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Abstract This paper presents a unified framework for 3D
shape retrieval. The method supports multimodal queries
(2D images, sketches, 3D objects) by introducing a novel
view-based approach able to handle the different types of
multimedia data. More specifically, a set of 2D images
(multi-views) are automatically generated from a 3D ob-
ject, by taking views from uniformly distributed viewpoints.
For each image, a set of 2D rotation-invariant shape de-
scriptors is produced. The global shape similarity between
two 3D models is achieved by applying a novel match-
ing scheme, which effectively combines the information ex-
tracted from the multi-view representation. The experimen-
tal results prove that the proposed method demonstrates su-
perior performance over other well-known state-of-the-art
approaches.

Keywords 3D object retrieval · Multi-views · Multimodal
queries · Image to 3D object · Sketch to 3D object

1 Introduction

It is widely known that human beings think with words.
These words are harmonically combined creating sentences
which are used to describe feelings, concepts, opinions, ac-
tions, desires, etc. In the special case where an object is to
be described, the aforementioned sequence of actions which
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takes place in our brain is a little bit different due to the vi-
sual form of the object. Dr. Fodor in 1983 who introduced
“the modularity of mind” (Fodor 1983), supports that our
brain follows a hierarchical way of thinking starting from
the simplest thought and ending at the most advanced one.
With simple words this theory implies that if, for example,
we want to describe a red rose in a bunch of flowers, the
simplest “image” coming to our mind is . . . image! To be
more specific, it is a Three-Dimensional (3D) image, which
clearly consists of all the information we want to describe
and which is derived from the experience of seeing a red
rose. In other words, a 3D object contains all the ground
truth of a physical object, while its 2D views provide only a
subset of the 3D object, an abstraction of the real world.

3D models have nowadays become ubiquitous for ap-
plications such as games (Bustos et al. 2005; Real-time
3D models), Computer-Aided Design (CAD) (Jayanti et al.
2006), molecular biology (Daras et al. 2006a; Tsatsaias et al.
2007), cultural heritage (Goodall et al. 2004), etc. The tech-
nology innovation in 3D scanners and computer-aided mod-
eling software make it possible to easily construct com-
plete 3D geometry models with relatively low cost and time,
which in turn has triggered the rapid enlargement of 3D
shape repositories. The latter, along with the explosion of the
World Wide Web (WWW), has lead to research in the area
of 3D content-based search and retrieval (Iyer et al. 2005;
Tangelder and Veltkamp 2004; Bustos et al. 2007) using as
query text, sketch and/or 3D object(s).

Those who are searching on the WWW are familiar with
text-based search engines: by giving a few keywords it is
possible to find related sites on the Internet. Keywords con-
stitute a good descriptor in this particular case because the
audiovisual information is organized for and around text.
The situation is different for image and 3D object databases,
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since a keyword description for an image/3D object is lan-
guage, culture and context dependent, resulting in great lack
of uniformity. On the other hand, a query-by-content (exam-
ple) approach is much more simple and efficient. 2D images
and 3D models can be added to a database as they are, with-
out ordering them.

In this paper, we propose a unified framework for 3D
shape retrieval. The framework supports multimodal queries
(either sketches drawn by a user, or 2D images captured
by a user, or 3D objects) by introducing a 2D multi-view-
based approach able to handle the different types of mul-
timedia data. More specifically, multiple 2D images are
generated from a 3D object, by taking views from uni-
formly distributed viewpoints. For each image, a set of
2D rotation-invariant shape descriptors, based on the Polar-
Fourier Transform, Zernike Moments and Krawtchouk Mo-
ments, is produced. The global shape similarity between
two 3D models is achieved by applying a novel match-
ing scheme, which effectively combines the information ex-
tracted from the multi-view representation. Furthermore, the
method provides efficient search and retrieval capabilities
using only a 2D image or a sketch as a query, when an in-
put 3D model is not available. Finally, the proposed Com-
pact Multi-View Descriptor (CMVD) is combined with a
well-known transform-based method, the Spherical Trace
Transform (Zarpalas et al. 2007), resulting in significantly
increased performance.

1.1 Related Work

3D object retrieval is a relatively new and very challenging
research field and a major effort of the research community
has been devoted to the formulation of accurate and effi-
cient 3D object search and retrieval algorithms. The main
problems that pose obstacles in the efficiency of the existing
approaches are the following: (i) the 3D object’s degenera-
cies (e.g. holes, missing polygons, hidden polygons), (ii) the
3D object’s pose normalization, (iii) invariance to shape rep-
resentations, (iv) invariance to articulation or global defor-
mation, (v) the trade-off between the time needed for the
extraction (which heavily depends on a 3D object’s Level-
of-Detail) and matching of 3D objects’ descriptors and the
retrieval accuracy of a method.

The first problem is usually tackled successfully by ap-
plying a triangulation algorithm (e.g. Delaunnay triangu-
lation) or a hole filling algorithm (Weyrich et al. 2004).
Pose normalization implies invariance with respect to ro-
tation, scaling and translation of a 3D object. Translation
normalization is usually achieved by calculating the center
of mass while scaling normalization uses the root of the
average square radius. Another approach for scaling and
translation normalization is the smallest enclosing sphere

(Fischer and Gartner 2004). In order to achieve rotation nor-
malization two widely acceptable solutions have been pre-
sented in the literature, namely the rotation normalization
of the 3D object in a pre-processing step and the natively
rotation invariant description of the 3D object. Both ap-
proaches present major advantages and serious drawbacks:
Firstly, the vast majority of the utilized rotation normal-
ization approaches are based on the PCA (e.g. Continuous
PCA, Vranic 2003). Although algorithms that utilize pose
normalization using PCA usually result in descriptors with
higher discriminative power, some similar objects are not
usually normalized in a similar manner (Vranic 2004). Sev-
eral natively rotation invariant descriptors have been pro-
posed so far, including the Spherical Harmonic Descriptor
(SHD) (Kazhdan et al. 2003), the Light Field Descriptor
(LFD) (Chen et al. 2003) as well as various histogram-
based descriptors, such as those proposed by Kriegel et al.
(2003), Ankerst et al. (1999), the D2 and other “Shape dis-
tributions” (Osada et al. 2002), the Surflet Pair Relation
Histograms (SPRH) (Wahl et al. 2003) and the Enhanced
Shape Functions by Ohbuchi et al. (2003a). Natively ro-
tation invariant object description (Kazhdan et al. 2003)
usually involve an integration-like technique which leads
to inadequately discriminant descriptors (Vranic 2003).
Concerning the invariance to shape representations, most
of the existing methods work well either with polygo-
nal meshes or polygon soups, while methods which rely
on the topology of an object demand certain shape rep-
resentation (e.g. watertight models) (Hilaga et al. 2001;
Tung and Schmitt 2005; Mademlis et al. 2008a). The in-
variance to articulation is a hot research problem which
has not been widely addressed so far and requires the ex-
traction of local descriptors. A solution to the latter prob-
lem might also lead to more efficient partial matching algo-
rithms.

The existing 3D object retrieval methods can be classi-
fied into four main categories: histogram-based, transform-
based, graph-based, view-based and, finally, combinations
of the above. In the first category the methods which have
been proposed so far use histograms where the extracted
local or global features of a 3D object are integrated. In
this sense, Ohbuchi et al. (2002) employ shape histograms
that are discretely parameterized along the principal axes of
inertia of the model. Osada et al. (2001, 2002) introduce
and compare shape distributions, which measure properties
based on distance, angle, area, and volume measurements
between random surface points. They evaluate the similarity
between the objects using a metric that measures distances
between distributions. Liu et al. (2006) propose the gener-
alize shape descriptor (GSD) where a 3D histogram counts
the number of specific local shape pairs at certain distances.
Ankerst et al. (1999) introduce a 3D shape similarity model
by defining two major ingredients: the shape histograms as
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an intuitive and discrete representation of complex spatial
objects and an adaptable similarity distance function for the
shape histograms that may take into account small shifts
and rotations by using quadratic forms. In Horn (1984), the
extended Gaussian images (EGI) are introduced, where the
surface normal orientation is mapped on a sphere, namely
the Gaussian sphere. The EGI is obtained by having each tri-
angle vote on the bin corresponding to its normal direction,
with a weight equal to the area of the triangle. In Kang and
Ikeuchi (1993), EGI has been generalized to the complex
extended Gaussian image (CEGI), which stores for each bin
also the normal distance of the surface points to the origin.
The aforementioned methods are, in general, ease to imple-
ment but usually they are not discriminating enough to make
subtle distinctions between classes of shapes.

