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DL-based organism-level
microbial identification via
VOCs fingerprints through
gas chromatography –
ion mobility spectrometry
Georgios Kirtsanis*, Georgios Dolias, Spyridon Kintzios,
Konstantinos Ioannidis, Stefanos Vrochidis
and Ioannis Kompatsiaris

Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
Introduction: Organism-level microbial identification is a well-established topic in

literature. Due to biosafety concerns, specifically identifying pathogenic bacteria is of

critical importance. This study positions Deep Learning (DL) - based chemometric

analysis as a promising strategy for organism-level microbial identification, with

potential translational value for rapid diagnostics. Various chemometric methods

have been applied to analyze pure and mixed cultures of microorganisms and

generate data via Volatile Organic Compounds (VOCs) fingerprints for classification.

Although Gas Chromatography - Ion Mobility Spectrometry (GC-IMS) is a promising

chemometric technique in this field, limited research has explored its potential for

organism-level microbial identification.

Materials and methods: In this study, GC-IMS prototypes were employed to

generate two-dimensional spectral data, which were then used to train

supervised classification models. Utilizing a publicly available dataset of four

microorganisms, we conduct a series of experiments to perform multi-class

classification of pure and mixed cultures. Additionally, we introduce innovative

experiments for distinguishing bacteria from fungi and Gram-positive from

Gram-negative bacteria. We further investigate the presence and pureness of

two pathogenic bacteria, Escherichia coli and Pseudomonas fluorescens, within

the cultures. To achieve this, we apply eight Machine Learning and DL baseline

methods, while following a five-fold cross-validation evaluation protocol and

presenting a wide set of evaluation metrics to ensure result reproducibility and

models’ generalization. A further evaluation of DL models is also conducted to

report the training times and the number of parameters of the proposed

DL methods.
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Results: Our key findings highlight a Fully Connected Neural Network (FCNN)

with four hidden layers as the most efficient model, consistently achieving the

best performance across all tasks in comparison to the other tested models of

this study. Additionally, the FCNN model provides fast training and maintains a

relatively small number of parameters compared to other DL approaches.

Discussion: While the dataset’s limited size and class imbalance present

challenges such as potential overfitting and optimistic bias, the results

achieved so far are encouraging and demonstrate the model’s strong potential.

Future work should aim to expand the dataset across multiple sites and

instruments and include clinical validation on real-world samples to further

enhance generalizability and ensure translational impact.
KEYWORDS

biosafety, organism-level microbial identification, volatile organic compounds (VOCs),
chemometrics, gas chromatography – ion mobility spectrometry (GC-IMS), Deep
Learning (DL), machine learning (ML)
1 Introduction

Bacteria are microscopic, single-celled microorganisms lacking

a nuclear membrane (Baron, 1996). They are metabolically active

and divide through binary fission. Despite their seemingly simple

structure, bacteria are highly advanced and adaptable organisms

capable of causing a wide range of diseases. Pathogenic bacteria, in

particular, are associated with specific illnesses such as the plague

(Feng et al., 2021). The diagnosis of bacterial infections and the

efficient treatment of infectious diseases are critical for human

health (Yang et al., 2024). Additionally, to minimize the risk of

contamination and toxicity, bacterial detection plays a vital role in

the quality control of food products such as yogurt, cheese, and beer,

as well as in the monitoring of bacteria in crops and silage (Sauer

and Kliem, 2010). A wide range of laboratory techniques can be

employed for the taxonomic classification and identification of

bacteria (Chauhan et al., 2020; Zukowska, 2021). Gram-positive

and Gram-negative bacteria possess different cell wall structures,

influencing their susceptibility to antibiotics. Consequently,

determining the Gram type of bacteria is essential for selecting

the most effective antibiotic treatment (Rezaei et al., 2024).

Furthermore, different pathogens necessitate distinct management

strategies; for instance, bacterial infections may require immediate

antibiotic intervention, whereas fungal infections might need

prolonged antifungal therapy (Giuliano et al., 2019).

Certain strains of Escherichia coli, such as E. coli O157:H7, are

known to cause severe foodborne illnesses, including diarrhea,

urinary tract infections, and kidney failure (Yang et al., 2017),

while E. coli O157:47 is described as a category B biological warfare

agent by the Centers for Disease Control and Prevention (CDC;

Atlanta, GA, USA) (Pohanka, 2019), marking its accurate detection

as an important concept in the literature. Although generally

considered of low clinical significance, Pseudomonas fluorescens
02
can either cause opportunistic infections, particularly in

immunocompromised patients, including those with advanced

cancer (Ishii et al., 2024) or have a significant impact in

agriculture as a major food contaminant (Nunes et al., 2024).

Most of these infections have been bloodstream infections, with

few reports of pneumonia. Another bacterium, Levilactobacillus

brevis, is commonly utilized in the fermentation of foods such as

sauerkraut, kimchi, and pickles (Jeon et al., 2024). Detecting this

bacterium ensures the quality and consistency of these fermented

products. Regarding fungi, Saccharomyces cerevisiae is employed as

a probiotic to prevent and treat various gastrointestinal diseases,

such as antibiotic-associated diarrhea (Li et al., 2024). Detecting this

yeast in probiotic products ensures they contain the intended

beneficial strains. Concretely, the early detection and classification

of these bacteria are essential for preventing outbreaks and

mitigating biological threats.

Bacteria have been identified using various analytical methods,

including molecular biology techniques such as polymerase chain

reaction (PCR) for microorganisms, and immunological techniques

such as enzyme-linked immunosorbent assays (ELISAs) for both

protein toxins and microorganisms (Aboutalebian et al., 2021; Kim

and Kim, 2021). While these methods are valuable for rapid

screening of samples, they possess analytical limitations, including

a lack of specificity, which can result in false positives due to cross-

reactions with similar molecules. Furthermore, these methods are

not suitable for the classification of unknown microbial samples

(Duriez et al., 2016).

Conversely, mass spectrometry (MS) facilitates the unambiguous

detection of microorganisms and protein toxins (Duriez et al., 2016).

