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ABSTRACT

Most available methods for endmember extraction use the
convexity of the data structure and consider the vertices of the
data as the purest pixels. Such methods do not consider the
applicability of the linear mixing model once the endmembers
have been extracted. Thus they might return false endmem-
bers if the data contain outliers such as anomalies. In this
paper we tackle this problem by identifying endmembers in a
robust way, separating them from outliers. We tested the pro-
posed algorithm with real and synthetic data and compared it
with the VCA, SGA and N-FINDR algorithms, showing bet-
ter and more robust endmember extraction.

1. INTRODUCTION

Spectral unmixing consists of decomposing the measured
spectrum of a mixed pixel into a set of pure class spectra, or
endmembers, and computing their corresponding fractions,
or abundances. Pure cover classes correspond to the usual
components in the scene, such as water, soil, or metal. Pure
substances might be considered rare events in an image where
most of the background pixels correspond to mixtures of pure
materials.
State of the art endmember extraction methods use the con-
vexity of the data structure and treat the vertices of the data as
the purest pixels [1]. The major objection to such methods is
that they simply treat the spectra as mathematical vectors, and
they do not consider the applicability of the linear model once
the endmembers have been extracted. It has to be taken into
account that anomalies as well as the purest pixels present
in an image might be the extremes of the spread of spectral
signatures [2]. In other words, pixels that constitute the ver-
tices of the convex hull of the cloud of data points might be
either anomalies or purest pixels, and in order to distinguish
between those, the applicability of the linear model has to
be considered. On the other hand, methods that search for
anomalies might wrongly return endmembers as anomalies,
since both populations are relatively small [1].
A robust endmember extraction algorithm for hyperspectral
data is presented in this paper. The algorithm extends the

work presented in [3] and shows its applicability for the ro-
bust identification of the endmembers in a scene. The method
is based on the assumptions that the linear mixing model is
valid and that due to the resolution of the image, most pix-
els are mixtures of relatively rare pure substances. Thus, if
we represent all pixels as linear combinations of the back-
ground classes, pixels corresponding to each pure class are
expected to show extreme abundance values with respect to
one of the background classes. They are also expected to
show small values of residual error after having applied the
unconstrained linear unmixing model (allowing negative and
superunity abundances). Anomalies are identified as pixels
with spectra that cannot be explained as linear combinations
of the spectra of the background classes.
This paper is organised as follows. In Section 2, endmember
extraction methods are briefly reviewed. In Section 3, we
present the proposed methodology. In Section 4, results are
presented. Finally, we conclude in Section 5.

2. ENDMEMBER EXTRACTION TECHNIQUES

Many algorithms have been developed for endmember extrac-
tion in hyperspectral data. Some methods use the convexity
of the data structure and try to find a set of vertices that repre-
sent the endmembers. N-FINDR attempts to find the simplex
of maximum volume that can be inscribed within the data set
with a given number of vertices [4] [5]. The volume V (E) is
calculated as

V (E) =
1

(n− 1)!
|detE| (1)

where n is the number of desired endmembers, and E is de-
fined as

E ≡

[
1 1 . . . 1
e1 e2 . . . en

]
(2)

where ei are the spectra of the endmembers, represented as
column vectors. The procedure begins with a random set of
n pixels as endmembers. Then, a trial volume is calculated
for every pixel in each endmember position by replacing that
endmember and recalculating the volume. If the replacement
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results in an increase in volume, the pixel replaces the end-
member. This procedure is repeated until there are no more
replacements of endmembers. The computational perfor-
mance of the algorithm depends on the accuracy of the initial
random selection of endmembers [6].
The simplex growing algorithm (SGA) [1] improves the
N-FINDR algorithm by including a process of growing a
simplex by one vertex at a time, until it reaches a desired
number of vertices. The virtual dimensionality (V D) [7] is
implemented as a stopping rule that determines the number
of vertices that have to be generated by the algorithm. Addi-
tionally, it also selects an appropriate initial spectrum as the
first vertex of the simplex, instead of using random spectra as
endmembers for initialisation.
Vertex component analysis (VCA) follows a different ap-
proach for endmember extraction. VCA iteratively projects
data onto a direction orthogonal to the subspace spanned by
the endmembers already determined [8]. The new endmem-
ber signature corresponds to the extreme of the projection.
The algorithm iterates until the number of expected endmem-
bers is reached.
The major objection to such methods is that when one identi-
fies the extreme pixels in a set as the purest pixels, one may
easily include outlier spectra, which do not correspond to the
cover classes that make up the observed mixtures. Pixels that
constitute the vertices of the convex hull of the cloud of data
points might be either anomalies or pure cover class pixels
[2], and in order to distinguish between those, the use of a
robust method based on the mixing model is needed.