Transform-based methods are employed either on the
surface or on the volume of a 3D model. In Vranic and
Saupe (2002, 2001), a method where the descriptor vector
is obtained by forming a complex function on the sphere,
is presented. Then, spherical harmonics analysis is used to
form the rotation invariant descriptor vector. In Kazhdan
et al. (2003), the Spherical Harmonic Representation is pro-
posed which transforms rotation dependent descriptors into
rotation invariant ones. In Novotni and Klein (2003), the
theoretical framework for the 3D Zernike moments (Can-
terakis 1999) is extended and applied for 3D content-based
search and retrieval. These are computed as a projection of
the function which defines the object, onto a set of ortho-
normal functions within the unit ball. The 3D Zernike de-
scriptors are natively invariant under rotation. In Papadakis
et al. (2007), the authors apply PCA on the face normals
of a model. Then, the 3D model is decomposed into a set
of spherical functions which represents not only the inter-
sections of the corresponding surface with rays emanating
from the origin but also points in the direction of each ray
which are closer to the origin than the furthest intersection
point. All the presented approaches are extracting sophis-
ticated descriptors that exploit some significant properties
(e.g. rotation invariance transformation Kazhdan et al. 2003;
Novotni and Klein 2003 and highly discriminative descrip-
tor sets Vranic 2004). In most of the aforementioned ap-
proaches, which are directly applied to the 3D geometry
of the objects, the retrieval efficiency may be decreased
when they deal with non-perfect polygon meshes. In order
to avoid the latter, voxel-based representation is preferred,
which is more robust to mesh degeneracies and levels of
detail. In Kazhdan et al. (2003), for example, the method
scan-converts faces into voxels before applying the spherical
harmonic decomposition. Alternatively, the following meth-
ods rely on a voxel-based representation of the 3D object’s
volume: in Daras et al. (2006b), a voxel-based 3D search
and retrieval method based on the Generalized Radon Trans-
form (GRT) is proposed, while in Zarpalas et al. (2007), the

Spherical Trace Transform (STT) is presented. The STT is
among the best algorithms which have ever been presented
(in terms of retrieval accuracy). In general, the transform-
based methods have high retrieval accuracy but usually, pose
invariance is achieved by discarding the “phase” of the trans-
form coefficients at the expense of some shape informa-
tion.

One possible solution to the aforementioned problem is
the graph-based methods, which produce descriptors funda-
mentally different from other vector-based descriptors. They
are more elaborated and complex, in general harder to ob-
tain; but they have the potential of encoding geometrical and
topological shape properties in a more faithful and intuitive
manner. In Hilaga et al. (2001) a technique, called Topol-
ogy Matching, is introduced, which calculates the similarity
between polyhedral models by comparing multiresolutional
Reeb graphs (MRGs). Based on the idea of MRG match-
ing (Hilaga et al. 2001), Chen and Ouhyoung (2002) pro-
pose a 3D model retrieval system, where a preprocessing
step has been added before the Reeb Graph extraction in or-
der to accelerate the graph-matching and retrieval processes.
The work in Hilaga et al. (2001) has been further extended
in Tung and Schmitt (2004, 2005), where the Reeb graph
is augmented with geometrical attributes leading to the cre-
ation of a flexible multiresolutional representation, called an
augmented Reeb graph. In Katz and Tal (2003), a hierar-
chical mesh decomposition algorithm is proposed. The al-
gorithm computes a 3D object mesh decomposition, which
generally refers to segmentation at regions of deep concavi-
ties. A mesh decomposition method, similar to Katz and Tal
(2003), is presented in Tal and Zuckerberger (2006). This
decomposition is represented as an attributed graph, which
is considered the signature of the object. The method is
less computationally expensive than the one in Katz and Tal
(2003), which makes it appropriate for search and retrieval
in large databases. In Mademlis et al. (2008a), a method
which combines topological and geometrical information is
proposed, which is invariant to geometric transformations of
a 3D object, as well as to the different poses of articulated
objects. The drawbacks of the graph-based methods are that
it is difficult to implement them, they do not generalize eas-
ily to all 3D shape representation formats and they require
dedicated matching schemes.

2D view-based methods consider the 3D shape as a col-
lection of 2D projections taken either from canonical or non-
canonical viewpoints. Each projection is then described by
standard 2D image descriptors like Fourier descriptors or
Zernike moments. They rely on the assumption that as the
3D models are completely given, projections can be pro-
duced in a controlled manner so that nuisance effects of oc-
clusion (except self-occlusions), clutter or affine deforma-
tions are avoided. In 2002, Mahmoudi and Daoudi (2002)
introduce a method for indexing 3D models by using a set of



232 Int J Comput Vis (2010) 89: 229–247

7 characteristic views (CVs), three principals and four sec-
ondaries. An object contour-based shape descriptor based on
the Curvature Scale Space (CSS) representation of the con-
tour is, then, generated for each CV. In Vranic (2004), two
view-based descriptors, the Depth-Buffer and the Silhouette
Descriptor, are presented. After a pose normalization using
Continuous PCA (CPCA), depth images and silhouettes are
extracted from the faces of a bounding cube. For each 2D
image, a set of 2D Fourier coefficients are extracted, pro-
ducing the descriptor vectors. Similar to the Depth-Buffer
descriptor (Vranic 2004), the Elevation descriptor, presented
in Shih et al. (2007), takes depth images from the six faces of
a bounding cube. Since the method does not utilize any pose
normalization technique, it takes several combinations of
pairs of views during the matching procedure. The method
presented in Chen et al. (2003) avoids the pose normaliza-
tion problem by taking multiple sets of silhouette images
from 60 different rotations of the 3D object. As 2D de-
scriptors per view, Zernike moments and Fourier descrip-
tors are used. Chaouch and Verroust-Blondet (2006), pro-
pose a novel framework to provide more accurate descrip-
tions of 3D models by associating a relevance index to 2D
images (either depth-buffer or silhouette images). It is based
on the notion that some 2D views of the 3D object are more
significant than others, therefore they should be assigned
different weight during dissimilarity computation. Ohbuchi
et al. (2008) recently proposed a view-based 3D model re-
trieval method based on multi-scale local visual features.
The features are extracted from 2D range images of the
model. For each range image, a set of 2D multi-scale lo-
cal visual features is computed by using the Scale Invari-
ant Feature Transform (SIFT) (Lowe 2004) algorithm. An-
other novel approach is proposed by Napoleon et al. (2008).
The method is based on a set of 2D multi-views and uti-
lizes CPCA for pose normalization. The method introduces
a Multi-scale Contour Representation for each multi-view,
which describes the convexities and concavities of the sil-
houettes at different scale levels. The method presents no-
ticeable results in SHREC’09 Generic and Structural Shape
Retrieval datasets.

The 2D view-based methods have the advantages of be-
ing highly discriminative, can work for articulated objects,
can be effective for partial matching and can also be benefi-
cial for 2D sketch-based and 2D image-based queries. Their
only drawback is that they discard valuable 3D information
(due to the self-occlusion). In order to avoid the latter, a
combination of a 2D view-based method with a 3D-based
method (such as transform-based) is expected to achieve
much higher performance.

