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Abstract—Parkinsonian tremor is one of the most common and
functionally disruptive motor symptoms of Parkinson’s disease
(PD), particularly rest tremor due to its strong association with
early stages of the disease. However, its clinical evaluation is
often subjective and limited to in-clinic assessments. Wearable
accelerometers allow for objective tremor tracking beyond clin-
ical environments; however, current approaches often suffer
from limited generalization, weak temporal modeling, and poor
robustness to real-world variability. In this work, we present a
deep learning framework for automatic tremor detection and
amplitude classification using wrist-worn accelerometer data.
Our method employs a ResNet encoder for spatial representation
learning with a Transformer-based temporal model to capture the
complex dynamics of tremor episodes. A conditional dual-head
output mechanism focuses amplitude learning only when tremor
is present. We evaluate the proposed method across multiple
settings using data from two well-known datasets, namely the
Michael J. Fox Foundation Levodopa Response Study dataset
and a subset of the Verily Study Watch dataset. The results
demonstrate that our framework generalizes well across wearable
devices and recording protocols, highlighting its potential for
continuous, real-world tremor tracking in PD.

Index Terms—Parkinson’s disease, Tremor Detection, Tremor
Amplitude Classification, Accelerometry, Deep Learning, Wear-
able Sensors

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that affects millions around the world, characterized
by a variety of motor and non-motor symptoms. Motor symp-
toms, which include bradykinesia, rigidity, postural instability,
and tremor can considerably limit daily activities and overall
quality of life [1]. Tremor is defined as an involuntary, rhyth-
mic, oscillatory movement of a body part [12] and comprises
the most disruptive motor symptom [5], [6]. It constitutes one
of the most common symptoms affecting up to 75% of PD
patients throughout the course of the disease [3]. Rest tremor
is a cardinal feature of PD, though kinetic and postural tremors
may also be present [2]. Due to its strong correlation with
early-stage PD, rest tremor plays a crucial role in both the
detection and monitoring of the disease [2], [4].

However, tracking symptom fluctuations over time poses
certain challenges [7]. In clinical settings, tremor is assessed
using rating scales, such as MDS-UPDRS [8], which are based
on expert observation. Thus, it is subjective to expert bias and
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limited to short in-clinic visits [10]. Outside of clinics, patient-
reported diaries offer an alternative but are often inaccurate
and prone to subjective reporting errors in real-world settings
[11].

To overcome these limitations, recent studies have explored
alternative modalities for Parkinson’s disease motor assess-
ment, including depth cameras and smartphone-based video
analysis [28], [31], [32]. Among these, wearable inertial sen-
sors, especially accelerometers, have gained traction as a non-
intrusive means of providing continuous tremor monitoring in
unconstrained settings. Accelerometers are widely employed
to detect motor symptoms of PD and have been proven
effective in capturing the characteristics of tremor [13], [14].
This can be attributed to their ability to monitor the movements
patterns of PD patients over time, making them an essential
tool for continuous monitoring in real-life applications, such
as smart home healthcare systems [15]. Consequently, they can
facilitate early disease detection and provide valuable insights
into disease progression, enabling more informed clinical
decision-making and personalized intervention strategies.

Methods for detecting and assessing Parkinsonian tremors
based on accelerometers can be classified into traditional
machine learning [9], [24]-[26], hybrid feature approaches
[21], [27], and deep learning [26], [29], [30], [33]. Works
that fall under the first category utilize techniques, such as
SVM, K-means, Random Forest, etc., paired with hand-crafted
features. On the other hand, some methods [27] have explored
feature fusion strategies techniques or multi-modal inputs [21],
e.g., video and inertial data, in order to further improve
robustness, though they require the integration of different data
streams and may be challenging to apply outside the clinical
environment.