MS integrates speed, sensitivity, and specificity within a single

technique, making it suitable for both targeted and untargeted

detection of microorganisms, even in complex samples such as air,

water, culture media, bodily fluids, and food (Tait et al., 2014; Altaee
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et al., 2017; Hameed et al., 2018). MS-based methodologies for

identifying microorganisms through Volatile Organic Compounds

(VOCs) fingerprints and toxins have continuously advanced with the

development of soft ionization techniques, including matrix-assisted

laser desorption/ionization (MALDI) and electrospray ionization

(ESI), as well as high-resolution and high-mass-accuracy

instruments (Dybwad, 2013; Su et al., 2022). These advancements

have significantly enhanced the capability to accurately identify

microorganisms and toxins, thereby ensuring biosafety across

various contexts. Matrix-assisted laser desorption/ionization time of-

flight mass spectrometry (MALDI-TOF MS) was one of the

pioneering approaches for environmental applications. It is now

recognized as a rapid, efficient, and reproducible method for

species-specific identification of pathogenic microorganisms through

the direct analysis of intact bacterial cells (Clark et al., 2013; Dingle

and Butler-Wu, 2013). Specifically, MALDI-TOF MS, combined with

advanced chemometric methods such as unsupervised clustering and

classification using Artificial Neural Networks (ANN), has been

employed to achieve rapid and reliable identification of bacteria

from the genus Yersinia. MS-based methods have also been

effectively applied to the identification and specific detection of

biological agents by analyzing intact proteins and/or tryptic digests

from bacterial cells (Lasch et al., 2010). However, under these

conditions, MALDI-TOF analysis may lack sensitivity and is

typically performed following a preliminary bacterial cultivation

step, which serves both as a separation and enrichment tool.

Additionally, various studies have investigated the capability of

Orbitrap-MS prototypes to identify specific pathogenic or non-

pathogenic bacterial cultures (Wynne et al., 2010; Gallien et al.,

2012; Wang et al., 2023).

On the other hand, Gas Chromatography-Ion Mobility

Spectrometry (GC-IMS) is an innovative method that leverages

the high separation capacity of GC and the rapid response of IMS

(Wang et al., 2020). The GC-IMS prototype generates two-

dimensional data based on the drift times of ions and their

retention times. The presence of specific ions in the culture

results in distinct peaks at particular drift and retention times,

indicating the existence of unique VOCs. Consequently, GC-IMS

data comprises highly informative two-dimensional spectra with

over 106 data points, necessitating pre-processing techniques to

extract relevant spatial information (Gu et al., 2021). GC-IMS has

been successfully employed to identify three bacterial species

cultured in blood cultures based on their microbial VOC

(mVOC) spectra (Drees et al., 2019). Additionally, bacterial

identification using GC-IMS has been documented in the

literature for identifying a small set of organisms in both pure

and mixed cultures (Lu et al., 2022; Christmann et al., 2024; Yan

et al., 2024; Kirtsanis et al., 2025).

To date, various studies in the literature have combined spectra

from GC-IMS prototypes to train supervised classification methods.

Bacteria identification, food safety, and food origin are among the

most widely explored applications. In (Christmann et al., 2024),

Partial Least Squares Discriminant Analysis (PLS_DA), one of the

most commonly used Machine Learning (ML) algorithms in

chemometrics, is applied to classify microorganism cultures. By
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performing both dimensionality reduction and classification,

PLS_DA serves as a common baseline for high-dimensional

datasets such as GC-IMS. By incorporating target labels into the

supervised dimensionality reduction process, it focuses on

separating labeled groups. Yan et al. (2024) applied a 2D CNN-

based model, AlexNet, for bacterial culture identification. The use of

Deep Learning (DL) models allows for the identification of more

complex patterns, while 2D CNNs can precisely leverage the spatial

information present in the input data. Additionally, Gerhardt et al.

(2019) demonstrated the effectiveness of combining Principal

Component Analysis (PCA) for unsupervised dimensionality

reduction with SVM and other ML-based methods to classify

different olive oil samples. Similarly, in (Vega-Márquez et al.,

2020), a DL-based method was applied to GC-IMS data for olive

oil classification. This study showed that a Fully Connected Neural

Network (FCNN) outperformed several ML-based models,

including Support Vector Machine (SVM), XGBoost, and Logistic

Regression (LR). To identify rice varieties and detect adulteration,

Ju et al. (2021) trained a semi-supervised Generative Adversarial

Network (GAN) and later replaced the output layer of the

discriminator with a softmax classifier, achieving better

performance than various ML and DL-based baselines for

chemometric tasks. In (Zhao et al., 2024), an improved GAN

based on the diffusion model (DGAN) was used for data

generation, followed by a CNN-based model, ResNet50, which

outperformed traditional ML baselines in chemometrics.

The main contributions of our presented research are

summarized as follows:
• The integration of DL-based models with chemometric

techniques such as GC-IMS offers a pathway toward

rapid, culture-based microbial diagnostics. While our

current work is exploratory, it represents an important

step toward developing clinically applicable solutions for

pathogen detection.

• Implementation of a pre-processing pipeline to GC-IMS

data related to three different bacteria species (E. coli, P.

fluorescens and L. brevis) and one fungus (S. cerevisiae).

• Multi-class classification to identify bacteria and fungi of four

pure and ten pure and mixed distinct classes respectively.

• Classification of Bacteria & Fungi and Gram-positive &

Gram-negative GC-IMS spectra by training ML/DL models

on imbalanced datasets.

• Identification of pure and mixed GC-IMS spectra based on

the Presence and Pureness of the bacteria E. coli and

P. fluorescens.

• Implementation of a 5-fold cross-validation protocol to

eva luate ML and DL models through var ious

performance metrics.

• Further investigation of DL trained models in terms of their

training times and trainable parameters.
The remainder of this paper is structured as follows. The second

section details the GC-IMS dataset utilized for training the

classification models and outlines the classification methods
frontiersin.org
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employed in this study. This section also presents the approach for

validating the trainedML and DLmodels, along with the specifics of

the software and hardware used to conduct the experiments. The

third section illustrates the experimental results for the classification

between bacteria and fungi, as well as Gram-positive and Gram-

negative bacteria. Additionally, this section explores multi-class

classification of pure and mixed cultures, followed by the

identification of specific pathogenic bacteria, such as Escherichia coli

and Pseudomonas fluorescens. The evaluation of four DL models also

consists of investigating their training time and trainable parameters.