In all categories of 3D object retrieval methods described
above, search is performed by using as query a 3D object.
However, in a real-world 3D search and retrieval scenario,
an input 3D object may not always be available. On the

other hand, a 2D image or a hand-drawn sketch is easier
to be provided as query by the user. Consequently, a 3D ob-
ject retrieval mechanism able to support multimodal queries
is clearly much more competitive than others which sup-
port only 3D queries. Although 3D search and retrieval with
multimodal support is a challenging research issue, only few
approaches have been proposed so far. In Funkhouser et al.
(2003), the proposed “Princeton 3D search engine” supports
2D sketch, 3D sketch, 3D model and text as queries. In Chen
et al. (2003), retrieval of 3D objects from 2D sketches is
achieved by matching the 2D descriptors of the sketch with
the corresponding descriptors of the 100 2D silhouettes of
the 3D object. Recently, Ansary et al. (2007) proposed a
framework for 3D model retrieval using 2D (still) photo-
graphic images, sketches, as well as 3D models. The search
engine is based on the Adaptive Views Clustering (AVC)
algorithm (Filali Ansary et al. 2007), which uses statistical
model distribution scores to select the optimal number of
views to characterize a 3D model.

1.2 Proposed Work

The proposed method can be summarized in the block di-
agram presented in Fig. 1. The input 3D object is a tri-
angulated mesh, in one of the common 3D file formats
(VRML, OFF, 3DS, etc.). As a first step, a pose estima-
tion takes place, which includes translation, scaling and ro-
tation of the object. After the pre-processing step, a set of 18
2-dimensional views, taken from the vertices of a bounding
32-hedron is extracted. Both binary (black/white) and depth
images are generated. In each of the extracted 2D images,
a set of 2D functionals is applied, resulting in a descriptor
vector for each view.

The proposed Compact Multi-View Descriptor (CMVD)
belongs to the category of the 2D view-based approaches
and, thus, holds the following advantages:

Robustness to Object Degeneracies, Holes, Missing Poly-
gons. Several feature extraction methods, proposed so far,
are applied to the 3D objects’ surface, which in turn requires
perfect triangulation of the 3D meshes (e.g. watertight ob-
jects). These techniques can work only with a limited num-
ber of objects, since the majority of models publicly avail-
able contain holes, missing polygons and other design de-
fects. On the other hand, the view-based methods can be
applied irrespectively to the object’s triangulation. The only
potential weakness of the view-based methods is that the use
of a bounding polyhedron for scale normalization may cause
undesirable scaling of the 3D object, in cases when the exis-
tence of outliers changes significantly the size of the original
object.
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Fig. 1 Block diagram of proposed descriptor extraction method

Robustness with Respect to the to Objects’ Level of Detail
(LoD). The proposed descriptor extraction method is ap-
plied to a set of 2D images with the same pixel resolution.
Therefore, the extracted descriptors are independent of the
3D object’s complexity.

Unified Framework. Similarly to partial matching, the pro-
posed method can provide 3D model retrieval capabilities
even when the input 3D model is not available. A variety of
queries, such as 2D images, hand-drawn sketches, 3D ob-
jects, are supported and can alternatively be used, which re-
sults in a unified framework for 3D object retrieval, beyond
the traditional 3D search engines. Additionally, the image-
based search capabilities can broaden the application areas
and include real-life mobile application scenarios.

High Discriminative Power. In general, methods in which
3D matching is based on multi-views comparison instead of
global shape geometry comparison, have proven to be more
efficient in terms of retrieval accuracy. The performance of
the proposed method confirms the above conclusion, as it
will be presented in the experimental results section.

Suitable for Partial Matching and Articulated Objects. In
general, a view-based method does not directly extract
global 3D shape descriptors; it combines descriptors taken
from specific parts (multiple views) of a 3D object in or-
der to describe its global shape. If, instead of a 3D object,
only a part of it is available as query, a view-based method
could provide a solution for partial 3D object retrieval by
efficiently matching only a subset of views of a 3D object.
However, designing a matching framework suitable for par-
tial 3D shape retrieval is not so straightforward and it is
still an open research issue. Similarly, a view-based method
could be appropriately modified in order to deal with articu-
lated objects.

Despite the numerous common advantages, the proposed
approach introduces the following novel features:

A Set of Three Complementary 2D Functionals: The pro-
posed method combines the characteristics of three different
2D functionals to describe the shape of a single view: Polar-
Fourier Coefficients, Zernike Moments and Krawtchouk
Moments. The first two have been already used in similar
approaches, while Krawtchouk Moments are used for the
first time in this paper to deal with view-based 3D object
retrieval. The reason we choose to use these functionals is
threefold: (a) they are able to store image information with
minimal information redundancy, (b) they have the impor-
tant property of being rotation invariant and (c) they seem to
be among the most powerful methods for 2D shape recog-
nition as it is evident by Belkasim et al. (1991), Khotanzad
and Hong (1990), Zhang and Lu (2002), Yap et al. (2003)
and was also proved by our experimental results. However,
it should be stated that the proposed framework is modular
enough to allow for integration of other high discriminant
transforms and moment invariants that hold the abovemen-
tioned desired properties. Having such a highly discrimina-
tive 2D descriptor makes the proposed method appropriate
for 3D shape retrieval tasks where only a 2D image or sketch
is given as query.

Efficient Selection of the Multi-Views: Several approaches
have been already proposed towards the selection of the op-
timal set of the 2D views, such as the 6 vertices of an 8-
hedron (Vranic 2004), the 20 vertices of a 12-hedron (Chen
et al. 2003) or even the 42 vertices of an 80-hedron (Ohbuchi
et al. 2008). The 18-views representation proposed in this
paper is used for the first time, it provides a non-redundant
set of views and it has the following advantage over the 20-
view and 42-view representations: the 18 views extracted
from a 32-hedron are symmetric with respect to 90 de-
grees rotations about the three orthogonal axes (x, y, z),
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which makes this representation appropriate for the match-
ing scheme described below.

Efficient Multi-View Matching Scheme: In most of the
view-based methods proposed so far, similarity matching is
based on pairwise comparison of 2D views. In Ohbuchi et al.
(2003b), an all-to-all comparison of 42-to-42 views (1764
comparisons) is performed. The drawback of this matching
method is that it does not take into account the correspon-
dence between neighboring views, thus, it discards valu-
able 3D information. This problem is overcome in the Light
Field Descriptor (LFD) (Chen et al. 2003), where, instead of
matching single pairs of views, a matching of a sequence of
corresponding views is performed. In order to be invariant to
rotations of the 3D objects, the method applies this matching
scheme for all 5460 possible rotations of the model. This in-
creases significantly the similarity matching time and makes
it inappropriate for on-line retrieval applications. In Vranic
(2004), the author applies Continuous PCA (CPCA) for pose
normalization and matches the sequence of 6 views taken
from the vertices of a regular 8-hedron only once, without
any further rotation of the model. However, as it will be ex-
plained in the sequel, rotation normalization based on PCA
and its variations (VCA, CPCA) is not always accurate. The
matching method proposed in this paper involves rotation of
the 3D object 24 times in 90-degrees intervals around the
three orthogonal axes. Thus, exhaustive matching of all pos-
sible rotations as in the case of LFD (Chen et al. 2003) is
avoided, while, at the same time, the method compensates
for the inherent limitations of PCA. This might be more time
consuming than the method in Vranic (2004) (not signifi-
cantly), but it provides higher retrieval accuracy.

Consequently, the method proposed in this paper demon-
strates higher retrieval accuracy than the view-based meth-
ods presented in Chen et al. (2003), Ohbuchi et al. (2008)
and outperforms or is competitive with the best 3D shape
retrieval methods presented so far. The performance can be
further improved if the advantages of the proposed method
are combined with an efficient transform-based method,
since the latter extracts different type of information from
3D content. Among the state-of-the-art transform-based
methods, the Spherical Trace Transform (STT), presented
in Zarpalas et al. (2007), is combined with the proposed
method leading to significantly improved results.

The rest of the paper is organized as follows: Sect. 2
analyzes the descriptor extraction procedure, which con-
sists of a pose estimation step, a views generation step and
the computation of 2D functionals. In Sect. 3, the shape
matching framework for both 2D/3D and 3D/3D matching
is described. Experimental results evaluating the proposed
method and comparing it with other methods are presented
in Sect. 4. Finally, conclusions are drawn in Sect. 5.