Recent works have explored deep learning approaches such
as Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTMs) networks, demonstrating improve-
ments in automating tremor assessment [26], [29], [30]. How-
ever, many of these methods are trained on limited datasets,
often involving a small number of subjects or relying on
proprietary data. More recently, the authors in [33] employed
RandOm Convolutional KErnel Transform (ROCKET) and
InceptionTime, achieving a mean average precision of 0.544,
on the Michael J. Fox Foundation Levodopa Response Study



dataset (MJFF-LRS), highlighting the potential of time-series
models for this task.

In contrast to prior work, we explicitly model the complex
spatio-temporal nature of tremor using a multi-task deep
learning framework. Our architecture combines a pre-trained
ResNet to extract rich embeddings from raw accelerometer
data with a Transformer encoder to model temporal depen-
dencies through self-attention. This design enables joint tremor
detection and amplitude classification, enhancing generaliza-
tion in dynamic, real-world settings. Importantly, we evaluate
our framework on two well-known and publicly accessible
datasets- the MJFF-LRS and a curated subset of the Verily
Study Watch dataset. Although our method is designed for
general tremor detection, we emphasize modeling rest tremor,
given its high specificity to early-stage PD. Since rest tremor
exhibits distinct frequency characteristics (3-7.5 Hz) [22], [23].
We incorporate targeted signal processing (e.g., band-pass
filtering) and task-specific experimental settings (Section III-
A) to improve modeling fidelity for rest tremor. In summary,
our key contributions are as follows:

o We propose a deep learning architecture that combines
a pre-trained ResNet encoder and Transformer-based
temporal modeling for tremor detection and amplitude
classification from raw wrist-worn accelerometry.

« We introduce a conditional dual-head prediction mecha-
nism, where the amplitude loss is selectively backpropa-
gated only when tremor is detected.

o We evaluate our method on both validation and test splits
of the MJFF-LRS dataset as well as on an external clinical
subset from the Verily Study Watch, demonstrating robust
generalization across devices and task settings.

o We analyze the model’s performance in two scenarios: (i)
all-task setting and (ii) rest-related tasks, highlighting its
utility for both broad and rest-specific tremor tracking.

II. METHOD

We propose a deep learning framework designed to detect
tremor and classify its amplitude, inspired by the need for
more accurate modeling of temporal dependencies among
raw triaxial accelerometer signals. Our framework consists
of five key stages: window segmentation, data augmentation,
feature extraction using a pre-trained CNN, temporal modeling
leveraging a Transformer encoder, and classification with a
conditional dual-head design. The overall architecture of the
proposed method is designed to handle the spatio-temporal
complexity of tremor episodes and is presented in Fig. 1.

Data preprocessing and Windowing. Let the triaxial ac-
celerometer signal for the i-th sample be denoted as s!'7 =

i
{@4,ys, 2} 1, where sF'T € RT*3 and T is the total number
of timesteps. We first resample all signals to a uniform
frequency f, and segment them into overlapping windows of

length w with stride o. This results in a sequence of

N = {T_“’HJ
(]

windows per sequence:
X; = {’w]'}j-vzl,Xi S ]RNX(]CTXU})XS.

For rest tremor analysis, we further preprocess input signals
using a first-order Butterworth band-pass filter, to isolate the
rest tremor-dominant frequency, 3-7.5 Hz.

Data Augmentation. To improve generalization to real-
world variability and inter-subject differences, we perform
various augmentation techniques with probability pg,q, during
training:

o Gaussian noise injection:
w = w+ N(0,0%)

+ Random scaling:

/!

w =a-w, a~U(Cmin, Cmax)

o Sequence reversal:
! L
w ={wp_ty1}i, L= fr xw

e Window permutation: Given the full sequence of win-
dows X;, we apply random permutation along the win-
dow axis:

X! = {wn, };V:l,w ~ UniformPerm(N)

These augmentations are applied only during training and
are disabled during validation and testing.

