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Abstract:

Understanding spatial relationships between objects in images is crucial for robotic navi-
gation, augmented reality systems, and autonomous driving applications, among others.
However, existing vision-language benchmarks often overlook explicit spatial reasoning,
limiting progress in this area. We attribute this limitation in part to existing open datasets
and evaluation metrics, which tend to overlook spatial details. To address this gap, we
make three contributions: First, we greatly extend the COCO dataset with annotations of
spatial relations, providing a resource for spatially aware image captioning and visual ques-
tion answering. Second, we propose a new evaluation framework encompassing metrics
that assess image captions’ spatial accuracy at both the sentence and dataset levels. And
third, we conduct a benchmark study of various vision encoder—text decoder transformer
architectures for image captioning using the introduced dataset and metrics. Results reveal
that current models capture spatial information only partially, underscoring the challenges
of spatially grounded caption generation.

Keywords: vision-language modeling; spatial relations; spatial grounding; spatial image
captioning; spatial visual question answering; dataset; metrics; benchmark

1. Introduction

Image captioning (IC) [1] is a fundamental task in computer vision and natural lan-
guage processing (NLP) [2—4] that aims to generate natural language descriptions of im-
ages. While traditional models have succeeded in capturing general image content, they
often overlook fine-grained spatial relationships between objects—descriptions such as
“to the left of” or “behind of”, which are essential in domains like autonomous driving [5],
augmented reality systems [6], robotics [7], and medical imaging [8]. Recent advances in
vision-language models, including Vision Transformers [9] combined with text decoders
like GPT [10], have enhanced the ability to model complex contextual relationships. How-
ever, deeper understandings of spatial semantics remain largely unexplored.

A key limitation is that most existing datasets and benchmarks do not provide ex-
plicit spatial annotations or descriptions, preventing models from learning or generalizing
spatial reasoning effectively. Consequently, even state-of-the-art captioning systems tend
to produce generic sentences focused on object or action recognition while failing to ar-
ticulate spatial context. Furthermore, widely used evaluation metrics such as BLEU [11],
METEOR [12], and ROUGE [13] only indirectly account for spatial accuracy, through their
impact on the lexical and grammatical coherence of the generated sentences. This creates
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a significant gap in our ability to evaluate and improve models for spatially grounded
image captioning.

To address these limitations, we make three key contributions. First, we greatly extend
the COCO [14] dataset by incorporating spatial descriptions into the image captions. In ad-
dition to the enriched captions, we also generate question—answer pairs derived directly
from these spatial descriptions, to also enable the spatially aware visual question answering
(VQA) [15] task. Furthermore, we provide depth maps, object-level metadata, and binary
masks for all detected objects, providing richer contextual and geometric information.
Second, we introduce a new spatial metric designed to evaluate the presence and accuracy
of spatial relationships in image captions. This metric complements existing evaluation
tools by providing insight into a model’s spatial reasoning [16] capabilities. Together, these
contributions allow for a comprehensive benchmark study (the third contribution) for
evaluating vision-encoder text-decoder architectures [17], pushing the boundaries of image
captioning toward spatial grounding and understanding. Through this work, our goal is
to encourage the development of models that go beyond object recognition and achieve
deeper spatial comprehension, ultimately enabling more effective deployment in complex,
real-world tasks.

2. Related Work

The concept of combining vision and language models for image captioning has been
extensively explored in recent years. However, much of the focus has remained on object
recognition without emphasizing the spatial relationships between objects in the scene.
In this section, we will compare existing datasets, metrics, and benchmarks in the context of
spatially grounded image captioning and spatial reasoning, which closely relate to our work
in creating a large spatially aware dataset and introducing a new family of spatial metrics.

2.1. Existing Datasets
COCO (Common Objects in Context):

The work of Lin et al. [14] has long been a benchmark in object detection, segmentation,
and captioning tasks. While it contains rich annotations for object categories and image
captions, it does not explicitly capture spatial relationships between objects in a scene.
Existing models trained on COCO typically focus on object identification without spatial
reasoning. Our work greatly extends the COCO dataset by incorporating explicit spatial
descriptions, enriching each image with annotations that describe the relative positions of
objects. This makes it more suitable for spatial reasoning tasks.