Finally, the outcomes of the experiments are reported in the last

section, accompanied by suggestions on future work.
2 Materials and methods

2.1 GC-IMS data

To evaluate the models’ performance and their applicability in

identifying microbial organisms, we conducted experiments using a

publicly available dataset of GC-IMS data from four different
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organisms (Weller and Christmann, 2023). These include three

bacteria, Escherichia coli, Levilactobacillus brevis, and Pseudomonas

fluorescens, and one fungus, Saccharomyces cerevisiae. Pure cultures

of these organisms were prepared, along with six different mixtures

combining each pair. The dataset consists of 10 different classes,

with 31 unique cultures analyzed to generate 214 distinct GC-IMS

spectra samples. In Table 1, we present the number of Cultures and

Samples for each class of the presented dataset.

As shown in Figure 1, a representative GC-IMS spectrum can be

visualized as a heatmap, where the x-axis indicates the drift time of

the separated ions based on IMS and the y-axis represents the

retention time derived by GC, corresponding to the separation

characteristics of the sample. The color bar indicates the ion

intensity, with specific ions (i.e., VOCs fingerprints) forming

peaks at particular coordinates, generating rich informational

spectra for analysis.

Given the high dimensionality of the input data (3,150 × 6,123),

a standard procedure involves applying a pre-processing pipeline

(illustrated in Figure 1) to reduce data size, denoise spectra, and

extract the most relevant information. To this end, we utilize the

open-source Python package gc-ims-tools (Christmann et al., 2022),

in accordance to the dataset’s initial publication (Christmann et al.,

2024). First, we apply a third-degree wavelet transformation to both

the drift and retention time axes, significantly reducing the

dimensionality of the spectra to one-tenth of the original data to

each direction. Then, a baseline correction algorithm is applied to

remove instrumental variations or background noise, using a white

top-hat filter of size 15. Finally, to properly prepare the input data

for the models, we apply various data points processing techniques.

Drift Time Alignment adjusts the drift time axis relative to the

Reactant Ion Peak (RIP), which is a standard technique for the task,

due to instrumentation variations. Intensities Normalization

between zero and one, is a common technique for efficiently

training ML and DL models. While, Spectra Cutting is applied on

the Region of Interest (ROI), which contains the most valuable

information selecting the RIP-relative drift time range between 1.05

and 2.10 and the retention time between 70 and 780 s. The output of

the pre-processing pipeline is shown in Figure 1, where the spectral

shape is reduced to (152 × 600), resulting in a significant 99.5%

reduction in data size.
TABLE 1 Table of cultures and samples for each different class of the
dataset.

Class Cultures Samples

E. coli 4 30

L. brevis 4 28

P. fluorescens 4 28

S. cerevisiae 4 31

E. coli and L. brevis 2 14

E. coli and P. fluorescens 3 20

E. coli and S. cerevisiae 2 11

L. brevis and P. fluorescens 2 11

L. brevis and S. cerevisiae 4 27

P. fluorescens and S. cerevisiae 2 14

Total 31 214
FIGURE 1

Pre-processing pipeline.
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2.2 Classification methods

As outlined in Section 1, GC-IMS has emerged as a promising

tool in various tasks for analyzing samples, particularly in food

authentication. DL models have also shown great potential in

training effective classifiers based on GC-IMS data. However,

limited work has addressed the challenge of identifying bacterial

cultures directly from data produced by GC-IMS prototypes. To

address this, we employ eight different classification methods,

widely used in chemometrics, including four ML models,

PLS_DA (Christmann et al., 2024), PCA_LR (Vega-Márquez

et al., 2020), PCA_SVM (Vega-Márquez et al., 2020), and

XGBoost (Vega-Márquez et al., 2020), and four DL models,

FCNN (Vega-Márquez et al., 2020), MLP (Vega-Márquez et al.,

2020), CNN1D (Yan et al., 2024), and CNN2D (Yan et al., 2024).

Classical ML models are widely employed by researchers to

address a variety of problems. Their main advantages include strong

generalization on small datasets, fast training times, and relatively few

parameters. PLS_DA is a commonly adopted method in

chemometrics, providing both data compression and classification

of input spectra. Similarly, PCA combined with either SVM or LR is

frequently utilized, benefiting from PCA’s dimensionality reduction

capabilities alongside the efficiency of SVM and LR. Additionally,

XGBoost is included in our experiments due to its strong performance

across a wide range of ML tasks. To ensure reproducibility of results, a

random seed of 42 is set during all trainings. For dimensionality

reduction, we retain a number of 50 components, while classification

models (SVM, LR, XGBoost) are trained using their default hyper-

parameters of their respective packages.

In contrast, DL models feature more parameters, longer

training times, and more complex architectures. While they

require larger datasets, they effectively capture correlations within

input parameters, resulting in improved generalization and higher

accuracy. We employ CNN2D to capture the spatial structure of the

heatmaps, and CNN1D to assess the performance of convolutional

layers on flattened heatmaps. Additionally, we include FCNN and

MLP as standard baselines for DL-based methods. Figure 2

illustrates the four architectures: CNN2D (Figure 2A), CNN1D

(Figure 2B), MLP (Figure 2C), and FCNN (Figure 2C).

The first model, CNN2D (2A), is adopted to leverage the spatial

information within the spectra. The pre-processed spectra serve as

input to the architecture, which consists of three hidden 2D

convolutional layers with a 3×3 kernel size and an increasing

number of fi lters, 32, 64, and 128, respectively. Each

convolutional layer is followed by a Leaky ReLU activation and a

2×2 Max Pooling operation. The output of the final convolutional

layer is flattened and passed through a fully connected hidden layer

with Leaky ReLU activation and a Dropout rate of 0.5, resulting in

512 features. Lastly, a final fully connected layer is applied in the

extracted features to generate the target classes.

Additionally, we implement a CNN1D (2B) model. After

flattening the input spectra, and following the design of CNN2D

(2A), we apply three 1D convolutional layers with a kernel size of 9,

each followed by a Leaky ReLU activation and a 1D Max Pooling

layer of size 4. The number of filters increases progressively (32, 64,
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128). As previously, the output of the final convolutional layer is

flattened and passed through a fully connected layer with Leaky

ReLU activation and a Dropout rate of 0.5, resulting in 512 features.