3. METHODOLOGY

The proposed robust unconstrained linear unmixing (RULU)
endmember extraction algorithm consists of three steps. In
the first stage of the algorithm, the classes associated with
the background, which are the dominant classes in the image,
are identified by clustering the image pixels [3]. The result-
ing clusters may be considered as representatives of the back-
ground classes in the image. Once the background classes
have been determined, we use the unconstrained least square
error approach to unmix all pixels in the image. This method
estimates the abundance of each component inside the pixel
by minimising the sum of the squares of the errors, using as
endmembers the background classes. Finally, we search for
pixels with extreme values of abundance fractions and low
residual error, when expressed as linear combinations of the
background class spectra.
To help visualise our ideas, let us consider the spectral space
of figure 1. Let us say that the vast majority of the observed
spectra may be clustered in three clusters with mean spectra
b1, b2 and b3. However, in the image one may also observe a
few pixels with spectra a1 and a2. A non robust algorithm will
consider as endmembers the extrema of the convex hull of all

Fig. 1. Manifold in a 4-band space with three background
classes, b1, b2 and b3. Here, e is the error we are prepared
to tolerate for the linear mixing model, and p1, p2 and p3 are
the pure classes, while a1 and a2 are two anomalies.

observed spectra, including a1 and a2. The pure class spectra,
however, that gave rise to the observed mixtures, must have
spectra that lie on the manifold defined by the mixtures and be
expressible in terms of the mixtures with mixing proportions
that are negative and/or larger than 1 (i.e. in the particular ex-
ample of figure 1, they should not lie inside triangle b1b2b3).
In the case of real data, the identified background classes de-
fine a low dimensionality manifold embedded in the high di-
mensionality spectral space. We “thicken” that manifold by
allowing pixels to belong to it, as long as their distance from
it is below a certain threshold, and we consider all other pix-
els as anomalies, and thus exclude them from the process of
endmember identification. This is done by thresholding the
residual error, Eres, after having applied the unconstrained
linear unmixing model. Eres is computed as,

Eres =
∥∥∥r−B f̂

∥∥∥ (3)

where r is the spectrum of the pixel, f̂ is the vector of propor-
tions of the background classes, B, that are obtained from the
least square error solution of r = Bf. We threshold Eres with
the error we are prepared to tolerate. This is done in an auto-
matic way using the histogram of the residual error values.
Pixels showing extreme abundance values, but residual error
smaller than the computed threshold, when expressed as lin-
ear combinations of the background class spectra, correspond
to the pure classes. On the contrary, pixels that are not com-
patible with the data (i.e. show residual error higher than
the threshold) are considered as anomalies (i.e. rare or un-
expected spectra which do not correspond to the pure classes
that created the observed mixtures).
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Table 1. Spectral angle distance between the extracted end-
members and laboratory reflectances (in degrees) for the
RULU, N-FINDR, SGA AND VCA algorithms.

Substance
Alunite Buddingtonite Calcite Kaolinite

RULU 4.8 4 5.6 7.7
N-FINDR 8.5 4.1 5.7 9.9

SGA 4.8 4.5 5.9 7.7
VCA 5.1 5.6 5.8 7.7

4. EXPERIMENTS

4.1. Endmember extraction

To evaluate the performance of the four algorithms (RULU,
SGA, VCA and N-FINDR), the similarity of the extracted
endmembers with the ground truth endmembers was mea-
sured by computing the cosine of the angle between the end-
member and the corresponding ground truth spectrum (SAD,
spectral angle distance).
The data, used to determine how well the algorithms find the
endmembers in the scene, consist of a real AVIRIS hyper-
spectral image from the Cuprite mining district in Nevada
[9]. This image has been widely used to study endmember
extraction [6][1]. The 350 × 350 pixels image has 224 spec-
tral bands with 10− nm spectral resolution. However, bands
1 − 3, 105 − 115, and 150 − 170 were removed prior to the
analysis due to water absorption and low SNR in those bands
[1] leaving a total of 189 bands. There are a large number of
minerals present in this scene but we concentrated our study
on four minerals, namely Kaolinite, Buddingtonite, Alunite,
and Calcite, that are found to be prominent and in pure form
in this area [6]. This data set is particularly well suited to
test the background class extraction method, since there are
spectral libraries with all the minerals in the scene, that can
be used as ground truth.
The virtual dimensionality (VD) criterion [7] is implemented
as a stopping rule to determine the number of vertices re-
quired for the VCA, SGA and N-FINDR algorithms. We used
V D = 22 based on the false alarm rate fixed at probability
10−4 as it was chosen in [1]. In order to compare RULU with
the other methods, we select the number of nodes of the SOM
so that the number of clusters is similar to the chosen VD.
Table 1 compares the spectral angles between the extracted
endmembers and laboratory reflectances for the four algo-
rithms. RULU performs from marginally better to better than
the other algorithms. It is also observed that the RULU and
SGA algorithms find the same pixels as endmembers for the
Alunite and Kaolinite substances. N-FINDR has the worst
performance.