Visual Genome:

Krishna et al. [18] propose a large-scale dataset with annotations at the image, object,
and region levels. It also includes relationships between objects, making it fundamentally
spatially aware. For example, it contains object annotations with “in front of” or “next
to” descriptions. However, Visual Genome focuses on specific object-object relationships,
and it does not offer comprehensive natural language descriptions of spatial contexts in an
image. Our work draws inspiration from these insights but provides a much richer array
of spatial descriptions.

Clevr:

Johnson et al. [19] is a dataset designed to test spatial reasoning in visual question
answering. It provides synthetic images of simple 3D-scenes with a variety of spatial
relations, such as “to the left of,” “above,” and “below.” While CLEVR focuses on structured,
synthetic environments, it lacks the real-world complexity of datasets like COCO. Moreover,
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its captions are limited to very basic spatial relations and do not reflect the more nuanced
descriptions found in natural scenes. Our work goes beyond CLEVR by introducing a
larger-scale, real-world dataset suitable for both visual question answering and captioning
training and evaluation.

GQA:

Hudson and Manning [20] is a dataset specifically designed to test compositional
generalization in visual reasoning. It provides questions about the spatial relations be-
tween objects (e.g., “Is the cup next to the plate?”), which resembles our focus on spatial
relations. However, it does not provide natural language captions or detailed spatial
descriptions embedded in fluent sentence form. In contrast, our dataset provides richly
annotated image captions that naturally incorporate spatial relationships, while also gener-
ating VQA-compatible question—answer pairs, bridging the gap between captioning and
reasoning tasks.

Spatial Commonsense:

Storks et al. [21] includes annotations about spatial relationships between objects in
images, something similar to our objective. It focuses on common spatial terms (e.g., “on the
left,” “behind”) but lacks depth and all the supplementary modalities present in our dataset.
Our method surpasses this by offering high-resolution depth maps, segmentation masks,
and object-level metadata, enabling models to reason about spatiality using both textural
and geometric cues. This holistic, multi-modal approach creates a significantly more robust
benchmark for developing and evaluating spatially aware vision-language models.

Visual Spatial Reasoning;:

Liu et al. Liu et al. [22] present the Visual Spatial Reasoning (VSR) dataset, a large-
scale resource containing over 10,000 image—text pairs that capture 66 distinct types of
spatial relations, such as “under”, “in front of”, and “facing towards”. What is notable
about this work is the number of spatial relations evaluated, the variability of the reference
frame for inducing the spatial relations, and its comparisons against the human element.
Human performance on VSR exceeds 95% while state-of-the-art models achieve only
around 70%, revealing a substantial gap and underscoring the challenge of spatial reasoning
for multimodal Al systems. Compared to this prominent work, while SADAMB lacks a
plethora of its spatial relations and uses only a fixed frame of reference, our work uniquely
includes different phraseology reserved solely for relations between similar-class objects
(i.e., “in a row”, “one on top of the other”, “side by side”). As regards the number of
image—-text pairs, our work greatly exceeds VSR by orders of magnitude. Additionally,
while VSR is formulated essentially as a binary VQA setup (where each statement about
an image is evaluated for being either true of false), SADAMB provides material for fully

comprehensive VQA training.

2.2. Conventional Metrics for Generic IC

Traditional metrics such as BLEU, ROUGE, and METEOR assess surface-level simi-
larity through n-gram overlap or semantic alignment but do not explicitly assess spatial
accuracy. To address this, we propose Spatial Captioning Accuracy (SCA), which builds
beyond existing metrics with spatial correctness checks.

BLEU:

Papineni et al. [11] has been the most widely used metric in IC tasks, primarily
measuring n-gram overlap between predicted and ground truth captions. However, BLEU
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does not explicitly capture the truthiness of spatial relationships between objects, making it
insufficient for evaluating spatially aware captioning.

ROUGE:

Lin [13] is a set of metrics that measure the overlap of n-grams, word sequences,
and word pairs between predicted and reference texts. While useful for evaluating content
coverage and recall, ROUGHE, still, does not consider the spatial structure or relationships
between objects, rendering it limited for assessing spatially grounded captions.