Fig. 2 Rotation normalization using both PCA and VCA. The rotation
that produces the model with the smallest bounding volume is selected

2 Descriptor Extraction Method

2.1 Pose Estimation

The Pose Estimation procedure initially involves the transla-
tion and scaling of the 3D object. The model is translated so
that the center of mass coincides with the center of the co-
ordinate system and scaled in order to lie within a bounding
sphere of radius 1.

After translation and scaling, a rotation estimation step is
required, since the 3D object may have an arbitrary orien-
tation. In order to achieve the best possible result, a combi-
nation of the two dominant rotation estimation methods, the
Principal Component Analysis (PCA) (Vranic et al. 2001)
and the Visual Contact Area (VCA) (Pu and Ramani 2005),
which have been proposed so far in the literature, is utilized.
The VCA method achieves more accurate rotation estima-
tion results than PCA when the 3D objects are composed
of large flat areas. Otherwise, PCA produces better results
than VCA. In this paper for every model, rotation normal-
ization is estimated using both PCA and VCA. Then, the
volumes of the bounding boxes parallel to principal axes are
computed and the rotated object with the minimum bounded
volume is chosen. In Fig. 2, an example of the combined use
of PCA and VCA is illustrated. Both PCA and VCA rotation
normalization methods are applied to the arbitrarily rotated
input model. It is obvious from the rotated models that, in
this case, VCA achieves better rotation estimation. Since the
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bounding volume of the VCA-rotated model is smaller than
that of the PCA-rotated model, the former is chosen.

The proposed rotation estimation framework leads to the
automatic detection of the model’s three principal axes with
a quite satisfying level of success. However, it does not pro-
vide information about the orientation of the principal axis.
Therefore, for each of the three principal axes, there are
two possible orientations, which results in 8 different align-
ments of the model. Taking also into account the fact that
the first principal axis may not always be successfully se-
lected among the three principal axes, this leads to a set of
3 × 8 = 24 different alignments.

It must be noted that the proposed rotation estimation
method is introduced to deal with the arbitrary rotations of
the model and not to overcome the inherent limitations of
PCA and VCA in identifying the first principal axis and es-
timating the model’s orientation. The problem of having 24
possible alignments is overcome by appropriately selecting
the set of 2D views as well as by introducing an efficient
matching method, which will be elaborated in the following
sections.

2.2 A Set of Uniformly Distributed Views

The proposed method is based on the matching of multi-
ple 2D views, which can be extracted from a 3D object by
selecting a set of different viewpoints. In order to be uni-
formly distributed, the viewpoints are chosen to lie at the
vertices of a regular polyhedron. The type of the polyhedron
and the level of tessellation need to be carefully considered
in order to provide the optimal solution. As mentioned in the
previous Sect. 2.1, the rotation estimation method may not
effectively identify the first principal axis among the three
principal axes. Thus, in order to compensate for this inherent
limitation of pose normalization, during similarity matching
between two models, the second model has to be rotated 24
times in 90 degrees intervals around the three principal axes.
This requires also 24 different sets of multi-views to be ex-
tracted. This computational burden can be significantly de-
creased by selecting as a base polyhedron a regular 8-hedron
or one of its derivatives (32-hedron, 128-hedron, etc.). The
advantage of this family of polyhedra is that they are sym-
metric with respect to the three Cartesian axes (x, y and z).
By taking views from the vertices of an 8-hedron (or a 32-
hedron, 128-hedron, etc.), a 90-degree rotation about one of
the three Cartesian axes will not generate new views, it will
just change the order of the existing ones. Consequently, in
the pre-processing step, the set of multi-views of the object
needs to be extracted only once, which results in a com-
pact representation. On the other hand, if another type of
polyhedron is chosen, such as 12-hedron (Chen et al. 2003),
20-hedron or 80-hedron (Ohbuchi et al. 2008), several sets
of multi-views need to be extracted.

Another important aspect regarding the optimal selection
of the base polyhedron is the number of views. In Depth-
Buffer and Silhouette descriptors method (Vranic 2004),
views are taken from the 6 vertices of a regular 8-hedron.
It has been already proven in the literature (Lindstrom and
Turk 2000; Huber and Hebert 2001) that 15 to 20 views can
roughly represent the shape of a 3D model. More specifi-
cally, the method presented in Lindstrom and Turk (2000)
uses 15 to 20 views to reconstruct real-world objects. In
Sect. 4, the performance of the CMVD descriptor using both
an 8-hedron and a 32-hedron was evaluated in Princeton
Shape Benchmark Database (Shilane et al. 2004). It was
found that the 18 views of the 32-hedron achieve better re-
trieval accuracy comparing with the 6 views of the 8-hedron,
while the compactness with respect to the number of views
is kept. Based on the above, the 32-hedron was eventually
selected.

In order to render the multi-view images, the camera
viewpoints are placed at the 18 vertices of the 32-hedron.
The image rendering uses orthographic projection, i.e. views
are taken from planes tangential to the 32-hedron at each
viewpoint, as opposed to perspective projection, where
views are taken directly from the viewpoint. Two 2D im-
age types are available:

Binary Images: the rendered images are only silhouettes,
where the pixel values are 1 if the pixel lies inside the
model’s 2D view and 0 otherwise.

Depth Images: the pixel intensities are proportional to the
distance of the 3D object from each sample point of the cor-
responding tangential plane.

Although binary images provide an efficient and robust
representation of a 2D view, depth images contain more in-
formation and produce better retrieval results, if appropri-
ately exploited.

2.3 Computing 2D Functionals on each View

The set of uniformly distributed views, described above,
consists of 2D binary images and depth images. In each im-
age, three rotation-invariant functionals are applied in or-
der to produce the final set of descriptors per view: (a) the
2D Polar-Fourier transform, (b) 2D Zernike Moments and
(c) 2D Krawtchouk Moments. Each functional describes dif-
ferent 2D geometric properties and each one’s role is com-
plementary for the description of the 2D view.

Let ft (i, j) be the 2D image, where i, j = 0, . . . ,N − 1,
N ×N the size of the image, t = 1, . . . ,NV and NV the total
number of views. The values of ft (i, j) are either 0 or 1, for
the binary images, while in the case of depth images, the
values can be any real number between 0 and 1.
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2.3.1 2D Polar-Fourier Transform

The Discrete Fourier Transform (DFT) is computed for each
ft (i, j):

FT(k,m) =
N−1∑

i=0

N−1∑

j=0

ft (i, j) exp

(
−ĵ

(
2πik

N
+ 2πjm

N

))
,

k,m = 0, . . . ,N − 1. (1)

In the DFT, shifts in the spatial domain cause corresponding
linear shifts in the phase component:

FT t (k,m) exp[−ĵ (ak + bm)] ↔ ft (i + a, j + b). (2)

Thus, the DFT magnitude is invariant to circular translation.
Therefore, using discrete polar coordinates:

rij =
√

(c1i + c2)2 + (c1j + c2)2,

ξij = tan−1
(

c1j + c2

c1i + c2

)
,

(3)

c1 =
√

2

N − 1
· rmax, c2 = − 1√

2
· rmax,

i, j = 0, . . . ,N − 1.

(1) becomes:

FT t (k,m) =
N−1∑

i=0

N−1∑

j=0

ft (rij , ξij ) exp(−ĵ (krij + mξij )) (4)

and rotation is converted to a circular translation of ξ . Then,
the first K × M harmonic amplitudes |FT t (k,m)| are con-
sidered for each ft (i, j).

For faster extraction of the Fourier descriptors, the FFT
was used instead of DFT. In order for the FFT to be ap-
plicable, the following image resolutions were used for the
experiments: 64×64 pixels, 128×128 pixels and 256×256
pixels.

