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In this paper, the novel 3D shape impact descriptor is introduced, which is based on the resulting gravita-
tional phenomena in the surrounding area of every 3D object. The 3D object is considered as a distributed
3D mass and the descriptor of the 3D object is indirectly computed from the resulting fields. The field is
described using both Newton's and general relativity's laws. In the Newtonian approach, histograms of
the field values in the surrounding area of the 3D object are computed, while in the relativistic approach
the descriptors are histograms of the time–space curvature in the surrounding area of the 3D object. The
basic motivation behind the proposed approach is the robustness with respect to object's degeneracies
and the native invariance of the resulting descriptors under rotation and translation. Experiments which
were performed in various 3D object databases proved that the proposed method can be efficiently used
for 3D object retrieval applications.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

3D object retrieval is a relatively new and challenging research
field and a major effort of the research community has been devoted
to the creation of accurate and efficient 3D object search and re-
trieval algorithms. Generally, descriptor extraction procedures aim
to describe the geometry of the 3D object. The commonly utilized
descriptors are global features, local features, histograms, topologi-
cal features or combinations of the above. Some very good surveys
on this topic can be found in [1,2].

The efficiency of the existing algorithms is mainly limited due
to two major problems: the degeneracies of the 3D object (e.g.
holes, missing polygons, hidden polygons) and the demand for in-
variance of the description under rotation, since translation and scal-
ing normalization can be easily and robustly resolved. Although the
problem of object's degeneracies can be efficiently tackled using a
triangulation algorithm (e.g. Delaunnay triangulation) or a hole fill-
ing algorithm [3], the resulting mesh may not be a perfect for the
3D object. Concerning the demand for rotation invariance descrip-
tion, two widely acceptable solutions have been presented in the
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literature: the application of a native rotation invariant 3D object
description (e.g. spherical harmonics [4], light field descriptor (LFD)
[5], histogram-based descriptors [6]) or the rotation normalization
of the object prior to extraction of the geometric descriptors. Both
approaches present advantages and drawbacks: the rotation normal-
ization approaches presented so far (e.g. continuous PCA [7], normals
PCA [8]), although usually result in descriptors with higher discrim-
inative power, some similar objects are not usually normalized in a
similar manner [9]. Natively rotation invariant descriptors, in con-
trast [4], usually involve an integration-like technique resulting in
loss of discriminative accuracy.

The major contribution of this paper is a new perspective in the
3D object description. The descriptors of the 3D object are not de-
rived directly from its geometry. For the first time, a method is pro-
posed which does not work either on the surface or the volume of a
3D object and does not take into account object's topology. Instead,
the descriptors are computed on the resulting phenomena derived
from the existence of the 3D object in the time–space. More specif-
ically, the 3D object is treated as a distributed mass positioned in
the empty space; the gravity laws are then utilized and the result-
ing field in the surrounding space is computed. The descriptors are
extracted from this field. The field is described using two different
approaches: expansions of the traditional Newtonian laws and a sim-
plified instance of Einstein's theory for general relativity. This leads
to native rotation invariant 3D object description, robust against ob-
ject degeneracies and with high discriminative power.

The rest of the paper is organized as follows: after an overview
of the existing approaches, in Section 2 the complete descriptor
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extraction procedure is presented, while in Sections 3 and 4 the
Newtonian and the relativistic descriptor extraction processes are
thoroughly described, respectively. The matching approach utilized
for the Newtonian and relativistic descriptors is explained in Section
6, while the experimental results are given in Section 8. Finally, the
conclusions are drawn in Section 9.

1.1. Related work

In the area of 3D content-based search and retrieval, a variety of
methods have been proposed so far. Although there are many ways
to organize the existing approaches into broad categories [2,1], the
existing methods can be classified into two broad categories: the
topology-based approaches, where the object is mainly described us-
ing topological features, and the geometry-based approaches, where
global or local geometrical descriptors are computed directly from
the 3D object. The 3D impact descriptor approach proposed in this
paper is clearly a geometrical approach, thus, only methods of this
kind are presented in the sequel. These methods are based on global
geometrical features of 3D models, which can be extracted either
from their surface or from their volumetric representation.