METEOR:

Banerjee and Lavie [12] is another common metric used for IC tasks. It improves upon
both BLEU and ROUGE in the evaluation of the alignment of words by taking into account
synonyms and stemming. While METEOR can incidentally evaluate semantic meaning,
it also falls short when it comes to evaluating the spatial aspect of object relationships in
its essence.

Despite the significant advancements in image captioning and vision-language mod-
eling, several critical gaps remain in the research community, particularly concerning the
integration of spatial reasoning in captioning and question-answering tasks. This work
addresses several of these gaps by greatly enhancing an established dataset, introducing
a new family of spatial metrics, and establishing a comprehensive benchmark for spatial
IC (not for VQA in this iteration of the work). Below, we highlight the key gaps in the
literature that this work aims to address:

2.3. Lack of Rich Spatial Descriptions in Existing Datasets

While several vision-language datasets, such as COCO, Visual Genome, and CLEVR
exist that include object annotations and relationships, none of these datasets fully integrate
complex, natural spatial descriptions in a way that mirrors human language. Existing
datasets focus on basic object relationships, such as “next to” or “in front of,” but they often
fail to capture the richness and diversity of spatial relationships that naturally occur in
real-world scenarios.

Our descriptions capture not only standard object—object spatial relationships such
as “above,” “to the left of,” and “behind,” but also less common configurations between

similar objects, including “side by side,” “one on top of the other”, and “one in front of the
other.” This addition fills a significant gap by providing a dataset that reflects the pluralism

and variety of spatial reasoning needed for image-captioning tasks.

2.4. Inadequate Evaluation Metrics for Spatial Reasoning

While some metrics, such as CIDEr, consider sentence fluency and consistency, they
do not directly evaluate the correctness of spatial relationships between objects, which is
essential for tasks requiring spatial awareness.

Our Spatial Captioning Accuracy (SCA) metric provides a more comprehensive way
of evaluating models that generate captions with spatial relationships. These metrics
allow for the assessment of both semantic and spatial accuracy, offering a more holistic
view of a model’s performance. We should add here that SCA is inspired and designed
to address the peculiarities of our specific setup, which includes powerful, transformer-
based, neural architectures and limited language vocabulary. Thus, while we consider
it optimal for comparisons in our setup, we do not claim that it is directly applicable to
every benchmark setup retaining its characteristics, especially in scenarios involving less
powerful architectures or significantly more complex vocabulary.
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2.5. Limited Scope of Existing Datasets for Spatially Aware VQA

While many existing image captioning datasets, such as COCO, focus on generating
descriptive captions for images, they often overlook the potential for these captions to be
leveraged for visual question answering tasks. VQA typically involves generating answers
to natural language questions about images, yet most image captioning datasets are not
explicitly structured to support VQA-style question—answer pairs.

Our dataset extends captioning into the VQA domain by generating structured
question—answer pairs stemming directly from spatial captions. For example:

Generated Caption:

Caption: “a car is to the left of a person.”

Generated Q & A:

Question: “where is the car?”
Answer: “to the left of the person.”

This approach serves two purposes:

1.  Enhances the Utilization of Spatial Captions: The spatial captions generated by this
work not only describe the objects in an image, but also provide context for more
complex VQA tasks that require an understanding of spatial relationships.

2. Bridges the Gap between Captioning and VQA: By generating question-answer pairs
from the same spatially enriched captions, we enable a seamless connection between
the two tasks, allowing for multi-task learning where models can simultaneously
generate captions and answer spatially aware questions about images. This cross-task
capability is critical for models that aim to tackle a broader range of vision-language
tasks, making them more versatile and efficient in real-world applications.

Allin all, this work provides a unique resource for training and evaluating models on both
IC and VQA tasks, with a particular focus on spatial reasoning. This dual-task approach fa-
cilitates the development of vision-language models that can generate descriptive captions
and answer detailed spatial questions about images, thus contributing to more robust and
versatile multi-modal Al systems.