Finally, a fully connected output layer maps these features to the

target classes.

Finally, we employ two models: MLP (2C) and FCNN (2C). In

both, the input spectra are flattened and passed through fully

connected hidden layers, each followed by a Leaky ReLU

activation and a Dropout rate of 0.5, resulting in 512 features.

Although their architecture is presented in the same way, the MLP

model consists of a single hidden layer, whereas the FCNN model

includes four hidden layers, resulting in more parameters and

higher complexity. As in the previous models, a final fully

connected layer processes these features to generate the target

class predictions.
2.3 Evaluation protocol

The original study that introduced this dataset evaluated models

using a fixed train/test split. While this approach is common for

large datasets, it has significant disadvantages in the context of small

datasets like ours. First, with limited samples, a single split can lead

to severe under-representation of certain classes in the test set,

causing performance metrics to vary greatly depending on which

samples are chosen. Second, the original paper does not provide

sufficient details regarding how the split was constructed (e.g.,

sample or culture stratification, class balance, random seed),

making it impossible to reproduce the original results and

perform a fair, like-for-like comparison. To this end, and given

the small number of samples available in the dataset for many

classes (see Tables 1, 2), creating a fixed test set would result in

under-representation of several classes and make final performance

metrics highly sensitive to the specific samples selected.

An alternative strategy that could prevent potential data leakage

caused by culture-specific information is Leave-One-Culture-Out

(LOCO) cross-validation, where all spectra from a given culture are

held out for validation in each iteration. This would provide a

rigorous assessment of generalization to unseen cultures. However,

our dataset contains only 31 cultures, with as few as 2–4 cultures per

class. Under these conditions, LOCO would result in extremely

small training sets for some classes (2 cultures in a class, result in

50% split training and validation sets), leading to unstable

performance estimates and impractical model training.

To overcome these limitations, we adopt a stratified five-fold

cross-validation protocol at the sample level, as illustrated in

Figure 3. Cross-Validation is widely recommended for small

datasets to improve robustness and reduce variance caused by test

set selection, not only in ML and DL in general (Kohavi, 1995;

Refaeilzadeh et al., 2009; Raschka, 2018), but also has been widely

adopted in chemometrics and bioinformatics tasks for similar

reasons (Beleites and Salzer, 2008; Esbensen and Geladi, 2010;

Westad and Marini, 2015). In this setup, the dataset is randomly

partitioned into five folds while preserving the overall class

distribution in each fold. For each iteration, 80% of the samples
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are used for training and 20% for validation, ensuring that every

sample appears exactly once in a validation set across five

independent trainings. This approach maximizes the use of

available data while maintaining comparability across

experiments. To ensure fairness and like-to-like comparison

between the proposed methods and the original study’s baselines,

we include the PLS_DA model in our evaluation using the same

hyperparameters. For reproducibility, all experiments are

performed with a fixed random seed of 42.

For DL baseline models, we employ an Adam optimizer, a

learning rate of 0.001, a batch size of 8 and cross-entropy loss

function (LCE), as shown in Equation 1. Although hyperparameter

fine-tuning could potentially improve the performance of each

individual model, it was not applied in this study due to the

limited dataset size and the primary objective of comparing

baseline architectures rather than optimizing them, this would be

out of scope for this study. Therefore, we report results using

standard training hyperparameters.

During training, we evaluate through Accuracy (Equation 2)

and F1-score (Equations 3–5) across the validation set, while
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Sensitivity (Equation 6) and Specificity (Equation 7) are also

reported for the validation set for each class c, separately.

Additionally, training and inference times along with the number

of parameters are reported to provide a comprehensive comparison

of each model for each experiment. In the following equations, C, N,

TP, TN, FP, and FN represent number of classes, number of

samples, true positives, true negatives, false positives, and false

negatives, respectively. Moreover, yi,c represent the one-hot

encoded ground truth label for sample i and class c, and ŷ i,c

represent the predicted probability (from softmax) for sample i

and class c.

LCE = −
1
No

N

i=1
o
C

c=1
yi,c log  (ŷ i,c) (1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)
FIGURE 2

Presentation of four different DL models. (A) Architecture of CNN2D model. (B) Architecture of CNN1D model. (C) Architecture of MLP and FCNN
models. Their key difference is the depth of the hidden layers, where on the MLP, we employ a single hidden layer, while on FCNN, we stack four
consecutive hidden layers.
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Recall =
TP

TP + FN
(4)

F1 − score = 2� Precision� Recall
Precision + Recall

(5)

Sensitivityc =
TPc

TPc + FNc
,  ∀ c ∈ 1,…,Cf g (6)

Specificityc =
TNc

TNc + FPc
,  ∀ c ∈ 1,…,Cf g (7)
2.4 Software and hardware requirements

For the needs of the given research, we conducted all the

experiments on a server equipped with a NVIDIA GeForce RTX

4090 GPU. CUDA (12.0) along with Python (3.8.20) have been used,

while various packages have been employed among gc-ims-tools

(0.1.7) for the data pre-processing pipeline and PLS_DA training,

scikit-learn (1.3.2) for the ML models of PCA_SVM and PCA_LR,

xgboost (2.1.1) for the XGBoost model and torch (2.4.1+cu118) for

the training of DL models.
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3 Results

3.1 Tables of experiments

Following, on Tables 3, 4, we present a list of the eight different

experiments conducted on the dataset. More precisely, on Table 3, we

present two multi-class classification experiments, Pure and Pure &

Mixed. As their names suggest, in the first experiment, we train

models to classify between the four pure classes, whereas in the

second, we train models to classify both pure and mixed cultures,

resulting in ten different classes. The numbers indicate the assigned

class labels, a standard approach in ML and DL training. Diving

deeper into the classification of the pure cultures, we conduct two

additional classification experiments, Bacteria & Fungi and Gram-

positive & Gram-negative (Table 3). The Bacteria & Fungi experiment

is particularly important as it evaluates the models’ ability to

distinguish bacterial from fungal behavior. Meanwhile, the Gram-

positive & Gram-negative experiment focuses into bacterial

characteristics, analyzing their GC-IMS fingerprints based on their

cell wall type. These two experiments demonstrate a dataset

imbalance, as reported in Table 2, which is a common issue in the

literature when training ML and DL models. The Gram-positive class

contains 28 samples, while the Gram-negative class has more than
TABLE 2 Dataset imbalance report.

