÞ�T ,
and Nclass is the total number of classes.

For each fCk, the mean,

�fCk ¼
1

NC

XNC

i¼1

DiðkÞ; ð25Þ

and the variance,


2
fCk
¼ 1

NC

XNC

i¼1

ðDiðkÞÞ2 � ð�fCkÞ
2; ð26Þ

are calculated. Finally, let U ¼ ½Uð1Þ; . . . ; UðNdÞ� be a
descriptor vector of an unclassified protein U .

4.2.1 Euclidean Distance Measure

The first metric of “similarity” is based on the Euclidean
distance between the descriptor vectors, which is defined as:

M1ðD;UÞ ¼
XNd

j¼1

ðDðjÞ � UðjÞÞ2
" #1=2

: ð27Þ

For an unclassified U , the pairwise Euclidean distances
M1ðDi;UÞ, i ¼ 1; 2; . . . ; Ntotal, are rank ordered and U is
assigned to the class corresponding to the minimum
distance.

4.2.2 Mean Euclidean Distance Measure

As a second metric, the Euclidean distances between a
feature vector Ck and an unclassified vector U are used:

M2ðX;UÞ ¼
XNd

j¼1

ð�XCi
ðjÞ � UðjÞÞ2

" #1=2

: ð28Þ

As before, the pairwise Euclidean distances M2ðXi;UÞ,
i ¼ 1; 2; . . . ; Nclass, are rank ordered and the class with the
minimum distance to U is chosen.

4.2.3 Naive Bayesian Classifier

For each class Ci, i ¼ 1; . . . ; Nclass, the mean �XCi
ðjÞ and the

standard deviation 
Ci are calculated for each feature vector
Cj. For each descriptor UðjÞ of the unclassified protein U ,
the validity of the following inequality is tested:

�XCi
ðjÞ � a � 
Ci � UðjÞ � �XCi

ðjÞ þ a � 
Ci; ð29Þ

where a 2 ½3; 4�. For each class Ci, the following measure is
calculated:

BðCiÞ ¼
XNd

j¼1

wUðjÞ; ð30Þ

where wUðjÞ ¼ 1 when UðjÞ satisfies (29) and wUðjÞ ¼ 0,
otherwise. U is assigned to the class Ci with the maximum
BðCiÞ.

5 EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
method, a portion of the FSSP database [23] was used. This
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database was constructed according to the DALI algorithm
[6], [7] and consists of 3,732 proteins classified into 30 classes
(Table 3). Care was taken to include classes with different
cardinalities, varying from 2 to 561 proteins. In order to get
reliable results, the 3,732 proteins were randomly selected.
The database can be downloaded from: ftp://ftp.iti.gr/
pub/incoming/proteins.zip.

The performance of the method was evaluated in terms
of overall classification accuracy [15]. More specifically, for
each molecule in the database, one of the three classification
methods described above is applied after removing that
element from the database (“leave-one-out” experiment). A

class label is then assigned to the query protein as the

output of the classification method. The overall classifica-

tion accuracy is the percentage of the correctly predicted

class labels among all 3,732 proteins of the database and is

given by:

Overall Classification Accuracy ¼
Number of correctly predicted proteins

Total number of proteins in the database
:

ð31Þ

The overall classification accuracy can also be derived

from the confusion matrix, which is widely used in

classification problems [32]. The overall classification

accuracy is the sum of the diagonal elements of the

confusion matrix divided by the total number of classified

objects.
Let FTkm and Krawkm be the descriptor vectors

produced after applying the spherical functionals T to the

initial functionals F1�kmð��Þ and F2�kmð��Þ, respectively.
All of the produced descriptor vectors were tested

experimentally in terms of overall classification accuracy.

However, only the following achieved significantly high

classification accuracy and are reported in this section:

FT ¼ fFT00; FT01; FT10; FT02g

and

K ¼ fKraw00; Kraw01; Kraw02g:

5.1 Evaluation of Overall Classification Accuracy
Using the Euclidean Distance Measure

First, the simpler method was evaluated, which relies on the

Euclidean Distance measure. The overall classification

accuracy results were very satisfactory (Fig. 6 and Table 4).
As seen by Fig. 6, the use of vectors Kraw00 and FT02

was found to be optimal since the percentage accuracy

achieved was 98.9 percent (Fig. 6, last column).
The time needed for the extraction of the descriptor

vectors of the Initial Functionals used is shown in Table 4.
In addition to the geometrical descriptors, structural

descriptors are extracted as well (Table 2), which refer to the

proteins’ primary and secondary structure elements. The

percentage of geometrical and structural features in the

integrated descriptor vector was experimentally selected to

be 90 percent and 10 percent, respectively. This combination
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TABLE 3
Protein Classes Used as Ground Truth Database

Fig. 6. Overall classification accuracy using only geometrical character-

istics with the Euclidean Distance Measure method.



significantly increases the overall classification accuracy

(Fig. 7).
The times needed for the computation of the overall

classification accuracy for the entire database are shown

in Table 5. These include the comparison of each query

protein descriptor vector to all (3,731) descriptor vectors

(all-to-all comparison). In other words, the time needed

for approximately 3; 7312 comparisons is 395 sec if the

“Kraw00&FT02&Struct” descriptor vector is used. This is

very satisfactory if we consider that the Dali algorithm

requires an entire day for an all-to-all comparison of all

385 representatives of FSSP database [29].
The time needed for the complete preprocessing proce-

dure, from the creation of the 3D structure up to the final

normalization step, is approximately 3 min. Although this

procedure, for a large database with thousands of proteins,

may last for days, it takes place only once and the

descriptor vectors are stored in the database along with

the corresponding 3D structures.