3. Dataset

3.1. Dataset Creation Process

We introduce SADAMB, a large, structured extension of the COCO dataset enriched
with spatial relationship annotations between objects and various auxiliary information
and modalities. The spatial caption generation is achieved automatically, based on object
recognition and depth estimation information provided by external pre-trained models.
A histogram with the count of all the final dataset’s objects can be seen at Figure 1. We
consider all descriptions to be relative to the viewer’s point of view, and the sentence
composition is guided via heuristic rules encompassing threshold values and Boolean logic
applied on the various objects. For the development of these rules and the selection of
the various threshold values, no structured human evaluation study was conducted. We
resorted to manual examination by the authoring team of 100 randomly selected dataset
images, where we tried to identify values that apparently increased the number of detected
relations in the images without considerably hurting the overall accuracy of the resulted
descriptions. Consequently, we do not claim that the total of the generated captions and
question—answer pairs is correct; we only support that in its vastness, given some margin
for error which we are unable to reliably quantify at this moment, our dataset is still very
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useful for spatial visual training and evaluation. Furthermore, despite our best efforts, we
acknowledge that our pipeline relies heavily on the accuracy of the external models used
and the overall quality of our heuristics, leading sometimes to the generation of erroneous
spatial descriptions.

Class

Figure 1. Distribution of object classes in the dataset, excluding the most frequent class: person.

The construction process begins with object detection using the yolov8 [23] model.
Detected objects with a confidence score below 0.45 are discarded. To ensure relevance, only
objects occupying less than or equal to 90% of the image area are retained. Among these,
the top four objects with the largest apparent area are selected for spatial relationship extrac-
tion. Images that contain no detected objects are discarded, while those with only a single
object are denoted as “solo” and described using the template, “there is a/an <class>.”.

Sentence construction follows strict grammatical and stylistic conventions: all descrip-
tions are written entirely in lowercase, including the sentence-first letter, and each sentence
terminates with a punctuation mark. Numerical values are written in letter form, and the
correct article (a or an) is determined based on the phonetic sound of the object name.
Some class names are also normalized for grammatical correctness, e.g., “skis” is converted
to “ski” and “scissors” becomes “pair of scissors.” Additionally, duplicate sentences and
redundant relationship descriptions within an image are discarded.

Depth estimation is performed using the pre-trained ZoeDepth [24] model. Depth
information is utilized alongside geometric features of the bounding boxes in a heuristic
manner to extract meaningful spatial relationships. Three primary spatial relationships
are considered: horizontal (left of, right of, side by side), vertical (above, below, one on top
of the other), and depth-based (in front of, behind, one in front of the other). For horizontal
relationships, object i is considered to be to the right of object j if its center is horizontally
further right, the normalized center separation exceeds 0.325, vertical misalignment is
minimal (less than 3.2), and their depths are close enough (within 3.8 units). Bounding
boxes must indicate that object i lies entirely to the right of object j. If both objects are
of the same class, the phrase includes the word “another” to reflect this. All left-right
relationships for the same objects are replaced with side by side.

For vertical relationships, object i is said to be below object j if its vertical center lies
beneath that of j, the normalized vertical separation exceeds 0.325, horizontal misalignment
is below 3.2, and the depth difference is minimal. Additionally, bounding boxes must
indicate that object i lies beneath j. The inverse rule applies for detecting above relationships,
and both directions are replaced with one on top of the other.

Depth-based relationships are defined by comparing depth values directly. Specifically,
object i is labeled as being behind object j if its depth value is greater by more than 0.8,
and both horizontal and vertical misalignment is minimal (each under 3.2 in normalized
units). The inverse relationship defines in front of, and both forms are replaced in the output
as one in front of the other. The prevalence of each of the recognized spatial relationships in
the dataset can be seen in Figure 2.
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Figure 2. Histogram depicting the frequency distribution of spatial relationships in the dataset.

This carefully designed pipeline facilitates, to a good degree, the generation of accurate,

disambiguated, and linguistically consistent spatial descriptions. All thresholds were

chosen in an effort to minimize the presence of “phantom” relations in the dataset. Primarily,

erroneous relations can arise for four reasons:
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The yolov8 [23] object detector provides the wrong class for an object or completely
misses it.

The ZoeDepth [24] depth estimator provides depth estimations for the objects that are
not compatible with their true order along the Z(depth)-axis.

Our heuristics that manipulate the estimated 3D bounding-boxes of the objects (calcu-
lated combining information from the two previously mentioned pre-trained models)
consider relations that a human evaluator would not due to the imperfect, over-
simplified nature of the logical examinations occurring.