In [10], a fast querying-by-3D-model approach is presented,
where the descriptors are chosen so as to mimic the basic criteria
that humans use for the same purpose. The descriptors of this ap-
proach are simple and their computation is rather straightforward.
This method, as well as many early approaches on the field, has not
been evaluated using well-known benchmarks.

In [5], an approach that measures the similarity among 3D mod-
els by visual similarity is proposed. In [11,12], a method where the
descriptor vector is obtained by forming a complex function on the
sphere is presented. Then, spherical harmonics are obtained which
form the rotation invariant descriptor vector. In [13], the MPEG-7
shape spectrum descriptor is defined as the histogram of the shape
index, calculated over the entire surface of a 3D object and is in-
variant under rotation, translation and scaling. In [14], the spherical
harmonic representation is proposed which transforms rotation de-
pendent descriptors into rotation invariant ones. In [15], the theo-
retical framework for the 3D Zernike moments [16] is extended and
applied for 3D content-based search and retrieval. These are com-
puted as a projection of the function which defines the object, onto
a set of orthonormal functions within the unit ball. The 3D Zernike
descriptors are natively invariant under rotation.

In [17], the extended Gaussian images (EGI) are introduced, where
the surface normal orientation is mapped on a sphere, namely the
Gaussian sphere. The EGI is obtained by having each triangle vote on
the bin corresponding to its normal direction, with a weight equal
to the area of the triangle. In [18], EGI has been generalized to the
complex extended Gaussian image (CEGI), which stores for each bin
also the normal distance of the surface points to the origin.

All the presented approaches are extracting sophisticated de-
scriptors that exploit some significant properties (e.g. rotation invari-
ance transformation [14,15], highly discriminative descriptor sets
[9]), however, all of them describe directly the 3D geometry. Thus,
the efficiency of the aforementioned approaches can be seriously de-
creased when they deal with non-perfect polygon meshes. In order
to tackle the latter, two solutions have been proposed in the liter-
ature: the voxel-based approaches and the view-based approaches.
In [19], a voxel-based 3D search and retrieval method based on the
generalized radon transform (GRT) is proposed where two forms of
the GRT are proposed, while in [20], the spherical trace transform is
presented. These approaches are robust against object degeneracies,
by implementing a voxelization approach [19].

In [5], the light field descriptor is presented. LFD is a view-based
approach, which relies on the assumption that two objects are similar
if they look similar from many viewpoints. Thus, every object is

described using 2D Fourier and 2D Zernike descriptors extracted
from various snapshots, taken from different views. The view-based
approaches descriptors ignore the object parts that are hidden from
the selected viewpoints (e.g. concave areas of the 3D object), which
can decrease their retrieval efficiency.

In [28], a composite descriptor is introduced, based on the combi-
nation of the depth buffer, silhouette and radialized extent function
descriptors. This descriptor outperforms every single approach that
relies on.

More recently, the field of 3D shape search and retrieval has
attracted more researchers and the competition on the field has been
significantly increased, mainly due to the shape retrieval contest,
organized each year by the EU funded project Aim@Shape [21].

In this paper, the 3D shape impact descriptor (SID) is proposed
which is based on the physics laws of gravity. The proposed approach
offers native invariance with respect to rotation and translation of
the object. Additionally, the resulting description, which combines
both local and global features, is robust against object degeneracies.
Although the proposed 3D shape impact descriptor is computed in
the surrounding area of the 3D object, which is common to the view-
based approaches, the resulting descriptor also captures the internal
structure of the 3D object, which is not taken into account by the
view-based approaches. Two instances of the 3D shape impact de-
scriptor are proposed: the Newtonian impact descriptor (NID) and
the relativistic impact descriptor (RID). Both approaches require vol-
umetric representation of 3D objects, thus in the preprocessing step
all objects are transformed into their volumetric representations.