4.2. Robustness in the presence of anomalies

The data used for this experiment consist of 10 hyperspectral
images covering 8–11 μm of the spectrum in 30 bands and
128 × 128 pixels [10]. The scenario contains fields, roads,
buildings, trees, pylons, telegraph poles and other features.
The anomalies are the materials corresponding to coaches,
cows, tractors and landrovers. The pixel size is 16 × 16m2.
The sizes of the anomalies are 2.5m × 10.2m, 1m × 3, 3m,
2.5m × 8.2m and 1.85m × 4.3m for the coach, cow, tractor
and landrover, respectively. According to the ground truth,
each image is made up from around 50 pure classes. Note that
the proposed methodology needs the number of endmember
classes to be smaller than the number of available bands,
so that the manifold of the background classes is embedded
inside the spectral space [3]. In this data set, there are only
30 bands and so, the best we can do is to select 30 nodes for
the SOM algorithm, aiming at identifying only the 30 most
significant endmembers.
The endmember extraction accuracy is evaluated by com-
paring estimated abundance fractions by the algorithms with
the existing ground-truth abundance maps. The ground truth
spectra are extracted for each material from the images them-
selves by computing the mean spectrum of all pixels that have
maximum abundance value for that material.
Table 2 shows the results for one of the images of this data
set. Due to the large number of classes, we present the results
for the five most prominent endmembers (lawn grass, dry
grass, limestone rock, lake sand and black sand) and for all
the anomalies (named anomaly 1 to anomaly 7). The first
four columns show the estimate of the relative abundance of
the endmember corresponding to each material. Ideally, the
algorithms should not identify the anomalies as endmembers.
If an algorithm performs well and does not mistake an anom-
aly as endmember, we show in the corresponding line in table
2 an estimate of 0 for that material. On the other hand, the
algorithms should identify the purest pixel (ideally estimated
abundance 1) for each one of the endmembers. However, note
that we present the results for the most prominent materials
in the scene, regardless of whether they are present in pure
or mixed form. So, for some materials, there might not be
a pixel with abundance value 1 in the image. To show the
maximum value that the algorithms may estimate for each
material, their ground truth maximum abundance fraction is
also shown in the tables. Those are the best possible values
that the algorithms may identify for each endmember. Note
that the pure pixels and anomalies are both rare in the data.
RULU exceeds the other algorithms by identifying all the
anomalies. RULU identifies the best pixels as endmembers,
i.e. it identifies the pixels with larger abundance values with
respect to the other methods for three out of the six materials,
while VCA identifies the best pixel for the “paved concrete”
and SGA for “lake sand” materials. RULU is the only method
to find an acceptable estimate for “limestock rock”.
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Table 2. Assessment of the endmembers identified by RULU,
SGA, VCA and N-FINDR algorithms, respectively. The first
four columns show the estimated endmember relative abun-
dance corresponding to each material. The ground truth max-
imum abundances are shown in the last column.

Estimated abundance Maximum
Material RULU SGA VCA N-FINDR abundance

Lawn grass 1 1 0.2169 1 1
Dry grass 0.9046 0.9046 0.7864 0.7398 0.9046

Paved concrete 0.9956 0.9814 1 0.9995 1
Limestone rock 0.6655 0.1343 0.3081 0.0861 0.6818

Lake sand 0.8664 0.8825 0.7532 0.8664 0.8825
Black sand 0.9121 0.9121 0.9121 0.6757 0.9234
Anomaly 1 0.1564 0.6006 0.6006 0.6006 1
Anomaly 2 0 1 1 1 1
Anomaly 3 0 1 1 1 1
Anomaly 4 0 1 1 1 1
Anomaly 5 0 1 1 1 1
Anomaly 6 0 0 0 0 1
Anomaly 7 0 1 1 1 1

5. CONCLUSIONS

In this paper, we proposed a new algorithm for the robust
identification of endmembers (RULU) in hyperspectral im-
ages. The proposed algorithm exploits the fact that endmem-
bers occupy the vertices of the simplex of the data cloud but
takes also into account the ability of the linear model to ex-
plain the identified spectra. The method is based on uncon-
strained spectral unmixing to achieve a robust detection. The
algorithm assumes the presence of pure pixels in the data,
the signatures of which correspond to the extreme values of
abundances for the background classes. First, the image pix-
els are clustered to identify the background classes. Then,
the image pixels are unmixed using the unconstrained linear
method. Pixels showing extreme abundance values, but small
residual error, when expressed as linear combinations of the
background class spectra, correspond to the pure classes. On
the contrary, pixels showing high residual error are consid-
ered as anomalies. It is this last step, where the values of the
residual errors are computed, that allows us to characterise the
algorithm as robust, as opposed to just using an algorithm that
identifies the extreme points of the simplex of data in the spec-
tral space. We tested the method with real and synthetic data
and compared it with the VCA, SGA and N-FINDR methods,
showing better and robust endmember extraction.
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