There are more than four well-sized objects in the scene, while we only consider up
to four. This arbitrary hard limit was enforced to prevent the creation of very long
image descriptions (since we consider all vs. all objects) that would require very large
token sizes to be processed, rendering a good portion of the dataset irrelevant for
training models compatible with our targeted edge devices. This strategy, of course,
can sometimes lead to an odd situation where not all individual objects of a class are
treated (e.g., conducting bad object counting). In any case, the object count and its
following distribution for all data splits can be seen in Figure 3.

Object Count Distribution per Split

Test Set Validation Set
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1 2 3 a4+
Object Count per Image Object Count per Image
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Figure 3. Distribution of object counts per image across dataset splits.
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3.2. Dataset Extension for Spatial VQA

To support the task of VQA with spatial reasoning, we extended our dataset by addi-
tionally generating structured question—-answer pairs, deriving from the same information
that the captions do. The same object instances, as recognized by the detector in the previ-
ous IC task, and all their auxiliary information, were utilized appropriately. No humans
were involved in the question-answer dataset extraction, and for each image, Q&A pairs
were programmatically crafted using templates depending on the number and spatial
configurations of each detected object.

All Q&A pairs were generated using consistent linguistic rules, ensuring alignment
with the captioning methodology described above. This process yielded a unified dataset
suitable for training and evaluating spatial models in both caption generation and vi-
sual question answering tasks (although in this work we only provide new metrics and
benchmarks for the spatial captioning task).

In its totality, the produced dataset spans across 179,170 images, each one accom-
panied by auxiliary visual modalities (Figure 4): 758,068 extracted spatial captions and
2,394,565 spatial question—answer pairs, all split into three sub-sets (with respect to the
original COCO dataset) for training, validation, and testing purposes. It should be noted
that 25,551 images from the original COCO dataset were discarded because they did not
contain any recognizable objects, as per our pipeline’s heuristics. A summary of the charac-
teristics of our dataset can be seen in Table 1, accompanied with some indicative samples
in Figure 5. For transparency and completeness, some erroneous samples can also be seen
in Figure 6.

E

Figure 4. Each original image is accompanied by auxiliary visual modalities: (A) original images;
(B) depth images; (C-F) class binary masks.

Table 1. SADAMB data splits and their number of elements. Note that a total of 25,551 images
from the respective original COCO dataset splits were discarded because they did not contain any
recognizable objects.

Data Split Original Images Spatial Captions Spatial Q&A
train 72,784 314,159 989,350
validation 35,359 149,487 472,004
test 71,027 294,422 933,211

Total 179,170 758,068 2,394,565
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Captions: A giraffe is to the right of a person. A person is to the left of a giraffe.A giraffe is behind of a person. A person s in front of a giraffe. Two giraffes
side by side. Two giraffes one in front of the other. Q: What s there? A: Two giraffes and a person. Q: How many giraffes are there? A: Two. Q: How many
people are there? A: One. Q: How many objects are there? A: Three. Q: What s to the right of the person? A: A giraffe. Q: Where is the giraffe? A: To the right
of the person. Q: What s to the left of the giraffe? A: A person. Q: Where s the person? A: To the left of the giraffe. Q: What is behind the person? A: A giraffe.
Q: Where is the giraffe? A: Behind the person. Q: What is in front of the giraffe? A: A person. Q: Where is the person? A: In front of the giraffe. Q: What is to
the right of the giraffe? A: Another giraffe. Q: What is to the left of the giraffe? A: Another giraffe. Q: Where is the giraffe? A: To the right of another giraffe.
Q: Where is the giraffe? A: To the left of another giraffe. Q: What is in front of the giraffe? A: Another giraffe. Q: What is behind the giraffe? A: Another
giraffe. Q: Where is the giraffe? A: In front of another giraffe. Q: Where is the giraffe? A: Behind another giraffe.

Captions: A remote is to the right of a cat. A cat is to the left of a remote. Two remotes one on top of the other. Q: What is there? A: Two remotes and a cat. Q:
How many remotes are there? A: Two. Q: How many cats are there? A: One. Q: How many objects are there? A: Three. Q: What is to the right of the cat? A: A
remote. Q: Where is the remote? A: To the right of the cat. Q: What s to the left of the remote? A: A cat. Q: Where is the cat? A: To the left of the remote. Q:
What is above the remote? A: Another remote. Q: What is below the remote? A: Another remote. Q: Where is the remote? A: Above another remote. Q:
Where is the remote? A: Below another remote.