Feature Extraction and Temporal Modeling. Subse-
quently, we pass each window w; through a 1D Resnet-V2 en-
coder fresnet(-) with 18 layers, which has been pre-trained by
self-supervised learning [16] on the UK-Biobank dataset [17],
producing embeddings H; = {fresnet(wj)}éyzl, H; e RVxD,
where D is the dimensionality of the embeddings of the Resnet
encoder. This large-scale dataset contains terabytes of real-
world wearable sensor data, enabling robust feature extraction.
Afterwards, we feed these embeddings into a Transformer en-
coder firans(+), consisting of L layers, to capture temporal de-
pendencies across the sequence of window-level embeddings
{h1,....,hn}, leading to features U; = {firans(H;i)},U; €
RY*P To obtain a unified representation for the entire signal,
we apply max-pooling on the Transformer outputs, obtaining a
fixed-length aggregated embedding z; € R'* P, for the entire
input signal s}

Dual-Task Prediction Head. As our final step, we pass the
aggregated embeddings z; through a shared linear projection
followed by two separate task-specific classification heads.
The first head, firemor(fshared(2i)), predicts the presence
or absence of tremor, while the second, fomp(fshared(%:i))s
classifies the tremor amplitude according to the MDS-UPDRS
item 3.17, ranging from 1-4. To supervise these tasks, we
use two standard loss functions, binary cross-entropy for
tremor detection, Lipemor, and categorical cross-entropy for
amplitude classification, Lg,,. However, the amplitude loss
is computed only when tremor is present, as determined by
the ground-truth. Let A be a scalar hyperparameter controlling
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Fig. 1. An overview of the proposed tremor tracking method. Raw triaxial accelerometer signals are segmented into overlapping windows and passed
through a pre-trained ResNet encoder for spatial feature extraction. The resulting window-level embeddings are modeled by a Transformer encoder with L
layers to capture temporal dependencies. A max pooling layer aggregates temporal features into a fixed-length representation, which is fed into a dual-head

classifier for tremor presence and amplitude prediction.

the weight of the amplitude loss. The total loss function is
defined as follows:

Llotal = Ltremor +A- ]l[yt'remor =

?

1] - Lamp

, where -1 is the indicator function returning 1 if tremor is
present and O otherwise.

III. EXPERIMENTS
A. Datasets & Experimental Setup

We conducted experiments using two datasets, the Michael
J. Fox Foundation Levodopa Response Study dataset (MJFF-
LRS) [19] and a curated subset of the Verily Study Watch
dataset [20] from the Parkinson’s Progression Markers Ini-
tiative (PPMI) study. MJFF-LRS was chosen for its detailed,
labeled recording of wrist activity in PD patients, including
accelerometer data and clinical annotations of motor tasks.
Thus, it can be considered an ideal choice for accurately
training our tremor tracking method. The Verily Study Watch
dataset, provides longitudinal motion data from a diverse
cohort, including PD patients, at-risk individuals, and healthy
controls. Together, these datasets provide a robust foundation
for both the development and validation of our tremor tracking
framework.

MJFF-LRS dataset. This dataset includes wearable sensor
data from individuals with PD, collected over 4 days both in-
clinic and at home. For our analysis, we keep only the triaxial
accelerometer recordings from the GENEActiv sensor, which
is worn on the wrist of the most affected limb. To ensure
label fidelity, we opt for data from Day 1 and Day 4, as these
include motor tasks with expert clinical annotations, yielding
27 subjects and 18 tasks of mean duration of about 30 seconds.
Participants were tested ON medication on Day 1, and on Day
4 after approximately 12 hours OFF medication, with motor
tasks repeated before and after intake. While our model is
designed to detect tremor in general, our objective is also to
evaluate its performance specifically on rest tremor, given its
clinical importance in early PD and its distinct characteristics
from kinetic or postural tremor. We define two experimental
settings:

« All Tasks Setting includes the entire set of task instances
from the dataset (e.g., walking, standing, folding towel,
etc.)

o Rest-Related Tasks Setting is a subset of tasks that
do not involve upper limb movement. In particular,
we removed classes such as repeated arm movements,
drawing and writing on paper, and folding a towel.
The remaining tasks—standing, sitting, sit-to-stand, stairs
up, stairs down, and three walking variations—are more
likely to contain periods where the hand is at rest and not
actively engaged in movement, making them suitable for
assessing rest tremor characteristics.