2. Method overview

Let us assume that the 3D object representation is a binary volu-
metric function. In cases where the 3D object is described in another
form (e.g. polygon mesh), a preprocessing step that transforms the
object to a binary volumetric representation is imposed [20]. The
key idea of the proposed approach is the description of the result-
ing phenomena occurred by the insertion of the 3D object in the
space. It is expected that similar objects will result in similar phys-
ical phenomena. An obvious selection to study this argument is the
traditional Newtonian force field. More sophisticated selections in-
volve the generalized Einstein field theory, or the Maxwell electro-
magnetic field theory. The present paper combines the static fields
inspired from the traditional Newton laws with the Einstein's the-
ory of generalized relativity. The surrounding field and, thus, the 3D
object description is based both on Newtonian field and time–space
curvature. More specifically, the descriptor extraction process can
be summarized to the following discrete steps which are depicted
in Fig. 1.

Firstly, the static field is computed in the surrounding area of
the 3D object. Then, the values of the field's potential and density
in the surrounding area of the object form histograms, the NID. The
relativistic invariants that describe the curvature of the 4D space
(time+3D space) that is caused by the mass of the 3D object (accord-
ing to the general relativity laws) form the histograms of the RID.
NID and RID are combined and form the 3D shape impact descriptor.

2.1. Preprocessing

The aim of the preprocessing step is to provide a common repre-
sentation for all objects. Thus, all objects are transformed into a vol-
umetric 3D function. In order to transform a given 3D mesh into its
volumetric representation, the 3Dmesh is firstly scaled in order to fit
in the unit sphere. Then, the real subspace [−1, 1]× [−1, 1]× [−1, 1]
is partitioned into Q ×Q ×Q equally sized volume elements (voxels)
and the volumetric representation of the 3D object is a function of
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Fig. 1. The SID computation.

the point x ∈ R3 defined as

f (x) =
{
1 if x lies inside the object

0 elsewhere
(1)

Based on the function f (x), the 3D space is partitioned into two
sets, Y= {yi = x|f (x)= 1}, which represents the set of voxels that are
occupied by the 3D object, and the complementary set of Y, Y, which
represents the free space. It is assumed that Y consists of N voxels,
while M is the cardinality of Y.

The main benefit of using this kind of volumetric representation
of a 3D object is that it is very robust in case of surface degeneracies
(e.g. outliers, non-visible polygons,missing polygons), where all basic
measurements such as that of the center of mass of a model, cannot
be computed correctly using surface-based methods, resulting to
various errors.

3. Newtonian impact descriptor computation

Concerning the Newtonian field computation, the object is con-
sidered as a discrete volumetric function, thus, for the rest of this
section, the discrete formulas of the underlying laws are utilized. In
order to compute a static field, a cause for the existence of the field
should be present. The field's cause is selected to be the distributed
mass of the 3D object, by assuming that every voxel is a point mass
m[yi] = 1. yi represents the voxels that are occupied by the object
(i.e. yi ∈ Y) and ȳj are the free space voxels (i.e. ȳj ∈ Y). More specif-
ically, in every point ȳj of the 3D space that is not occupied by the
object, the density and the potential of the field can be computed
according to

E(ȳj) = C
N−1∑
i=0

1
|ȳj − yi|3

(ȳj − yi) (2)

�(ȳj) = C
N−1∑
i=0

1
|ȳj − yi|

(3)

where E(·) is the density of the force field, �(·) is the potential of the
field and C is a constant value.

The field which is described using (2) and (3) is the classical
Newtonian field and can be generalized using the following:

E(ȳj) =
N∑
i=0

1
|ȳj − yi|K+1

(ȳi − yi) (4)

�(ȳj) =
N∑
i=0

1
|ȳj − yi|K−1

(5)

where K ∈ N∗ is a free parameter that defines the field's law. Ob-
viously, when K = 2, the generalized field leads to the Newtonian
field. For simplicity, and with no loss of the generality of the pre-
sented approach, the constant parameter has been selected to be
C = 1. Although, the parameter C affects the scaling of the resulting
field values, the values of the field form histograms that are used as
descriptors which discard scaling.