Experiment Minority class Majority class Total Imbalance (%)

Bacteria & Fungi 31 (Fungi) 86 (Bacteria) 117 73.50

Gram-positive & Gram-
negative

28 (Gram-positive) 58 (Gram-negative) 86 67.44

E. coli (+) 75 (Presence) 139 (Absence) 214 64.95

E. coli (*) 30 (Pureness) 45 (Mixed) 75 60.00

P. fluorescens (+) 73 (Presence) 141 (Absence) 214 65.88

P. fluorescens (*) 28 (Pureness) 45 (Mixed) 73 61.64
FIGURE 3

Presentation of five-fold cross-validation evaluation protocol.
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twice as many, with 58 samples. Similarly, bacterial samples account

for a subset of 86 spectra, whereas fungal samples are limited to just

31, approximately one third.

On the other hand, we explore the possibility of specifically

identifying either the Presence (+) or the Pureness (*) of two

distinct pathogenic bacteria, E. coli and P. fluorescens. As

presented in Table 4, to properly evaluate the models’ ability to

detect the presence of a specific bacterium, we assign a value of 1

(one) to all the classes containing the given bacteria and 0 (zero) to

all the remaining classes. Subsequently, by training from-scratch the

models, we investigate their ability to identify the pureness of the

bacteria among all the classes in which it is present. This experiment

highlights the models’ sensitivity on the given bacteria. These two

rounds of experiments are conducted for each bacteria, serving as a

baseline for identifying pathogenic bacteria using ML and DL

methods based on GC-IMS spectra. Similarly, dataset imbalance

is also observed in these experiments (Table 2). For the E. coli (+)

experiment, the dataset includes 75 samples with presence and 139

with absence. In the E. coli (*) experiment, results are reported for

30 pure samples and 45 mixed samples. Likewise, for P. fluorescens

(+), there are 73 samples with presence and 141 with absence, while

the P. fluorescens (*) experiment includes 28 pure samples and 45

mixed samples.
3.2 Pure and mixed cultures

As discussed earlier and in line with the initial dataset’s

publication, we experiment with multi-class classification in two

different scenarios: Pure and Pure & Mixed cultures. In the Pure

experiment, we classify samples into four distinct categories, each

representing a pure culture of a specific organism: E. coli, L. brevis,

P. fluorescens, and S. cerevisiae. In contrast, the Pure & Mixed

experiment evaluates the models’ ability to identify between pure

cultures and all possible pairwise mixed cultures in the dataset,

resulting in ten distinct classes.
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Table 5 presents the classification results for the models

described in Subsection 2.2, reporting the average and standard

deviation of Accuracy and F1-Score across five cross-validation

folds. The highest-performing model is highlighted in bold, while

the second-best is underlined. In both experiments, the FCNN

model demonstrates clear superiority, achieving 93.19% average

accuracy and 93.04% average F1-score in the Pure experiment, and

92.53% average accuracy and 93.37% average F1-score in the Pure &

Mixed experiment, all with a relatively small standard deviation.

The CNN2D model consistently ranks second, demonstrating

strong performance across all metrics and tasks, showcasing its

ability to generalize the information based on their spatial

information. The overall performance of DL models can be

summarized as an out-performance compared to traditional

ML baselines.

Following Table 6, we analyze the Selectivity and Specificity of

each class in both experiments using the best-performing model,

FCNN. We observe that in both cases, the model achieves strong

performance across all classes for both metrics. More specifically,

introducing pairwise mixed cultures into the training set affects the

performance on pure classes. For instance, the model’s ability to

identify E. coli and L. brevis significantly decreases, whereas P.

fluorescens and S. cerevisiae maintain or slightly improve their

performance. On the other hand, the mixed cultures exhibit a

sensitivity variation of up to 10%, while specificity remains

consistently high, with differences of less than 1% between values

across the different classes.
3.3 Bacteria & Fungi and Gram-positive &
Gram-negative

The classification between Bacteria & Fungi is a key experiment

in our work, as it highlights the distinct correlations associated with

bacterial compared to fungal cultures. In this experiment, we

conducted a new training of the models based on their ability to
TABLE 3 Table of experiments categorized by pure, pure & mixed, bacteria & fungi, and Gram-positive & Gram-negative.

Class Pure Pure & Mixed Bacteria & Fungi
Gram-positive &
Gram-negative

E. coli 0 0 0 0

L. brevis 1 1 0 1

P. fluorescens 2 2 0 0

S. cerevisiae 3 3 1 –

E. coli and L. brevis – 4 – –

E. coli and P. fluorescens – 5 – –

E. coli and S. cerevisiae – 6 – –

L. brevis and P. fluorescens – 7 – –

L. brevis and S. cerevisiae – 8 – –

P. fluorescens and S. cerevisiae – 9 – –
Each number represents the assigned group for each class.
frontiersin.org

https://doi.org/10.3389/fbrio.2025.1620906
https://www.frontiersin.org/journals/bacteriology
https://www.frontiersin.org


Kirtsanis et al. 10.3389/fbrio.2025.1620906
classify between the two categories. The main challenge lies in

effectively grouping all bacterial samples and identifying their

correlations in comparison to fungi cultures.

As shown in Table 7, both MLP and FCNN models achieve top

performance, reaching an average accuracy and f1-score of 98.30%

and 97.63%, respectively. These are followed by the other two DL

baselines, CNN1D and CNN2D, while the ML baselines also

demonstrate promising performance. Similarly, in Table 8, we

observe that for class zero (bacteria), the top-performing models

achieve 100% sensitivity and 93.33% specificity, with an inverse

pattern observed for class one (fungi).

Following the same setup, we conducted another innovative

experiment, aiming to further analyze the behavior of a more

precise bacterial categorization, namely Gram-positive & Gram-

negative. To this end, we assigned class zero to Gram-negative

bacteria, including E. coli and P. fluorescens, and class one to Gram-

positive bacteria such as L. brevis.