The distribution of tremor amplitude scores in both task
settings is summarized in Table I (all tasks) and Table II (rest-
related tasks), and visualized across all subjects in Fig. 2 and
Fig. 3, respectively.

To ensure a fair evaluation, we split the MJFF-LRS dataset
subject-independently into 70% training, 10% validation, and
20% test sets. The stratification preserves the tremor score
distribution across sets to reflect the original class balance.
This strategy is applied separately for both experimental
settings, (i) all tasks and (ii) rest-related tasks.

Verily Study Watch Subset. For external validation, we
use a subset of the Verily Study Watch dataset. First, we
isolate clinical visit segments corresponding to MDS-UPDRS
item 3.17-a or -b (rest tremor amplitude of right and left
upper limb respectively), using timestamped annotation to
align sensor data with clinician-observed tremor episodes.
These assessments are performed while the participant is
seated quietly in a chair with the hands placed on the arms
of the chair, as per the MDS-UPDRS protocol. Since watch
placement, left or right wrist, is unknown, we use the mean of
scores from both limbs (items 3.17a and 3.17b) as the ground-
truth label. After excluding subjects with incomplete data, the
final subset includes 158 participants with 194 valid instances
of rest tremor assessments, of mean duration approximately
10 seconds. The medication status during assessments varied
among participants, with some being evaluated in the ON state



and others in the OFF state. This subset allows us to validate
both task settings on a dataset that exclusively captures rest
tremor in a controlled, annotated clinical context. Importantly,
data in this subset are collected using a different wearable
device, the Verily Study Watch, than the one used during
training (GENEActiv), offering an additional layer of external
robustness assessment. The score distribution is shown in
Table III.

As shown in the distribution tables for both datasets, non-
tremor instances constitute the vast majority of the data. In
contrast, higher-severity tremor classes (scores 3 and 4) are
sparsely represented.
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Fig. 2. All task instances. Distribution of tremor scores (severity levels 0—4)
across all patients and tasks. Scores are represented as stacked color segments
indicating severity.
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Fig. 3. Rest related tasks. Distribution of tremor scores (severity levels
0-4) across all patients during rest-related tasks. Stacked colors represent
the proportion of each severity level.

TABLE I
DISTRIBUTION OF TREMOR SCORES ACROSS TASK INSTANCES AND
SUBJECTS ON THE MJFF-LRS DATASET

Tremor Score (Amplitude) | Hours (% of Total) | Task Instances | Unique Subjects
0 36.40 (67.39%) 4541 27
1 12.29 (22.75%) 1433 22
2 4.09 (7.57%) 550 15
3 1.17 (2.16%) 132 7
4 0.07 (0.13%) 11 3
Total 54.02 (100%) 6667 27
TABLE II

DISTRIBUTION OF TREMOR SCORES ACROSS REST RELATED TASK
INSTANCES AND SUBJECTS ON THE MJFF-LRS DATASET

Tremor Score (Amplitude) | Hours (% of Total) | Task Instances | Unique Subjects
0 15.22 (74.15%) 1715 27
1 2.96 (14.43%) 323 20
2 1.44 (7.01%) 151 10
3 0.88 (4.31%) 88 6
4 0.02 (0.09%) 2 1
Total 20.52 (100%) 2279 27

TABLE III
DISTRIBUTION OF TREMOR SCORES ACROSS CLINICAL VISIT INSTANCES
ON THE VERILY STUDY WATCH SUBSET

Tremor Score (Amplitude) | Clinical Visit Instances | Unique Subjects
0 151 125
1 28 26
2 14 11
3 1 1
4 0
Total 194 158

B. Implementation Details

To align with the input requirements of the pre-trained
feature extractor, we first resample all accelerometer triaxial
signals to a fixed frequency f, = 30Hz and segment them
into overlapping windows of length w = 5 seconds. To
determine the optimal stride length, we evaluate stride values
o € 0,1,2,3,4 seconds on the validation set and conclude
that a stride of 0 = 1 second yields the best results. Thus, this
results in windows of shape 150 x 3 that correspond to 150
timesteps per axis of the triaxial acceleration data.