The introduction of the parameter K in the field's equations offers
a great flexibility: a variation of the K changes the way that every
point of the object contributes to the resulting field. Generally, the
static field at a point is mainly the result of the mass that is included
in an area centered at this point and its size depends on the value
of K, due the quantity |ȳj − yi|K±1 in the denominator of (4) and (5).
For lower values of K, the area that affects the value of the field in
a specific point is bigger, while for greater values of K, the area is
smaller. Thus, generally, when the value of K is low, the resulting field
captures more global information while greater values of K result in
a more local object description.

The field is computed in various points in the exterior of the
object. The key point in the presented approach is the selection of
the appropriate observation areas in the exterior of the 3D object
to create histograms. By examining Eqs. (4) and (5) it is observed
that the field vanishes and tends to be homogenous as the point
under suspicion in the exterior of the 3D object is moved away from
the object. This effect is clearly depicted in the equipotential areas
around the object (Fig. 2). Thus, the field at points that are closer
to the surface of the object presents more variations and, thus, the
resulting descriptor corresponding to these points is intuitively more
discriminative.
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Fig. 2. The field's potential �(x) produced from (a) human and (b) animal. Red areas represent higher potential values while blue areas correspond to lower potential value.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. Newtonian histogram computation

The Newtonian impact descriptor, in the proposed approach, is
composed of three major histograms created by:

• The field potential values, computed in points that are equidistant
from the object surface, i.e.

{�(ȳj) : ȳj ∈ R3, L(ȳj,Y) = d} (6)

• The field density Euclidean norms, computed in points that are
equidistant from the object surface:

{|E(ȳj)| : ȳj ∈ R3, L(ȳj,Y) = d} (7)

• The radial component of the field density, computed in points that
are equidistant from the object surface:

{E(ȳj)T · nr(ȳj) : ȳj ∈ R3, L(ȳj,Y) = d} (8)
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Fig. 3. The red surface is composed by points which are equidistant from the object surface. The three descriptor histograms are constructed based on the values of the
field in the equidistant surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where L(ȳj,Y) is the distance of point ȳj from the surface of the 3D
object Y and nr(ȳj) = (ȳj − yc)/|ȳj − yc| and yc is the mass center of
the 3D object. The equidistant points are depicted in Fig. 3.

Lemma. The Newtonian impact descriptor is invariant under scaling,
rotation and translation.

Let us assume that O is a 3D object represented by the volumet-
ric function f (x), Y = {y = x|f (x) = 1} and Y = R3 − Y are the sets
that represent the points of the object and the surrounding space,
respectively. Moreover, let OR be the 3D object arbitrarily rotated by
a rotation matrix R and translated by a translation vector tt (YR and
YR are the corresponding point sets). Thus, if ȳj ∈ Y, yi ∈ Y, ȳRj ∈ YR

and yRi ∈ YR, then

ȳRj = Rȳj + tt (9)

yRi = Ryi + tt (10)

E(ȳRj ) =
N∑
i=0

1
|ȳRj − yRi |K+1

(ȳRj − yRi ) (11)

=
N∑
i=0

1
|Rȳj + tt − Ryi − tt|K+1

(Rȳj + tt − Ryi − tt)

=
N∑
i=0

1
|R|K |ȳj − yi|K+1

R(ȳj − yi)

= R · E(ȳj) (12)

Thus,

|E(ȳRj )| = |E(ȳj)| (13)

nr(ȳRj ) =
ȳRj − yRc
|ȳRj − yRc |

= Rȳj + tt − Rȳc − tt
|Rȳj + tt − Rȳc − tt|

= Rȳi − Rȳc
|Rȳj − Rȳc|

= 1
|R|R

ȳj − yc
|ȳj − yc|

= Rnr(ȳj) (14)

E(ȳRj )
T · nr(ȳRj ) = E(ȳi)R

TRnr(ȳj) (15)

= E(ȳj)nr(ȳj) (16)

Thus,

ET (ȳRi )nr(ȳRi ) = E(ȳi)nr(ȳj) (17)

�(ȳRj ) =
N∑
i=0

1
|ȳRj − yRj |K−1

=
N∑
i=0

1
|Rȳj + tt − Ryi − tt|K−1

=
N∑
i=0

1
|R|K−1|ȳj − yj|K−1

= �(ȳj) (18)

Thus,

�(ȳRj ) = �(ȳj) (19)

The rotation and translation invariance have been proved for the
norm of the field density of (7), the fields potential and the radial
component of the field density.