2.3.2 2D Zernike Moments

Zernike moments (Vinanco et al. 2003) are defined over a set
of complex polynomials which forms a complete orthogonal
set over the unit disk and are rotation invariant. The Zernike
moments are calculated for each ft (i, j) with spatial dimen-
sion N × N , as:

Zkm = 2(k + 1)

π(N − 1)2

N−1∑

i=0

N−1∑

j=0

Rkm(rij )e
−ĵmξij ft (i, j),

0 ≤ rij ≤ 1, (5)

where k ∈ N+, |m| ≤ k and k − |m| is even and R the radial
polynomials (Vinanco et al. 2003):

Rkm(r) =
k−|m|

2∑

s=0

(−1)s
(k − s)!

s!( k+|m|
2 − s)!( k−|m|

2 − s)! r
k−2s . (6)

The discrete polar coordinates are defined as in (4) with
rmax = 1. The definition of the radial polynomial leads to
Rkm(r) = Rk,−m(r). It can then easily be shown that Zkm =
Zk,−m. The number of Zernike moments for any order, k, is
given by k + 1, while the number of moments up to order k

is (k/2+1)(k +1) (although because of the relationship be-
tween Zkm and Zk,−m given above, only the moments with
m ≥ 0 need to be known).

2.3.3 2D Krawtchouk Moments

Krawtchouk moments (Yap et al. 2003) are a set of moments
formed by using Krawtchouk polynomials as the basis func-
tion set. The nth order classical Krawtchouk polynomials
are defined as:

Kn(x;p,N) =
N∑

κ=0

aκ,n,pxκ = 2F1

(
−n,−x;−N; 1

p

)
, (7)

where x,n − 0,1,2, . . . ,N , N > 0, p ∈ (0,1), 2F1 is the
hypergeometric function defined as:

2F1(a, b; c; z) =
∞∑

κ=0

(a)κ(b)κ

(c)k

zκ

κ! (8)

and (a)κ is the Pochhammer symbol given by:

(a)κ = a(a + 1) · · · (a + κ − 1) = �(a + κ)

�(a)
, (9)

where �(.) is the gamma function.
For each ft (i, j) with spatial dimension N × N , the

Krawtchouk moment invariants can be defined using the
classical geometric moments:

Mkm =
N−1∑

i=0

N−1∑

j=0

ikjmft (i, j). (10)

The standard set of geometric moment invariants, which are
independent to rotation (Hu 1962) can be written as:

νkm =
N−1∑

i=0

N−1∑

j=0

[i cos ξ + j sin ξ ]k

× [j cos ξ − i sin ξ)]mft (i, j), (11)

where

ξ = (1/2) tan−1 2μ11

μ20 − μ02
(12)
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and μ are the central moments:

μpq =
N−1∑

i=0

N−1∑

j=0

(i − x̄)p(j − ȳ)qft (i, j),

p, q = 0,1,2, . . . . (13)

The value of ξ is limited to −45◦ ≤ ξ ≤ 45◦. In order to
obtain the exact angle ξ in the range of 0◦ to 360◦ modifica-
tions described in detail in Teague (1979) are required.

Following the analysis described in Yap et al. (2003), the
rotation invariant Krawtchouk moments are computed by:

Q̃km = [ρ(k)ρ(m)]−(1/2)
N−1∑

i=0

N−1∑

j=0

ai,k,p1aj,m,p2νij , (14)

where the coefficients aκ,n,p can be determined by (7), and
ρ(k), ρ(m) can be calculated from the orthogonality con-
dition (Yap et al. 2003). It should be noted that in our ex-
periments the parameters p1,p2 were set to 0.5 (Yap et al.
2003).

A compact representation of the multi-view descriptor
implies also a small number of descriptors per view, oth-
erwise the shape matching time would be prohibitive. The
numbers of descriptors for each of the above functionals are
determined as follows:

Concerning the amplitudes of the Polar-Fourier coeffi-
cients, the values of up to order kFT are selected, resulting
in a total of NFT = (kFT × (kFT + 1))/2 descriptors.

Similarly, selecting Krawtchouk moments of order kKraw

results in NKraw = (kKraw × (kKraw + 1))/2 descriptors.
Finally, selecting Zernike moments of order kZern would

give (kZern/2 + 1)(kZern + 1) descriptors, which is reduced
to NZern = (kZern/2 + 1)((kZern + 1)/2 + 1) descriptors due
to the relationship between Zkm and Zk,−m described in
Sect. 2.3.2.

The total number of descriptors ND for each view is
given below:

ND = NFT + NZern + NKraw. (15)

In order to produce a compact descriptor vector, the num-
ber ND should be relevantly small, which implies small val-
ues of orders kFT , kZern and kKraw, but not significantly small
so as not to discard valuable information. It was found ex-
perimentally, that the optimal values are: kFT = 12, kKraw =
12 and kZern = 13.

3 Matching Method

Similar to existing view-based approaches, the proposed
framework measures the similarity between two 3D objects

by summing up the similarity from all the corresponding im-
ages.

Let Dt be the descriptor vector of the t th view, which is
extracted according to the procedure described in Sect. 2.3.
The dissimilarity metric between a corresponding pair of
views of two models A and B is given by the L1-distance:

dt =
ND∑

k=1

|DA
t (k) − DB

t (k)| (16)

where ND is the number of descriptors per view.

3.1 3D/3D Matching

Let now A and B be two 3D models, with descriptor vectors
DA

t and DB
t , respectively, where t = 0, . . . ,NV and NV the

total number of views. It must be noted that in the case of
depth images, NV = 18, while in the case of silhouettes only
half of the views (NV = 9) are kept. This is due to the fact
that the symmetrical silhouette images are identical, thus,
produce the same descriptors. The total dissimilarity d be-
tween the models A and B is given by the following equa-
tion:

d =
NV∑

t=1

dt , (17)

where dt is the dissimilarity of the t th view described in
(16). Note that the dissimilarity metric does not include
matching of all views of model A with all views of model
B (“all-to-all” matching), it includes matching of only the
corresponding views (i.e. matching of ViewA

1 with ViewB
1 ,

ViewA
2 with ViewB

2 and so on). The 3D/3D matching proce-
dure is depicted in Fig. 3. The numbering of views has been
arbitrarily chosen but it is consistent for every 3D model.
This results in a significantly fast matching procedure, how-
ever, it requires that rotation normalization provide 100%
success, not only in terms of identification of the three prin-
cipal axes but also in terms of orientation of each axis.

In Fig. 4, the results of rotation normalization for three
3D models, by using the method described in Sect. 2.1, are
presented. The method succeeds in detecting the first prin-
cipal axis (x) in all three cases, while, in the third case, it
confuses the second with the third principal axis (y, z). Al-
though all three models look similar, a comparison of the
first two with the third, using (17), would produce an un-
expectedly large dissimilarity. This is due to the fact that
the views numbers in the third model correspond to differ-
ent model parts compared to those in the first two models
(e.g. in the third case, view #2 depicts the back of the ani-
mal, while in the first two cases, view #2 depicts the left side
view, etc.).
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Fig. 3 The proposed Similarity
Matching Framework. The total
dissimilarity between two 3D
objects is the sum of the
dissimilarities of the
corresponding views

Fig. 4 The results of
unsuccessful rotation
normalization in 3D/3D
matching. In the third 3D object,
the method confuses the second
with the third principal axis,
which leads in false detection of
the corresponding views

The above problems cannot be avoided due to the inher-
ent limitations of PCA and VCA. However, for a model ro-
tated by an arbitrary angle, the proposed rotation estimation
method is accurate in detecting the three principal axes, dis-
regarding of the axis order and orientation. Taking the above
into account, the similarity matching of two 3D models can
be improved, if, instead of a single set of views, 24 different
sets of views are used for the second model. This number is
equal to the different possible alignments of the 3D model,
after the rotation normalization step is applied. In order to
produce these sets of views, the 3D model should be ro-
tated 24 times at intervals of 90 degrees. In the case that the
multiple views are taken from the six vertices of a regular
8-hedron, then, in each of the 24 rotations, the viewpoints
will always lie at these six vertices. Thus, the views (and
consequently the 2D descriptors) need to be extracted only
once. In order to have an adequate set of views, a 32-hedron
(produced by the 8-hedron at the first level of tesselation) is
used instead. The total dissimilarity d between A and B is
now modified as:

d = min{dr} = min

{
NV∑

t=1

dr
t

}
, (18)

where r = 1, . . . ,24 is the total number of rotations of the
second model, dr is the dissimilarity of the r th rotation and
NV = 18 is the number of views of the 32-hedron.