The FSSP/DALI database has been constructed based in
part on the premise that proteins with at least 25 percent
similarity in their amino acid sequence should belong to the
same class even if dissimilar geometrically. Since we do not
use this criterion, we do not achieve 100 percent classifica-
tion accuracy. In fact, the best overall classification accuracy
achieved, using the proposed method (Fig. 7, column 6), is
99.62 percent. In other words, 14 out of 3,732 proteins are
misclassified. Further analysis of the misclassified proteins
showed that the proposed method, which is mainly based
on geometrical features (90 percent) rather than structural
features (10 percent), classifies the 3D proteins differently
when compared to the DALI algorithm. However, there is
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TABLE 5
The Times Needed for the Computation of the Overall

Classification Accuracy Using Geometrical and Structural
Characteristics with the Euclidean Distance Measure Method

Fig. 8. Missed proteins using the Euclidean distance method. The query
proteins are depicted in the first column. The second column shows the
nearest neighbors, which were retrieved using the proposed method but
do not belong to the same class with the query, according to the FSSP/
DALI classification. The third column shows the proteins closer to the
query that do belong to the same class according to the FSSP/DALI
classification. It is obvious that the visual similarity between the proteins
of columns 1 and 2 is greater than the similarity between the proteins of
columns 1 and 3.

Fig. 7. Overall classification accuracy using geometrical and structural

characteristics with the Euclidean Distance Measure method.

TABLE 4
Extraction Time Using Different Initial Functionals

and All Spherical Functionals



no clear answer as to which method is “more” correct. Fig. 8

depicts five missed proteins (column 1), their nearest

neighbors using the proposed method (column 2), and the

closest to the query proteins that belong to the same class

with them according to the FSSP classification (column 3).

The structures in the first column are seen to be geome-

trically far more similar to those in the second column than

those in the third.
A more detailed view of the classification results

demonstrates the high performance of the method in

application to both small and large classes. In order to
evaluate the classification performance of each class, the
measures of Classification Precision ðCPreÞ, Classification
Recall ðCRecÞ, and Classification Accuracy ðCAccÞ were used
[31]. These are given by the following equations:

CPre ¼
TP

TP þ FP ; ð32Þ

CRec ¼
TP

TP þ FN ; ð33Þ

CAcc ¼
TP þ TN

TP þ FP þ FN þ TN ; ð34Þ

where:

. TP: The number of correctly included (True Positive)
class objects.

. FP: The number of incorrectly included (False
Positive) objects.

. TN: The number of correctly excluded (True
Negative) objects.

. FN: The number of incorrectly excluded (False
Negative) objects.

The values of TP, FP, FN, and TN, along with the
values of CPre, CRec, CAcc for each class, when the
“Kraw00&FT02&Struct” descriptor vector is used, are
presented in Table 6.

Table 6 illustrates the effectiveness of the proposed
method, showing its high performance in terms of
Classification Precision, Classification Recall, and Classification
Accuracy for each class.

As the protein database increases, the time needed for a
one-to-all comparison and classification of an unknown
protein increases dramatically. For such use, other faster
classification methods, based on statistical features extrac-
tion, were evaluated. A detailed description of these
methods was given in Section 4.

5.2 Evaluation of Overall Classification Accuracy
Using the Mean Euclidean Distance Measure

In Fig. 9 and in Table 7, the results of the Mean Euclidean
Distance method are presented: The first two columns
depict the overall classification accuracy of the method with
all classes included, with (Kraw00&FT02&Struct All col-
umn) or without (Kraw00&FT02 All column) structural
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TABLE 6
Classification Precision, Classification Recall, and
Classification Accuracy for Each Class Using the

“Kraw00&FT02&Struct” Descriptor Vector

Fig. 9. Overall classification accuracy using geometrical and structural

characteristics with the Mean Euclidean Distance Measure method.



features. The next four columns present the results when
the Mean Euclidean Distance method is applied only to
classes with a relatively large number of proteins. The class
that best fits the query protein is then included in the
Euclidean Distance algorithm, which is applied to the
remaining small classes. The key reason for this fused
algorithm selection is that statistical measures are more
reliable when applied to large classes (over 50 or 100 pro-
teins) since the higher the number of proteins in a class, the
more reliable the statistical measures. In the third and
fourth column, the Mean Euclidean method is applied to
classes with a number of proteins larger than 50, while, in
the last two columns, the number of proteins is larger than
100. Experiments proved that the overall classification
accuracy in large classes with more than 100 proteins is
very satisfactory, while the time needed for the classifica-
tion procedure is four times smaller than that of the
Euclidean Distance method.