Thus, the resulting histograms are invariant under translation and
rotation. As a consequence, every object requires normalization only
with respect to scaling. The latter can be easily achieved by uniform
scaling of the 3D object so as its bounding sphere has a predefined
radius.

4. Relativistic impact descriptor computation

The relativistic impact descriptor computation is inspired by the
work presented in [22]. RID captures the way that a 3D object curves
the surrounding time space. In order to be invariant for the repre-
sentation of 3D objects, the method is not applied directly to the 3D
object, but to its surrounding field.

Initially, it is assumed that the surrounding time–space of the
object gets curved due to the 3D object's mass. Then, the surrounding
space is sampled and at every sample the Einstein's gravity equation
(assuming that the cosmological constant � = 0) is solved:

R�� − 1
2Rg�� = �T̆�� (20)

where g�� is the metric of the curved space, T̆�� is the input stress-
energy tensor computed directly from the field primitives (Eqs. (4),
(5)) and R��R are the Ricci tensor and the Ricci scalar, respectively,
that are functions of the g�� and its derivatives. Also, �, �= [1, 2, 3, 4].
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Due to the symmetry of the g��, i.e. g�� = g��, (20) represents a
system of partial differential equations. For the needs of this paper,
it is assumed that the time–space is weakly curved, in order to have
an analytic solution for (20) [23]:

g�� =
∫ ∫ ∫

D

T̆��(t − |x − x′|,x′)
|x − x′| ds (21)

Using the values of g��, which are computed according to (21), two
invariants [22] that characterize the time–space curvature are com-
puted:

V1 = R = −
4∑

�=1

4∑
�=1

�T̆��g�� (22)

V2 =
4∑

�=1

4∑
�=1

R��R�� (23)

where R�� is computed directly from (20). The values V1 and V2 are
calculated for every point in the surrounding area of the 3D object.
These invariants represent measures of the Riemannian curvature.

The values V1 and V2 can be considered as the Euclidean anal-
ogous of �1 and �2 in the Riemannian geometry and capture the
local curvature of the time–space near a point x. The V1 and V2 are
proved that are invariant under rotation scaling and translation in the
Riemannian theory [24]. The intuitive proof can be easily derived by
the fact that V1(x) and V2(x) are computed locally for every point
using as input the Newtonian field which is proved that is invari-
ant under rotation and translation (Section 3) and involves distances
and coordinates that are relative to the point x.

Finally, two histograms are constructed using the values V1
and V2. These histograms capture the curvature of the surrounding
time–space, due to the insertion of the object in the time–space.
The mathematical relations between the metric g�� and the Ricci
scalar and Ricci tensor are provided in the Appendix. For more so-
phisticated analysis, the reader is referred to any book concerning
general relativity (e.g. [24]).

5. The 3D shape impact descriptor

The 3D shape impact descriptor is the combined novel descrip-
tor introduced in this paper. It is composed of 36 independent his-
tograms. Given a 3D object A, the 3D SID is computed as follows:
firstly, the NID is computed for various values of d and K. For every
pair (d,K) three separate histograms are formed. The values used for
the computation of NID histograms are also used for the estimation
of the values required for the RID histogram computation. Then, the
RID histograms are stored along with the NID histograms. The 3D
SID is composed by a set of independent histograms which are sep-
arately stored and combined during the matching process.