3.2 2D/3D Matching

Retrieval of 3D models can also be achieved if, instead of a
3D model, a single 2D image is used as query. In order to

measure the dissimilarity, the query 2D image is compared
to the NV views of the 3D model and the most similar (to
the image) view is selected:

d = min{dt } = min

{
ND∑

k=1

|DQ(k) − DB
t (k)|

}
(19)

where t = 1, . . . ,NV , NV = 18 is the total number of views
of model B , DQ(k) are the descriptors of the query image
Q and DB

t (k) are the descriptors of the t th view of model B .
It is obvious that 2D/3D matching cannot be as efficient

as 3D-3D matching, since a 2D image is unable to capture
the global visual information of an object. However, it is
much easier to provide a 2D image as query than a 3D model
(e.g. take a photo of an object or draw a sketch). In order
to produce a valid dissimilarity metric, the query 2D image
should be of the same type as the multiple views generated
from a 3D model, i.e. either binary (black/white) images or
depth images. Since depth images are usually difficult to cre-
ate, binary images are preferred.

3.3 Computational Aspects

A method for 3D search and retrieval should not only be ef-
fective in retrieving similar objects but also be adequately
fast, which makes it appropriate for online applications.
Therefore, a major aspect in the proposed method is the
computation time.

The main time-consuming parts throughout the descrip-
tor extraction procedure are the multiple views generation
and the 2D functionals computation. The views generation
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Table 1 Average computation times for descriptor extraction and
matching procedures

Action Time (msec)

Views generation 2587

Polar-Fourier descriptors extraction 63

Krawtchouk descriptors extraction 398

Zernike descriptors extraction 811

Matching between 2 models 10

time per object varies from a few milliseconds to a few sec-
onds and depends on the number of triangles that constitute
the object’s 3D mesh. On the other hand, the 2D function-
als computation time depends on calculations performed on
a fixed number of equally-sized 2D images, thus, has only
slight variations.

Similarly, the matching time between two 3D models is
constant, since it involves distance computation of equally-
sized descriptor vectors.

However, this time may become prohibitive when the
number of database models increases significantly and each
3D model should be rotated 24 times according to the pro-
posed matching framework. In this case, a method based on
look-up-table, similar to the one presented in Chen et al.
(2003) is utilized to speed-up the matching process. More
specifically, the descriptor values for each 2D view are quan-
tized to 8 bits. Then, a 256 × 256 matrix is created to store
the pairwise descriptor distances. During the matching step,
calculation of distance between 2 descriptors is reduced to a
simple look-up to the 256 × 256 matrix.

In Table 1, the average computation times for descriptor
extraction and matching procedures are summarized. The
times were obtained using a PC with a 2.4 GHz processor
and 3GB RAM, running operating system Windows XP.

The matching time presented in Table 1 corresponds to
the depth-buffer CMVD descriptor, which uses all 18 views.
In the case of the binary CMVD descriptor, where only half
views are used, the time is reduced to 5 msec.

The proposed method uses less number of views (only 18)
than the competing view-based methods presented in Chen
et al. (2003) and Ohbuchi et al. (2008). In terms of de-
scriptor extraction time, CMVD is much faster than both
of the above. Moreover, in the similarity matching between
two models, CMVD is faster than the LFD presented by
Chen et al. (2003). The method presented by Ohbuchi et al.
(2008), however, extracts only one descriptor vector (of
dimension up to 1500). This results in a faster similarity
matching.

The matching time of the proposed method can be signifi-
cantly decreased, by taking a closer look at the rotation nor-
malization results. More specifically, in most of the cases,
the rotation normalization method confuses the first with
the second principal axes, while the third principal axis is

correctly predicted. Assuming correct prediction of the 3rd
principal axis, the 3D object has to be rotated only 8 times
instead of 24. This makes the matching process 3 times
faster, without significant degradation of performance.

4 Experiments

4.1 Evaluation of the 3D/3D Matching Method

The proposed method was experimentally evaluated using
three different databases. The first one was compiled from
the Internet by us and it is called “the ITI database” (The
VICTORY 3D Search Engine). It consists of 544 3D models
classified in 13 different categories: 27 animals, 17 spher-
oid objects, 64 conventional airplanes, 55 delta airplanes, 54
helicopters, 48 cars, 12 motorcycles, 10 tubes, 14 couches,
42 chairs, 45 fish, 53 humans, and 103 other models. This
choice reflects primarily the shape of each object and sec-
ondarily its function. The average numbers of vertices and
triangles of the models in the new database are 5080 and
7061, respectively. The second dataset, the “Princeton Shape
Benchmark (PSB)”, was formed in Princeton University
(Shilane et al. 2004) and it consists of 907 3D models classi-
fied into 35 main categories. This classification reflects pri-
marily the function of each object and secondarily its form.
Finally, the third dataset, the “Engineering Shape Bench-
mark (ESB)”, contains a total of 867 3D CAD models from
the mechanical engineering domain (Jayanti et al. 2006).
They are classified into 3 main classes: 107 flat-thin wall
components, 281 rectangular-cubic prism and 479 solids of
revolution.

To evaluate the proposed method, each 3D model was
used as a query object. The retrieval performance was eval-
uated in terms of the well-known “precision-recall”, where
precision is the proportion of the retrieved models that are
relevant to the query and recall is the proportion of rele-
vant models in the entire database that are retrieved in the
query.

Two variations of the proposed method are used: the
CMVD-Binary that uses binary images and the CMVD-
Depth that uses depth images. First of all, experiments were
performed for various 2D image resolutions and numbers
of views, as well as for each 2D functional separately, in
order to select the optimal values of the above parameters.
In Fig. 5, the precision-recall diagram of the CMVD-Depth
method in PSB database is presented for three different 2D
image resolutions: 64 × 64, 128 × 128 and 256 × 256 pix-
els. By increasing the views resolution from 64 × 64 to
128×128 pixels, the performance is significantly improved.
Further increase of resolution to 256 × 256 pixels produces
no further improvement, which leads in the selection of
128 × 128 pixels resolution. In Fig. 6, the results of the
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Fig. 5 Precision-recall diagram of the proposed method, in PSB data-
base, using different 2D image resolutions: 64 × 64, 128 × 128 and
256 × 256 pixels

Fig. 6 Precision-recall diagram of the proposed method, in PSB data-
base, using different bounding polyhedra: 8-hedron (6 views) and
32-hedron (18 views)

CMVD-Depth method, using two different bounding poly-
hedra, are depicted. It is obvious that the 18-view represen-
tation of a 32-hedron produces better retrieval results than
the 6-view representation of the 8-hedron, which maintains
the assumption that 18 views provide a better representation
of the overall 3D shape than the 6 views.

Figure 7 presents the results of CMVD-Depth method in
PSB database, using as 2D descriptor either each 2D func-
tional separately or their combination. It is worth to men-
tion that all three 2D rotation-invariant functionals demon-
strated satisfactory performance. Their combination, how-
ever, achieved even higher retrieval accuracy. This relies on
the fact that each functional describes different 2d geomet-

Fig. 7 Precision-recall diagram of the proposed method, in PSB data-
base, using each 2D functional separately and their combination

Fig. 8 Precision-recall diagram of the proposed method, in PSB data-
base, using either the 24-rotation matching scheme or the much faster
8-rotation matching. In the 8-rotation matching, we assume that the
third principal axis is correctly predicted

ric properties and each one’s role is complementary for the
description of the 2D view.