In this task, as shown in Table 7, MLP and FCNN again emerge

as the top-performing models, achieving 97.71% accuracy and
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97.35% f1-score. The ML baseline PLS_DA follows as the second-

best performer in both metrics, while the remaining ML and DL

baselines demonstrate significant lower performance. For the best-

performing models, FCNN and MLP, sensitivity and specificity

alternate between 100% and 93.33% across the two classes, as

presented in Table 8.
3.4 Identification of pathogenic bacterial
cultures

Finally, we evaluate the performance of the proposed models in

the task of specifically identifying pathogenic bacteria, such as E.

coli, as a highly pathogenic bacterium and P. fluorescens as a low

pathogenic bacterium. To this end, our initial experiments involve

ten different pure and mixed cultures to evaluate the models’ ability

to detect the Presence (+) of a specific bacterium. We assign class

zero to cultures that do not contain the specific bacterium and class

one to those where it is present. Furthermore, among the cultures
TABLE 4 Table of experiments regarding the presence (+) and pureness (*) of E. coli and P. fluorescens to specifically identify pathogenic
bacterial cultures.

Class E. coli (+) E. coli (*) P. fluorescens (+) P. fluorescens (*)

E. coli 1 1 0 –

L. brevis 0 – 0 –

P. fluorescens 0 – 1 1

S. cerevisiae 0 – 0 –

E. coli and L. brevis 1 0 0 –

E. coli and P. fluorescens 1 0 1 0

E. coli and S. cerevisiae 1 0 0 –

L. brevis and P. fluorescens 0 – 1 0

L. brevis and S. cerevisiae 0 – 0 –

P. fluorescens and S. cerevisiae 0 – 1 0
Each number represents the assigned group for each class.
TABLE 5 Average and standard deviation of accuracy and F1-score for pure and pure & mixed experiments.

Model
Pure Pure & Mixed

Accuracy F1-score Accuracy F1-score

XGBoost (Vega-Márquez et al., 2020) 0.8381 ± 0.03 0.8378 ± 0.03 0.6212 ± 0.07 0.5452 ± 0.09

PCA_LR (Vega-Márquez et al., 2020) 0.8725 ± 0.04 0.8720 ± 0.04 0.7476 ± 0.07 0.7066 ± 0.09

PCA_SVM (Vega-Márquez et al.,
2020)

0.8634 ± 0.05 0.8636 ± 0.05 0.7991 ± 0.06 0.7696 ± 0.07

PLS_DA (Christmann et al., 2024) 0.8978 ± 0.04 0.8978 ± 0.04 0.8505 ± 0.06 0.8539 ± 0.07

CNN2D (Yan et al., 2024) 0.9239 ± 0.06 0.9224 ± 0.06 0.9205 ± 0.03 0.9282 ± 0.03

CNN1D (Yan et al., 2024) 0.9152 ± 0.05 0.9137 ± 0.05 0.8739 ± 0.05 0.8701 ± 0.05

MLP (Vega-Márquez et al., 2020) 0.9065 ± 0.05 0.9064 ± 0.05 0.9205 ± 0.03 0.9231 ± 0.03

FCNN (Vega-Márquez et al., 2020) 0.9319 ± 0.04 0.9304 ± 0.04 0.9253 ± 0.03 0.9337 ± 0.03
Bold values indicate the best-performing model, while underlined values indicate the second best-performing model.
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where the bacterium is present, we further classify the Pureness (*)

of the culture in comparison to mixed ones, to dive deeper into the

identification of pathogenic bacterial cultures.

As presented in Tables 9, 10, we observe that FCNN is the best-

performing model for identifying the presence of E. coli, achieving

92.50% accuracy and an F1-score of 91.40%, closely followed by MLP

with 92.04% accuracy and 90.86% F1-score. The remaining baselines

exhibit lower performance. Sensitivity and specificity alternate

between 96.45% and 84.76%, demonstrating that the model is

highly specific in detecting the presence of pathogenic bacteria.

On the other hand, when distinguishing between pure and

mixed cultures of the pathogenic bacterium E. coli, both FCNN and

CNN1D achieved perfect performance, with 100% accuracy, F1-

score, sensitivity, and specificity. The remaining baseline models

also demonstrated strong performance, further supporting the

reliability of the classification. These results highlight the models’

ability to accurately determine the pureness of specific pathogenic

bacterial cultures. However, potential dataset-specific or culture-

dependent noise should be considered when interpreting these

perfect scores. Future work should involve evaluating these classes
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on larger and more diverse datasets to assess the consistency and

generalization of the models.

In alignment with previous experiments, we investigate the

classification performance of the models based on the Presence (+)

and Pureness (*) of another pathogenic bacterium, P. fluorescens.

Table 11 once again highlights the superiority of the FCNN model

in both tasks. Specifically, FCNN achieves 93.44% accuracy and an

f1-score of 92.70% in the P. fluorescens (+) experiment, followed by

MLP and CNN2D, while CNN1D and PLS_DA also demonstrate

promising results. Similarly, in the P. fluorescens (*) experiment,

FCNN outperforms the other baselines, achieving 98.67% and

98.56% of accuracy and f1-score, respectively. CNN2D follows

closely in performance, whereas the remaining baselines exhibit

significantly lower results in comparison.

As shown in Table 10, the sensitivity and specificity of the best-

performing model, FCNN, are smoother compared to previous

experiments. The values for the two classes in each experiment

alternate between 91.62% and 94.31% for the presence of the

pathogenic bacterium and between 100% and 96.67% for the

pureness of the culture. These findings demonstrate that the models
TABLE 6 Sensitivity and specificity for each class of the best performing model FCNN in pure and pure & mixed experiments.