6. Matching method

The matching method of the presented approach is based on
histogram metrics. The widely adopted Ln Minkowski distance is
not a sufficient dissimilarity metric for histogram-based matching
because histograms present differences and require special metrics.
The need for more sophisticated metrics can be clearly depicted
in Fig. 4, where two histograms of similar objects are presented
along with a histogram corresponding to a third, different object.
Intuitively, the distance d(H1,H2) between the histograms H1 and H2
should be smaller than the distance d(H1,H3) between H1 and H3.
However, the distances computed using traditional metrics (e.g. L1)
lead to completely different results. A more comprehensive study

0.25

0.2

0.15

0.1

0.05

0

Fig. 4. Three histograms. H1: blue, H2: red, H3: green. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

concerning histogram comparison can be found in [25]. In this paper,
the following metrics have been utilized:

(a) The normalized distance, presented in [20], which is computed
as

d(H1,H2) =
k∑

i=1

2|H1(i) − H2(i)|
H1(i) + H2(i)

(24)

where k is the number of histogram bins.
(b) The modified normalized distance, which is computed as

d(H1,H2) =
k∑

i=1

2(H1(i) − H2(i))
2

H1(i) + H2(i)
(25)

where k is the number of histogram bins.
(c) The diffusion distance [25], where the difference between two

histograms H1 and H2 is treated as an isolated temperature field
and a metric for its diffusion is computed. The latter can be
mathematically be expressed as

d(H1,H2) =
∫ +∞

0
L1(T(i, t))dt (26)

where

T(i, t) = H1(i) − H2(i)

t
√
2�

∗ e−i2/2t2

For every proposed histogram descriptor a different comparison
metric has been utilized. The histograms that compose NID and RID
are based on different underlying laws (NID is based on the classical
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Newtonian theory and RID on the laws of general relativity). Also, NID
is composed of different histograms that represent the fields den-
sity, potential and radial density component. Thus, every histogram
captures information concerning the 3D shape in a unique way and
for this reason requires different similarity metric for comparison.
More specifically, for the potential related histograms the normal-
ized distance of (25) has been utilized and the diffusion distance of
(26), for the other two types of histograms. The basic motivation be-
hind the selection of different metric for the histograms created by
the values of the potential is that it is a scalar field value while the
values compose the other NID histograms are based on non-scalar
descriptors.

6.1. Combined matching

Let A,B be two 3D objectswhich are described by the 3D shape im-
pact descriptors histograms, i.e. {HA

i , i=1, . . . ,X} and {HB
i , i=1, . . . ,X}.

The final score for RID, NID and SID is computed using

D(A,B) =
X∑
i=1

wid(H
A
i ,H

B
i ) (27)

where X is the number of the total number of independent his-
tograms, d(·) is the appropriate metric and wi are experimentally
selected weights.

7. Computational aspects and practical considerations

A major aspect in every search and retrieval method is the com-
putational time. The approach presented in this paper involves a
serious number of computations and, thus, a performance analysis
should be considered.

Firstly, in case of NID, let N be the number of voxels occupied by
the object andM the number of points where the field values require
computation. Thus, according to (4) and (5) the complexity of the
approach is O(NM). These values can also be exploited by RID, for a
direct estimation of the metric g�� using (21). The field is considered
as close-to-static, so the field tensor is practically constant during
time (i.e. �T��/�t � 0). Also, the metric is a local feature, thus, the in-
tegration area D is much more smaller when compared to the size of
the object, resulting in a fast computation of the metric. Concluding,
RID, assuming that the field values have been pre-computed during
NID, has a complexity of O(N). Thus, the whole descriptor extraction
approach has complexity of O(MN).

The O(MN) complexity can be considerably time consuming,
when the values of N and M are relatively high. Both N and M values
depend on the original 3D object and the selected level-of-detail
in the voxelization approach. However, this leads in a trade-off
between execution time and accuracy of the resulting representa-
tion. Higher values for Q result in a more discriminative discrete
volumetric function f (x), however, the values of N and M are high
and thus, the execution time is considerably higher. In contrast,
selecting lower values for Q leads to faster extraction of NID and
RID with, however, lower discrimination. Towards selecting the
best trade-off between accuracy and execution time, the value of
Q has been experimentally selected to be Q = 48, while the mean
execution time is kept below 60 s using a dual core machine (2GHz
per core) running Windows XP.