During training, we apply data augmentations with a prob-
ability of psug = 0.5, while we experiment with values
{0,0.4,0.5}. Specifically, we add Gaussian noise sampled
from AN(0,0.05%), apply random scaling with factors drawn
from the interval [0.9,1.1], reverse the temporal sequence of
each window and permute the order of windows within a
signal.

The pre-trained ResNet encoder outputs a D = 512-
dimensional embeddings per window. This encoder is initial-
ized using weights from a model trained via self-supervised
learning on the UK-Biobank dataset and fine-tuned during
training. Regarding temporal modeling, we use a Transformer
encoder with L = 2 layers. To determine the most effective
method for aggregating temporal features, we experiment with
both max-pooling and average-pooling techniques, finding that
the former achieved superior performance. Subsequently, we
use a shared fully connected layer to reduce the dimensionality
in the order of 4, while each dedicated head outputs a single
prediction for the corresponding task. We set the weight of the
amplitude loss A = 1 for all tasks and A = 2 for rest-related
tasks. These choices are also made after experimenting with
the following values: {1,1.5,2,2.5,3}.

In terms of optimization, we employ SGD optimizer with
a learning rate set at 0.01 for all experiments. We train our
framework in an end-to-end manner for 35 epochs using a sin-
gle NVIDIA RTX 3090 GPU with 24GB VRAM, and we use
the Pytorch [18] deep learning framework for implementing
our method.

We evaluate our framework on two well-known datasets
under two experimental conditions: the all-tasks setting and a
subset restricted to rest-related tasks. In order to measure the
performance on both tremor detection and tremor amplitude
classification we use weighted precision, recall, and F1-score.
To assess ordinal agreement with the clinician-provided tremor
severity scores, we also report the Spearman’s rank correlation



TABLE IV

PERFORMANCE METRICS FOR TREMOR DETECTION ON THE MIJFF-LRS
VALIDATION AND TEST SETS

. . No Tremor Tremor Weigted Avg
Setting Metric | (VayTest) | (ValiTest) | (Val/Test)
Precision 0.80/0.90 0.74/0.71 0.78/0.84
All Tasks Recall 0.93/0.86 0.48/0.77 0.79/0.83
F1-score 0.86/0.88 0.63/0.74 0.78/0.83
Rest-Related Precision 0.87/0.87 1.00/0.65 0.91/0.81
Tasks Recall 1.00/0.90 0.58/0.56 0.89/0.82
F1-score 0.93/0.88 0.73/0.60 0.90/0.81

TABLE V

PERFORMANCE METRICS FOR TREMOR AMPLITUDE CLASSIFICATION ON
THE MIJFF-LRS VALIDATION AND TEST SETS

Setting Metric (Weighted) | Validation | Test
Precision 0.67 0.77

All Tasks Recall 0.73 0.75
F1-score 0.70 0.76

Precision 0.81 0.68

Rest-Related Recall 0.83 0.71
F1-score 0.82 0.69

coefficient (p).

C. Results

The model achieved strong performance across both valida-
tion and test sets under the all-tasks setting on the MJFF-LRS
dataset. For tremor detection, the weighted Fl-score reached
0.78 on validation and 0.83 on the test set, with consistent
precision and recall values, as reported in Table IV. In the
amplitude classification task, the model performed F1-scores
of 0.70 and 0.76 on the validation and test sets, respectively,
as shown in Table V. Importantly, the Spearman correlation
between predicted and ground-truth tremor scores was p =
0.52 (p<0.05) on the validation set and p = 0.76 (p<0.05) on
the test set, indicating strong ordinal alignment, particularly
when generalizing to unseen subjects.