The proposed similarity matching framework requires
rotation of one of the two 3D objects 24 times, in order
to compensate for the inherent limitations of rotation nor-
malization. In order to reduce the matching time, the pro-
posed matching method can be slightly modified as follows:
assuming that the 3rd principal axis is correctly predicted
(which is true for most of the cases), the 3D object has to be
rotated only 8 times, instead of 24. This makes the match-
ing process 3 times faster, without significant degradation of
performance. In Fig. 8, the precision-recall diagram of the
CMVD-Depth method in PSB database, using 8 and 24 ro-
tations in similarity matching, is presented. For recall values
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Fig. 9 Precision-recall curves diagram of the proposed method using
the ITI database

up to 0.5, the performance of the above matching variations
is almost the same. The decrease in retrieval accuracy of the
8-rotation matching, for recall values higher than 0.5, is of
little importance, taking into account a real-life 3D shape
retrieval scenario. In this case, the retrieval performance in
only the first ranked positions matters (the user would not
browse the entire ranked list, the first 10–20 retrieved ob-
jects suffice), while retrieval time should be considerably
low.

In Fig. 9, the precision-recall diagrams of the proposed
method using the ITI database are depicted. It is obvi-
ous that the use of depth images instead of binary images
improves the performance of the method, since the depth
image can capture more details in a 3D object. The pro-
posed method is also compared with the Spherical Trace
Transform (STT), which was presented in Zarpalas et al.
(2007). The Spherical Trace Transform is a transform-based
method and produces rotation-invariant descriptor vectors
with high discriminative power. Although STT has demon-
strated very high performance in ITI database, the CMVD-
Depth method is slightly better.

An attempt to combine the advantages of the proposed
view-based method and the STT (transform-based) method
was also made. The retrieval results of the combined
“CMVD-Depth & STT” method are depicted in Fig. 9. As
expected, the combination of different types of descriptors
has achieved the highest retrieval performance.

Similar results are obtained using the PSB and the ESB
databases. In Figs. 10 and 11, the precision-recall diagrams
of the proposed method (CMVD-Binary and CMVD-Depth)
and the combination of CMVD-Depth with STT (CMVD-
Depth & STT) are shown for the PSB and the ESB data-
base, respectively. The diagrams demonstrate the retrieval
efficiency of CMVD-Depth method, as well as of the com-
bination of CMVD-Depth with the Spherical Trace Trans-
form.

Fig. 10 Precision-recall curves diagram of the proposed method using
the PSB database

Fig. 11 Precision-recall curves diagram of the proposed method using
the ESB database

Our results were also compared to those of the following
three methods. The first two belong to the category of the
“view-based” methods, while the third combines 2D view-
based methods with a transform-based method.

• The light field descriptor (LFD): Similar to the proposed
method, LFD (Chen et al. 2003) uses a representation of a
model as a collection of images rendered from uniformly
sampled positions on a view sphere. The distance between
two descriptors is defined as the minimum L1-difference,
taken over all rotations and all pairings of vertices on
two 12-hedra. The advantages of CMVD over LFD are:
(a) significantly less number of rendered 2D views, since
only 18 views are extracted, (b) less number of differ-
ent rotations, since a pose normalization step has been
added, and (c) the use of depth images instead of only
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Fig. 12 Comparison of the proposed method with LFD, BF-SIFT and
DSR in terms of precision-recall, using the PSB database

black/white silhouettes, which captures more details per
view.

• The bag-of-features SIFT algorithm (BF-SIFT): BF-SIFT
(Ohbuchi et al. 2008) is also based on the rendering of a
set of range images from multiple viewpoints. For each
image, the method uses the well-known Scale Invariant
Feature Transform (SIFT) to extract local features. Fi-
nally, the method integrates all the local features of the
model into a single feature vector by using the Bag-of-
Features approach.

• DSR: This method (Vranic 2004) is denoted as hybrid
DSR and it stands for Depth-Buffer, Silhouette and REXT
(Radialized Spherical Extent Function). It is a combina-
tion of two view-based methods (Depth-Buffer descriptor
and Silhouette descriptor) and the well-known transform-
based method REXT (Vranic 2003). DSR is one of the
best-known shape matching methods that produce very
accurate retrieval results, which reinforces the notion
that the combination of view-based with transform-based
methods achieve the highest efficiency of descriptors.

It should be noted that we did not implement the above
methods. The performance of the first and the third method
was computed by using the executables taken from the home
pages of the authors, while the results of the second method
were directly extracted from the ones presented in Ohbuchi
et al. (2008) and are available only for the PSB database.

Figure 12 contains a numerical precision versus re-
call comparison of CMVD-Depth with the aforementioned
methods using the PSB database. It is clear that the proposed
method outperforms all others. The difference is even more
noticeable when the proposed method is combined with the
Spherical Trace Transform (CMVD-Depth & STT).

Similar results are obtained using the ITI and the ESB
databases. Figures 13 and 14 illustrate the precision-recall
diagrams, using the ITI and the ESB database respectively,

Fig. 13 Comparison of the proposed method with LFD and DSR in
terms of precision-recall, using the ITI database

Fig. 14 Comparison of the proposed method with LFD and DSR in
terms of precision-recall, using the ESB database

where the proposed method (CMVD-Depth) and the combi-
nation of CMVD-Depth with STT (CMVD-Depth & STT)
are compared to the LFD and DSR methods. The results
are impressive, since both of the proposed approaches out-
perform the other existing 3D shape retrieval methods. It is
worth to mention that CMVD-Depth alone is slightly better
than DSR, which combines view-based and transform-based
information.

4.2 Evaluation of the 2D/3D Matching Method

The experimental results presented above have proven that
the proposed method is very effective in retrieving similar
3D objects from a database, using a 3D model as query.
However, an input 3D model is not always available and
it cannot be created from scratch by a non-expert user. On
the other hand, using as query a 2D image or a hand-drawn
sketch is more convenient for inexperienced users.
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Fig. 15 Retrieved 3D models using only a single view as query. The first column depicts the query 2D image, while the rest depict the retrieved
3D objects

As explained in the previous sections, the proposed
framework provides efficient search and retrieval capabil-
ities using only a 2D image or a sketch as a query, when
an input 3D model is not available. In this case, the match-
ing is performed by computing the dissimilarity between
the query image and the multiple 2D views of the 3D object
and finally selecting the view with the lowest dissimilarity.
This requires that the input 2D images (or sketches) are in
the binary (black/white) form, since depth images cannot be
easily sketched or retrieved.

It is clear that 2D/3D matching cannot be compared
with 3D/3D matching, in terms of retrieval performance,
since the amount of information enclosed in a 2D query
is significantly less than in a 3D object. In order to mea-
sure the performance of the 2D/3D matching method, an
evaluation scheme more qualitative than quantitative, other
than precision-recall, is needed. The evaluation procedure,
followed in this paper for 2D/3D matching, is described
below.

For each 3D object of the ITI database, a single 2D view,
preferably the most significant, was selected from the set
of the 18 binary images. Each of the selected binary im-
ages was used as query in order to retrieve 3D objects from
the ITI database. Note that the term “significant” has been

used to characterize the view that an ordinary user would
choose, if asked to represent a 3D object in two dimensions.
In order to ensure validity of results, an experiment has been
conducted, where 50 users were asked to choose among all
views of several 3D objects the most representative ones. Al-
though the identification of the most significant view for a
3D object is highly subjective, the one that reflected the ma-
jority of users was eventually selected. Finally, for each 2D
query, a rank list of retrieved results is generated and a qual-
itative evaluation of the k-first results, in terms of similarity
to the query, takes place.

The results are impressive, since, for the majority of the
queries, the 3D objects retrieved at the first positions of the
rank list belong to the same category as the query. Figure 15
depicts the retrieved results for seven example 2D queries.
The first model is the query binary image, while the rest are
the first nine retrieved 3D objects. Note that the 3D object
that corresponds to the query image has been removed from
the rank list.