A very interesting characteristic of the proposed approach is that
it offers a native way to parallelize the computations. The compu-
tation of the field values required both by NID and RID and the
metric g�� computation can easily be computed in parallel for every
point.

8. Experimental results

Firstly, the robustness of the whole approach was evaluated with
respect to object degeneracies, using an example 3D object which
consists of 14602 vertices and 29202 triangles. Nine different ver-
sions of the same object were generated, using mesh simplification,
mesh subdivision and noise addition. For every version of the 3D
mesh, its voxelized representation was computed and then its SID
descriptor. In Table 1 the maximum, the mean and the cummulated
difference are presented. It is obvious that the proposed method is
robust againstmesh subdivision, whilemesh simplification and noise
addition do not seriously affect the results. It should be mentioned
that both 50% mesh simplification and 2% noise addition seriously
affect the quality of the 3D mesh.

Then, various NID descriptors for different values of K and d were
compared using the ITI database. Fig. 5 depicts the comparative re-
trieval performance of the NID descriptors for K = 1, 4, 5, 6, d = 1, 2
and combinations of them.

By examining Fig. 5, it is obvious that the best results are achieved
using the combination of all histograms. A very interesting result
of the comparison is the significant increase of the retrieval perfor-
mance for versions that combine NID histograms computed using a
lower value of K to histograms computed using a high value of K.
The latter can be explained by the fact that the shape information
captured by NID histograms with lower value of K is “more global”,
when compared to the shape information included in NID histograms
with greater value of K and, thus, the combination of local and global
shape information results in better retrieval performance. Also, lower
values of d result in higher retrieval performance, which is expected,
as the field primitives tend to be homogenous as d increases.

The method was also evaluated towards applying the best value
of Q with respect to both time efficiency and retrieval accuracy.
In Fig. 6 the retrieval performance of SID for various sizes of the
voxel model Q=32, 40, 48, 64 is presented. It is obvious that the best
performance is achieved when Q = 64, with a slight advantage over
Q=48. However, the time required for the SID extraction using Q=64
is significantly greater while the retrieval accuracy is not increased
proportionally (Table 2).

The proposed approach was evaluated for its retrieval perfor-
mance using the Princeton shape benchmark (PSB) [26], the engi-
neering shape benchmark (ESB) [27] and the ITI 3D model's database
[19] and was compared to well-known approaches of Gaussian Eu-
clidean distance transform (GEDT), which is based on the comparison
of a 3D function, whose value at each point is given by composition
of a Gaussian with the Euclidean distance transform of the surface
[4], the light field descriptor, where a representation of a model as a
collection of images rendered from uniformly sampled positions on
a view sphere is utilized [5], the 3D Zernike descriptor, the Radial-
ized spherical extent function (REXT), where a collection of spher-
ical functions giving the maximal distance from center of mass as
a function of spherical angle and radius is utilized [7], the DSR de-
scriptor proposed by Vranic [28]. The results for the aforementioned

Table 1
SID difference between various versions of the same object.

Object Voxels different SID mean difference

1. Mesh simplification 90% 0 0
2. Mesh simplification 75% 0 0
3. Mesh simplification 60% 0 0
4. Mesh simplification 50% 0.9% 0.3%
5. Catmul–Clark subdivision 1 loop 0 0
6. Catmul–Clark subdivision 2 loops 0 0
7. Catmul–Clark subdivision 3 loops 0 0
8. Uniform noise 0.5% 0 0
9. Uniform noise 1% 0.2% 0.1%
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Fig. 5. Comparative precision–recall diagrams for the ITI database for various versions of the NID descriptor.

Fig. 6. Comparative precision–recall diagrams for the ITI database.

Table 2
SID mean execution times for various values of Q.

Q Mean execution time (s)

32 10
40 17
48 25
64 50

approaches were computed using the executables provided by the
authors. For the 3D Zernike approach, which was applied to voxel-
based representation, the voxelization approach followed is the one
described in this paper. The retrieval accuracy of all methods was
evaluated using the precision–recall diagrams, where precision is
defined as the ratio of the relevant retrieved objects against the
total number of the retrieved objects, and recall is the ratio of
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Fig. 7. Comparative precision–recall diagrams for the ITI database.