Regarding the rest-related setting, we achieved a higher
validation performance, especially in amplitude classification,
where the Fl-score reached 0.82 and Spearman correlation p
= 0.78 (p<0.05), as detailed in Table V. Tremor detection on
the same validation set achieved a high F1 of 0.90, reported in
Table 1V, indicating better discriminative performance when
focusing on tasks more likely to cause rest tremor. On the
test set, performance was slightly lower but still competitive,
with an Fl-score of 0.81 for tremor detection, 0.69 for
amplitude classification, and a Spearman correlation of p =
0.55 (p<0.05). The slightly lower performance on the test set
likely reflects greater variability and new patterns in unseen
data, demonstrating the model’s ability to generalize under
realistic conditions.

On the Verily Study Watch dataset, used for external
validation and recorded using a different wearable device,
the model maintained robust generalization. In the all-tasks
setting, the weighted Fl-score for tremor detection reached
0.87, as presented in Table VI, while amplitude classifica-
tion achieved 0.77, as shown in Table VII. The Spearman

correlation to expert-assigned tremor scores was p = 0.49
(p<0.05). In the rest-related tasks setting on the Verily Study
Watch dataset, performance remained stable. Tremor detection
achieved an Fl-score of 0.79 (Table VI), and amplitude
classification again reached an F1 of 0.77 (Table VII). The
corresponding Spearman correlation improved slightly to p
= 0.57 (p<0.05). This suggests that the rest-focused setup
improves the model’s ability to assess rest tremor and yields
even better correlation with expert labels in the Verily dataset
compared to MJFF-LRS, likely due to differences in cohort
characteristics and annotation protocols. Notably, these results
are achieved despite uncertainty in the ground-truth labels
due to unknown watch placement, which introduces label
noise; even under such conditions, our method demonstrates
robust ordinal alignment across both settings, as evidenced by
consistent Spearman correlations on this external dataset.

Overall, these results demonstrate that the proposed frame-
work performs reliably across both diverse activity contexts
and device domains, with higher correlation scores and clas-
sification performance in rest-related setting.

TABLE VI
PERFORMANCE METRICS FOR TREMOR DETECTION ON THE VERILY
STUDY WATCH SUBSET

Setting Metric No Tremor | Tremor | Weigted Avg

Precision 0.87 0.87 0.87

All Tasks Recall 0.98 0.47 0.87
F1-score 0.92 0.61 0.87

Precision 0.82 0.67 0.78

Res;fsi':ted Recall 0.97 0.23 0.80
F1-score 0.89 0.45 0.79

TABLE VII

PERFORMANCE METRICS FOR TREMOR AMPLITUDE CLASSIFICATION ON
THE VERILY STUDY WATCH SUBSET

Setting Metric (Weighted) | Test
Precision 0.74

All Tasks Recall 0.80
F1-score 0.77

Precision 0.75

Resp-Related Recall 0.80
F1-score 0.77

IV. CONCLUSION

This work presents a multi-task deep learning framework
for Parkinsonian tremor detection and amplitude classification
from wrist-worn accelerometers. The proposed architecture
combines the spatial feature learning of a pre-trained ResNet
with the temporal modeling of a Transformer encoder to
capture complex tremor patterns across tasks and time scales.

Our model performs well on both internal (MJFF-LRS)
and external (Verily Study Watch) datasets, achieving strong
classification metrics and satisfactory correlations with expert
labels in both all-task and rest-related settings. These results
highlight the method’s potential for accurate real-world tremor
tracking, including rest tremor, which is critical for early PD
identification.



Despite these strengths, challenges remain, particularly class
imbalance in severe tremor cases and variability across devices
and subjects. Future work will focus on multiple-instance
learning for weakly labeled data, pretraining on larger PD-
specific datasets (e.g., the full Verily Study Watch cohort),
and incorporating contextual cues (e.g., activity recognition,
posture) and multi-sensor fusion to enhance robustness in real-
world use.
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