A query 2D image can be taken either by drawing a
sketch or from the user’s digital camera. In order to sup-
port these types of queries, a user-friendly interface has been
appropriately designed within the VICTORY project (The
VICTORY 3D Search Engine). In Fig. 16, screenshots of the
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Fig. 16 Retrieved 3D models using as query a hand-drawn sketch

Fig. 17 Retrieved 3D models using as query a 2D image. The image
is separated from the background by using the proposed interface for
user-assisted segmentation

VICTORY search and retrieval tool are given. The interface
provides a typical drawing tool, allowing the user to easily
draw a sketch of the query., as well as a panel to visualize
the retrieved results.

Despite the simplicity of the proposed interface, the qual-
ity of the input hand-drawn sketches (and consequently of
the retrieved results) depends on the users’ drawing skills.
However, in such a search and retrieval scenario, even few
relevant hits among the retrieved results are enough. Then,
as a second step, the user can select one of the relevant re-
trieved 3D objects as new query in order to retrieve more
relevant results.

Alternatively, the tool provides an extra functionality to
load a 2D image and draw a contour of the desired object
(Fig. 17). This manual segmentation, which separates the
query image from the background, is very useful and pro-
duces more accurate results. The retrieved 3D objects in the
first positions of the rank lists are all similar to the queries,
which demonstrates the efficiency of the proposed method
to support multiple types of queries.

4.3 Evaluation of CMVD in SHREC’09

The performance of the proposed method was also com-
pared with the best shape retrieval methods worldwide, in

Fig. 18 Average results in SHREC’09 structural shape retrieval track
using F-measure. The black columns depict the 1st Tier results, while
the colored ones depict the 2nd Tier results

Shape Retrieval Contest 2009 (SHREC’09). More specifi-
cally, CMVD participated in the following tracks:

• Structural shape retrieval,
• Shape retrieval contest on a new generic shape bench-

mark and
• Shape retrieval contest of partial 3D models.

4.3.1 Structural Shape Retrieval

In this track (Hartveldt et al. 2009), the shape repository
contained 200 models. The models were classified in 10
main classes. Each main class contained a pair of (two) sub-
classes. Matching models from inside a class are highly rele-
vant and matching results between models the two pair class
are marginally relevant. The performance of the shape re-
trieval was measured using first and second tier precision
and recall, finally presented as the F-measure. This measure
gives a nice overview of the complete retrieval performance
and the method especially.

Five groups have participated in the Structural Shape Re-
trieval track and they have submitted 14 sets of rank lists. In
this track, a combination of the proposed CMVD descriptor
with a transform-based method, presented in Mademlis et al.
(2008b), was used. The results are presented in Fig. 18.

Regarding the First Tier, it is clear from the results that
for all different measures (Precision, Recall and F-measure),
the proposed approach is ranked second among 14 different
submitted runs. The retrieval performance of the method is
improved in the Second Tier, where the third run of the com-
pound CMVD approach is always ranked first for all differ-
ent measures. This is very important, if we also consider that
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Fig. 19 Bar plot of the Nearest Neighbor (NN), First Tier (FT), Sec-
ond Tier (ST), E-measure (E) and Discounted Cumulative Gain (DCG)
for the best runs of each participant, in SHREC’09 generic shape re-
trieval track

the second tier provides a better overview of the complete
retrieval performance than the first tier, since it relies on the
first 20 retrieved objects, instead of 10 used in the first tier.
Similar performance is also achieved by the MCC method
proposed by Napoleon (Napoleon et al. 2008). The third run
of the MCC method is ranked first in the first tier and second
in the second tier, just after the proposed compound CMVD
method.

4.3.2 Shape Retrieval Contest on a New Generic Shape
Benchmark

This dataset (Akgul et al. 2009) consists of 720 3D objects
classified in 40 categories. The query set is composed of
80 3D objects, two from each category. The performance
of the shape retrieval was measured using the following
evaluation measures: Precision-Recall curve; Average Preci-
sion (AP) and Mean Average Precision (MAP); E-Measure;
Discounted Cumulative Gain; Nearest Neighbor, First-Tier
(Tier1) and Second-Tier (Tier2).

Seven groups have participated in the Generic Shape Re-
trieval track and they have submitted 22 sets of rank lists.
In this track, the same compound CMVD approach with the
one presented in Structural Shape Retrieval Track was used.

In Fig. 19, a bar plot of the Nearest Neighbor (NN), First
Tier (FT), Second Tier (ST), E-measure (E) and Discounted
Cumulative Gain (DCG) for each method is presented. It
is obvious that the MDLA method of Chaouch achieved
the best performance among the seven participants, while
the performance of the proposed compound CMVD method
is acceptable with respect to the overall view. The MCC
method by Napoleon, which was competitive with the pro-
posed method in Structural Shape Retrieval Track, seems to

Fig. 20 Precision-recall curves in SHREC 2009 partial shape retrieval
track

outperform the compound CMVD method in this track and
is ranked second after the MDLA method of Chaouch.

4.3.3 Shape Retrieval Contest of Partial 3D Models

This dataset (Axenopoulos et al. 2009) consists of 720 3D
objects classified in 40 categories. This query set is com-
posed of 20 range images, which are acquired by capturing
range data of 20 models from arbitrary view directions.

Three variations of the CMVD descriptor have been used
for evaluation, resulting in three different runs: (a) CMVD-
Binary that uses binary images, (b) CMVD-Depth that uses
depth images and (c) merged CMVD-Depth and CMVDBi-
nary, which is a weighted sum of the dissimilarities com-
puted by each method separately. The performance has
been evaluated using 6 different evaluation metrics: Near-
est Neighbor (NN), First Tier (FT), Second Tier (ST),
E-measure, Discounted Cumulative Gain (DCG) and Pre-
cision Recall Diagram.

In Fig. 20, the precision-recall curves of all methods are
depicted. It is clear from the results that all three runs of our
CMVD approach outperform the BF-SIFT method, while
they are competitive with the BF-GridSIFT method. More
specifically, our method outperforms BF-GridSIFT for re-
call values close to 0.1, from 0.5 to 0.6 and greater than 0.9.
This means that we have a better retrieval accuracy for the
first 10% of relevant retrieved results, i.e. in the first places
of the rank list, while we have comparative or even better re-
trieval accuracy for the last 50% of relevant retrieved results.
Furthermore, CMVD-Depth has the same NN (0.45) with
BF-GridSIFT. Nearest Neighbor indicates the relevance to
the query of the first retrieved result. Regarding the Emea-
sure and DCG, the CMVD-Binary and the merged-CMVD
achieved better performance respectively. Their values are
very close to the ones of BF-GridSIFT.

The overall results demonstrate that the CMVD descrip-
tor is among the best 3D object retrieval methods that use as
query only a single 2D view, such as a range scanned image.
This maintains the assumption that the combination of the
three 2D rotation-invariant functionals, which is introduced
in this paper, provides a very powerful descriptor for a single
view.
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5 Conclusions

In this paper, a unified framework for 3D object retrieval was
presented. The method provides search and retrieval capabil-
ities by supporting multimodal queries (3D objects, 2D im-
ages or sketches). The proposed view-based approach cre-
ates a compact representation of a 3D object as a set of mul-
tiple 2D views (both binary and depth images) taken from
uniformly distributed viewpoints. For each view, a set of
2D rotation-invariant shape descriptors, based on the Polar-
Fourier Transform, Zernike Moments and Krawtchouk Mo-
ments, is produced. The paper also introduced a novel
matching scheme, which calculates the global shape simi-
larity between two 3D models by effectively combining the
information extracted from the multi-view representation.

The proposed Compact Multi-View Descriptor (CMVD)
was evaluated in terms of retrieval performance using three
different databases. The results were compared to those of
the best-known retrieval methods in the literature and clearly
demonstrate that the proposed method outperforms all oth-
ers in terms of precision-recall. Another interesting conclu-
sion is that the combination of a view-based method, such as
CMVD, with a transform-based method, such as the Spher-
ical Trace Transform, achieved the highest retrieval perfor-
mance.

Finally, the effectiveness of the proposed 3D shape re-
trieval framework, using a single 2D image as query, was
tested. The results were impressive, since the method was
able to retrieve relevant objects by exploiting a very limited
amount of information enclosed in a 2D image.
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