Fig. 8. Comparative precision–recall diagrams for the ITI database.

the relevant retrieved objects against the total relevant objects in
the database.

The evaluation of the proposed scheme was performed sepa-
rately for the NID, RID and the combined shape impact descriptor
composed by RID and NID. Fig. 7 depicts the comparison of the re-
trieval performance of NID, RID and SID, in order to select the most
appropriate descriptor vector. Although, the results of the single
RID are not competitive to NID, due to the different nature of the

computed descriptors, the SID descriptor that combines RID and NID
is proved to be the best descriptor. The worse performance of the
RID when compared to NID is mainly explained by the assumption
of the weakly curved time–space.

The performance of the SID was compared to the performance of
REXT, LDF and GEDT in Figs. 8, 9 and 10 for the ITI database, PSB and
ESB, respectively. The presented precision recall diagrams can lead
to very useful results. By comparing the precision recall diagrams for
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Fig. 9. Comparative precision–recall diagrams for the Princeton shape benchmark.

Fig. 10. Comparative precision–recall diagrams for the engineering shape benchmark.

the three different databases, a first and very obvious result is that
all the approaches present completely differently behavior in a dif-
ferent database. The latter is basically the effect of the different 3D
content included in each database, as well as the number of the
3D objects and the way that the 3D objects have been classified.
Also, the relative performance of the competitive methods varies
significantly when a different database is used to evaluate the re-
trieval performance. This can be easily explained by the dataset clas-
sification with respect to performance of every method for every
class.

It is obvious that SID outperforms all other approaches in all
datasets. Another important fact in the presented approach is
identified on the nature of the descriptors. Histogram-based de-
scriptors have been generally considered as descriptors with lower
discriminative power, mainly due to their statistical nature. SID is a
histogram-based descriptor, which proves that the appropriate se-
lection of the values that construct the histograms is crucial for the
discriminative power of the resulting histogram-based descriptor
and that histogram-based descriptors can potentially provide highly
discrimination.



Author's personal copy

A. Mademlis et al. / Pattern Recognition 42 (2009) 2447 -- 2459 2457

Fig. 11. Indicative retrieved results. The first column depicts the query 3D object while the rest are the first four retrieved objects.

Fig. 12. Indicative retrieved results. The first column depicts the query 3D object while the rest are the first four retrieved objects.

In Figs. 11 and 12 some representative retrieved results for spe-
cific queries are shown. In the last line an interesting result is pre-
sented: for a query that belongs in the class of “Tubes”, a “belt”
is ranked 4th. Although this result is semantically irrelevant to the
query, the geometric similarity between them is obvious. Results of
this kind are generally expected in all approaches that do not take
into account any high-level information, that could semantically dis-
criminate the 3D objects.

9. Conclusions

In this paper, the shape impact descriptor has been introduced. To
the best knowledge of the authors, this is one of the first approaches
where the descriptor indirectly captures geometrical features of the
3D object, by describing its impact in the surrounding space. The
experimental results proved the efficiency of the proposed descrip-
tors in performing geometry-based 3D object search and retrieval.
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Although geometry-based retrieval approaches present very good
results, 3D objects that are semantically similar may not be retrieved.
In these cases, the geometry-based results should be combined in
a semantic-based framework where the system is enhanced with
external knowledge in order to improve the retrieval performance.

Appendix A. Relativistic relations

The Ricci scalar (R) is related to Ricci tensor (R�	) and the covari-
ant expression of the Riemannian tensor (R���	):

R =
4∑

�=1

4∑
	=1

g�	R�	 =
4∑

�=1

4∑
	=1

4∑
�=1

4∑
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g�	g��R���	 (28)

The covariant expression of the Riemannian tensor is related to
the original expression as

R�	�� =
4∑


=1

g�
R


	�� (29)

where the Riemannian tensor is
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where x1, x2, x3, x4 are the four coordinates of the time–space.
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