Class

Pure Pure & Mixed

Sensitivity Specificity Sensitivity Specificity

E. coli 0.8933 ± 0.09 0.9667 ± 0.04 0.8200 ± 0.13 0.9787 ± 0.02

L. brevis 0.9667 ± 0.07 0.9889 ± 0.02 0.9000 ± 0.08 0.9946 ± 0.01

P. fluorescens 0.9267 ± 0.09 0.9666 ± 0.03 0.9333 ± 0.13 0.9731 ± 0.00

S. cerevisiae 0.9381 ± 0.08 0.9882 ± 0.02 0.9381 ± 0.08 0.9890 ± 0.01

E. coli and L. brevis – – 1.0000 ± 0.00 0.9949 ± 0.01

E. coli and P. fluorescens – – 0.9500 ± 0.10 0.9947 ± 0.01

E. coli and S. cerevisiae – – 1.0000 ± 0.00 0.9951 ± 0.01

L. brevis and P. fluorescens – – 0.9000 ± 0.20 1.0000 ± 0.00

L. brevis and S. cerevisiae – – 0.9267 ± 0.09 0.9947 ± 0.01

P. fluorescens and S. cerevisiae – – 1.0000 ± 0.00 1.0000 ± 0.00
TABLE 7 Average and standard deviation of Accuracy and F1-score for Bacteria & Fungi and Gram-positive & Gram-negative experiments.

Model

Bacteria & Fungi Gram-positive & Gram-negative

Accuracy F1-score Accuracy F1-score

XGBoost (Vega-Márquez et al., 2020) 0.9485 ± 0.04 0.9243 ± 0.07 0.8954 ± 0.06 0.8743 ± 0.07

PCA_LR (Vega-Márquez et al., 2020) 0.9572 ± 0.03 0.9402 ± 0.04 0.9307 ± 0.04 0.9181 ± 0.05

PCA_SVM (Vega-Márquez et al.,
2020)

0.9319 ± 0.05 0.9007 ± 0.08 0.9065 ± 0.08 0.8986 ± 0.09

PLS_DA (Christmann et al., 2024) 0.9659 ± 0.03 0.9539 ± 0.04 0.9654 ± 0.03 0.9610 ± 0.03

CNN2D (Yan et al., 2024) 0.9743 ± 0.02 0.9643 ± 0.03 0.9301 ± 0.02 0.9192 ± 0.03

CNN1D (Yan et al., 2024) 0.9743 ± 0.02 0.9643 ± 0.03 0.8255 ± 0.08 0.8150 ± 0.08

MLP (Vega-Márquez et al., 2020) 0.9830 ± 0.02 0.9763 ± 0.03 0.9771 ± 0.03 0.9735 ± 0.03

FCNN (Vega-Márquez et al., 2020) 0.9830 ± 0.02 0.9763 ± 0.03 0.9771 ± 0.03 0.9735 ± 0.03
Bold values indicate the best-performing model, while underlined values indicate the second best-performing model.
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are highly specific in detecting the pureness of the pathogenic

bacterium P. fluorescens.
3.5 Evaluation of DL models’ training time
and parameters

To further evaluate the proposed DL baseline models, we

further report two key evaluation aspects of DL research. First, we

measured the training time for each of the four models: CNN1D,

CNN2D, MLP, and FCNN. For each experiment and each iteration

of the five-fold cross-validation evaluation method, we recorded the

overall training time, compute the average and standard deviation

in seconds, and presented the results in Table 12.

Notably, FCNN, apart from being the best-performing model

across all experiments, exhibited the fastest training time, averaging

24.54 seconds. This is nearly half the time required by the second-

fastest model, CNN2D, which averaged 43.11 seconds. MLP

followed with an average training time of 48.85 seconds but

showed a high standard deviation of 78.16 seconds, and CNN1D

had the longest training time, averaging 58.38 ± 71.34 seconds.

Additionally, Table 12 reports the overall number of trainable

parameters relative to the number of target classes, as the last

hidden layer’s parameters depend on the output classes, as

illustrated in Figure 2. MLP has the fewest trainable parameters at

46,694,912, closely followed by FCNN with 47,482,880 parameters,

presenting only a 1.68% increase. CNN2D nearly doubles this
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amount with 81,423,360 parameters, while CNN1D has the

highest number, requiring 93,285,376 trainable parameters.

These results highlight that FCNN not only achieves the highest

accuracy across all experiments but also is trained fastest and is the

second most compact model in terms of trainable parameters. MLP

and CNN2D perform competitively depending on the experiment,

while CNN1D consistently ranks as the least effective model among

the four DL baselines, showcasing that CNN models are quite

computationally insufficient in the presented tasks.
4 Discussion

This study explored the ability of ML-based and DL-based

supervised classification methods in identifying organism-level

microbial cultures through their representative VOCs fingerprints.

We investigated pure and mixed cultures of four different

microorganisms as multi-class classification problems.

Additionally, we introduced two new experiments, one identifying

between Bacteria and Fungi, while the other distinguishing Gram-

positive from Gram-negative bacteria. Finally, we presented the

results on identifying two pathogenic bacteria, Escherichia coli
frontiersin.org
TABLE 8 Sensitivity and Specificity for each class of the best performing
models MLP and FCNN in Bacteria (zero) & Fungi (one) and Gram-
positive (one) & Gram-negative (zero) experiments.

Experiment Class Sensitivity Specificity

Bacteria & Fungi
0 1.0000 ± 0.00 0.9333 ± 0.08

1 0.9333 ± 0.08 1.0000 ± 0.00

Gram-positive &
Gram-negative

0 1.0000 ± 0.00 0.9333 ± 0.08

1 0.9333 ± 0.08 1.0000 ± 0.00
Each number represents the assigned group for each class.
TABLE 9 Average and standard deviation of Accuracy and F1-score for Presence (+) and Pureness (*) of E. coli experiments.

Model

E. coli (+) E. coli (*)

Accuracy F1-score Accuracy F1-score

PCA_SVM (Vega-Márquez et al.,
2020)

0.8130 ± 0.07 0.7810 ± 0.08 0.9867 ± 0.03 0.9864 ± 0.03

PCA_LR (Vega-Márquez et al., 2020) 0.8315 ± 0.05 0.8053 ± 0.06 0.9867 ± 0.03 0.9864 ± 0.03

XGBoost (Vega-Márquez et al., 2020) 0.8548 ± 0.08 0.8309 ± 0.09 0.9305 ± 0.09 0.9291 ± 0.09

PLS_DA (Christmann et al., 2024) 0.8878 ± 0.07 0.8776 ± 0.07 0.9867 ± 0.03 0.9864 ± 0.03

CNN2D (Yan et al., 2024) 0.8926 ± 0.04 0.8766 ± 0.05 0.9867 ± 0.03 0.9864 ± 0.03

CNN1D (Yan et al., 2024) 0.8643 ± 0.05 0.8469 ± 0.05 1.0000 ± 0.00 1.0000 ± 0.00

MLP (Vega-Márquez et al., 2020) 0.9204 ± 0.06 0.9086 ± 0.06 0.9867 ± 0.03 0.9864 ± 0.03

FCNN (Vega-Márquez et al., 2020) 0.9250 ± 0.05 0.9140 + 0.06 1.0000 ± 0.00 1.0000 ± 0.00
Bold values indicate the best-performing model, while underlined values indicate the second best-performing model.
TABLE 10 Sensitivity and Specificity for each class of the best
performing model FCNN in Presence (+) and Pureness (*) of E. coli and P.
fluorescens experiments.