5.3 Evaluation of Overall Classification Accuracy
Using the Naive Bayesian Classifier

Finally, similar experiments, based on the Naive Bayesian

Classifier (Section 5.2.3), were performed. The results are

presented in Fig. 10 and in Table 8. It is obvious that, like

the previous method, Naive Bayesian Classifier achieves

satisfactory classification results as well as low computa-

tional complexity without, however, outperforming the

methods presented in the previous paragraphs.

5.4 Evaluation of Information Retrieval Performance

Apart from the classification performance, the efficiency of

the proposed shape comparison method was evaluated in

terms of information retrieval performance. In this case,

each model of the database is used as query and the

retrieved proteins are ranked in terms of shape similarity to

the query. For the presentation of the results, the Information

Retrieval Precision-Recall curve was used, where precision is

the proportion of the retrieved models that are relevant to

the query and recall is the proportion of relevant models in

the entire database that are retrieved as a result of the

query. More precisely, precision and recall are defined as:

Precision ¼ Ndetection

Ndetection þNfalse
; ð35Þ

Recall ¼ Ndetection

Ndetection þNmiss
; ð36Þ
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TABLE 7
The Times Needed for the Computation of the

Overall Classification Accuracy
with the Mean Euclidean Distance Measure Method

Fig. 10. Overall classification accuracy using geometrical and structural

characteristics with the Naive Bayesian Classifier.

TABLE 8
The Times Needed for the Computation of the Overall

Classification Accuracy with the Naive Bayesian Classifier

Fig. 11. Precision-recall curve for the geometrical descriptor vectors.



where:

. Ndetection = number of relevant models retrieved,

. Nfalse = number of irrelevant models retrieved,

. Nmiss = number of relevant models not retrieved.

Fig. 11 depicts the Information Retrieval Precision-Recall

curve for all geometrical descriptor vectors used.

5.5 Comparison with Existing Methods

It must be emphasized that the goal of the proposed method

is not to introduce a new classification scheme, but to

provide a fast geometric filtering so as to achieve a first

quick classification of a new protein sequence. Thus,

comparison with classification schemes, such as DALI,

SCOP, CATH, etc., or with methods that focus on finding

biologically relevant sequence similarities, such as BLAST,

PSI-BLAST [34], etc., is clearly not meaningful. However,

comparison with the methods presented in [16], [15], which

are also based on the geometrical similarity of proteins, is

fully meaningful and is presented in the sequel.
First, the proposed method is compared with the method

[16] in terms of retrieval performance. In [16], three classes

are chosen from the Dali server, which are listed in Table 9.

Then, the “precision versus recall” is calculated for each

class.
Fig. 12a depicts the Information Retrieval Precision-

Recall curve of the three classes by using Kraw00&FT02

descriptors. In the next three diagrams, the precision-recall

curve of each class is compared with the respective curve of

the method presented in [16]. It can be inferred that the

proposed method demonstrates a slight improvement in the

last values of recall, while it retains high performance in the

first values of recall.
The proposed method is also compared with the one

presented in [15] in terms of overall classification accuracy.

Since the experiments in [15] were conducted on a different

set of protein structures, an extra effort in developing this

method for our protein data set was required. The results are

presented in Fig. 13, where it is obvious that the proposed

method outperforms the one presented in [15] when applied

to single domain chains. For multidomain proteins, however,

the experimental results are inconclusive.
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TABLE 9
Protein Classes to Be Compared

Fig. 12. (a) Precision-recall curve of classes 1a6m, 1l92, and 2cba by using Kraw00&FT02 descriptors. (b), (c), and (d) Comparison of precision-

recall curve for each class with the method presented in [16].



6 CONCLUSIONS

In this paper, a novel approach for the comparison of

3D protein structures is proposed. The approach consists of

an offline and an online step. In the offline step, the protein,

which is taken from a PDB file, is preprocessed in terms of

visualization and triangulation. Next, the protein is trans-

lated, scaled, and voxelized. A set of functionals are applied

to the volume of the 3D structure producing a new domain

of concentric spheres. In this domain, a new set of

functionals is applied, resulting in a completely rotation

invariant descriptor vector. Additionally, descriptor vectors

which correspond to the protein’s primary and secondary

structure are extracted as well. All these descriptor vectors

are stored, along with the corresponding proteins. In the

online step, a classification algorithm is followed for the

descriptor vectors.
Experiments were performed evaluating the efficiency of

the proposed method using as ground truth a portion of the

FFSP/DALI database, in terms of overall classification

accuracy and precision-recall. The proposed method, far

less complex than the DALI algorithm, was seen to produce

results very close to the ground truth when applied to

single domain chains. For multidomain proteins, however,

the experimental results are inconclusive.
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