Experiment Class Sensitivity Specificity

E. coli (+)
0 0.9645 ± 0.04 0.8476 ± 0.09

1 0.8476 ± 0.09 0.9645 ± 0.04

E. coli (*)
0 1.0000 ± 0.00 1.0000 ± 0.00

1 1.0000 ± 0.00 1.0000 ± 0.00

P. fluorescens (+)
0 0.9162 ± 0.07 0.9431 ± 0.03

1 0.9431 ± 0.03 0.9162 ± 0.07

P. fluorescens (*)
0 1.0000 ± 0.00 0.9667 ± 0.07

1 0.9667 ± 0.07 1.0000 ± 0.00
Each number represents the assigned group for each class.
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(highly pathogenic) and Pseudomonas fluorescens (low pathogenic),

by training models to classify their presence and pureness in

various cultures.

To properly evaluate on those experiments, we designed a five-

fold cross-validation evaluation protocol for eight different models

(PLS_DA, PCA_SVM, PCA_LR, XGBoost, CNN1D, CNN2D,

MLP, FCNN), while reporting a wide collection of evaluation

metrics. A further evaluation of DL models is conducted to

analyze training time and trainable parameters. Based on the

reported results, FCNN outperforms the other experimented

baselines by achieving the best performance among the models

evaluated in this study in terms of overall performance metrics and

training time across all experiments, while having a slightly higher

parameters count (less than 2%), compared to the lightest

model, MLP.

In future work, we plan to incorporate imbalance-aware

techniques such as class-weighted losses or focal loss for deep

learning models, class weights for machine learning models, and

expand the evaluation with metrics like macro-F1, PR-AUC, and

95% confidence intervals computed via bootstrapping across folds

to improve and evaluate the models under imbalanced conditions.

We also aim to integrate model interpretability methods, such as

Grad-CAM or saliency maps for CNN architectures and SHAP for

FCNN models, to highlight informative retention-time and drift-

time regions, thereby linking predictive features to underlying

chemical patterns and ensuring biological plausibility, through

various explainable AI techniques.
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Finally, due to the significant limitations of the dataset, such as

the small number of samples (214 in total) and the imbalance across

different experiments, there is a substantial risk of overfitting, which

may lead to inflated performance metrics. This limitation makes it

difficult to draw definitive conclusions about the generalization

capability of our models. While we employed k-fold cross-

validation to maximize the use of the limited data in both

training and validation sets, we acknowledge that this approach

carries a risk of optimistic bias, potential data leakage, or overfitting

to instrumentation-specific noise. Therefore, it is important to

emphasize that this work represents an early-stage investigation

under controlled laboratory conditions and does not constitute

clinical validation. To establish real-world applicability, future

studies should also include clinically relevant samples processed

under different culture media and across multiple GC-IMS

instruments and laboratories. A key next step will be the creation

of a large-scale, multi-site dataset that incorporates diverse

instruments, operators, and sample preparation protocols. Such

an effort will be essential to evaluate the robustness, transferability,

and generalization of the proposed models.
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TABLE 11 Average and standard deviation of Accuracy and F1-score for Presence (+) and Pureness (*) of P. fluorescens experiments.

Model
P. fluorescens (+) P. fluorescens (*)

Accuracy F1-score Accuracy F1-score

PCA_SVM (Vega-Márquez et al.,
2020)

0.8318 ± 0.04 0.7970 ± 0.04 0.8762 ± 0.07 0.8509 ± 0.09

PCA_LR (Vega-Márquez et al., 2020) 0.8412 ± 0.04 0.8054 ± 0.05 0.8762 ± 0.07 0.8523 ± 0.09

XGBoost (Vega-Márquez et al., 2020) 0.8178 ± 0.02 0.7754 ± 0.02 0.9438 ± 0.05 0.9381 ± 0.06

PLS_DA (Christmann et al., 2024) 0.9155 ± 0.04 0.9053 ± 0.05 0.9591 ± 0.05 0.9550 ± 0.06

CNN2D (Yan et al., 2024) 0.9298 ± 0.02 0.9193 ± 0.03 0.9733 ± 0.05 0.9700 ± 0.06

CNN1D (Yan et al., 2024) 0.9157 ± 0.04 0.9012 ± 0.05 0.9600 ± 0.08 0.9569 ± 0.09

MLP (Vega-Márquez et al., 2020) 0.9298 ± 0.03 0.9208 ± 0.04 0.9591 ± 0.05 0.9550 ± 0.06

FCNN (Vega-Márquez et al., 2020) 0.9344 ± 0.03 0.9270 ± 0.03 0.9867 ± 0.03 0.9856 ± 0.03
Bold values indicate the best-performing model, while underlined values indicate the second best-performing model.
TABLE 12 Average and standard deviation of training time (s) across all the experiments and number of trainable parameters in respect to the target
classes for each DL model.

Model Training time (s) Trainable parameters

CNN1D (Yan et al., 2024) 58.38 ± 71.34 93,285,376 + 513 × classes

CNN2D (Yan et al., 2024) 43.11 ± 29.55 81,423,360 + 513 × classes

MLP (Vega-Márquez et al., 2020) 48.85 ± 78.16 46,694,912 + 513 × classes

FCNN (Vega-Márquez et al., 2020) 24.54 ± 12.41 47,482,880 + 513 × classes
Bold values indicate the best-performing model, while underlined values indicate the second best-performing model.
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