Captions: A refrigerator is to the right of an oven. An oven is to the left of a refrigerator. Q: What is there? A: A refrigerator and an oven. Q: How many
refrigerators are there? A: One. Q: How many ovens are there? A: One. Q: How many objects are there? A: Two. Q: What is to the right of the oven? A: A
refrigerator. Q: Where is the refrigerator? A: To the right of the oven. Q: What is to the left of the refrigerator? A: An oven. Q: Where is the oven? A: To the left
of the refrigerator.

Captions: A dining table is below a chair. A chair is above a dining table. A chair is behind of a dining table. A dining table is in front of a chair. A chair is
behind a sandwich. A sandwich is in front of a chair. A sandwich is below a chair. A chair is above a sandwich. Two sandwiches side by side. Q: What is
there? A: A dining table, a chair, and two sandwiches. Q: How many dining tables are there? A: One. Q: How many chairs are there? A: One. Q: How many
sandwiches are there? A: Two. Q: How many objects are there? A: At least four. Q: What is below the chair? A: A dining table. Q: Where is the dining table?
A: Below the chair. Q: What is above the dining table? A: A chair. Q: Where is the chair? A: Above the dining table. Q: What is behind the dining table? A: A
chair. Q: Where is the chair? A: Behind the dining table. Q: What is in front of the chait? A: A dining table. Q: Where is the dining table? A: In front of the
chair. Q: What is behind the sandwich? A: A chair. Q: Where is the chair? A: Behind the sandwich. Q: What is in front of the chair? A: A sandwich. Q: Where
is the sandwich? A: In front of the chair. Q: What is below the chair? A: A sandwich. Q: Where is the sandwich? A: Below the chair. Q: What is above the
sandwich? A: A chair. Q: Where is the chair? A: Above the sandwich. Q: What is to the right of the sandwich? A: Another sandwich. Q: What is to the left of
the sandwich? A: Another sandwich. Q: Where is the sandwich? A: To the right of another sandwich. Q: Where is the sandwich? A: To the left of another
sandwich.

Figure 5. Samples from the SADAMB dataset. For each image, a set of captions and related question—
answer pairs are provided.

Captions: A person is below a tennis racket. A tennis racket is above a person. A person is BEHIND a tennis racket. A tennis racket is IN FRONT of a
person.

Captions: four people side by side. THREE people one in front of the other.

Figure 6. Erroneous dataset samples stemming from occasional inaccurate depth estimation (relative
to the apparent order of the objects) and innate heuristic rule limitations. Errors are presented in
UPPERCASE characters.

4. Evaluation Metrics

To define and formulate the metric for evaluating our image captioning models with
respect to spatial relations, we will start by breaking down the details of our proposed
metric and then provide its theoretical justification and properties.

4.1. Definitions and Formulation

By setting the token size to 500, the models tend to generate more than one sentence
per image, which we segment up to the last complete sentence and use for evaluation.
The evaluation of spatial relationships is performed through exact matching between the
predicted sentences and the ground truth captions of the corresponding image, ensuring a
strict and consistent comparison criterion.

A natural question that arises is, “why is exact matching between a generated caption
and the corresponding image’s ground truth considered a reliable and fair method for
evaluating correctness?” Through empirical observations, we found that in our specific
use case, powerful models are trained on a simplified vocabulary composed mainly of
object labels (e.g., “the cat”, “the car”, “the person”) and a small set of phrases indicating
spatial relations (e.g., “is in front of”, “is below”, “is to the right of”). Within this limited
linguistic scope, the models, after only a couple of training epochs, rarely fail to produce
grammatically valid sentences. Errors arise almost exclusively from object misidentification
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or incorrect spatial positioning, precisely the aspects we aim to evaluate. Having said that,
the next important question that may arise is, “then, why do we not just use BLEU or any
other standard metric instead of the custom one?” The answer to this reasonable inquiry
is that, in the context of our intention to focus on the identified objects and their spatial
relations, a slight variation in the caption might be completely wrong, even if in BLEU
semantics it can be considered of acceptable level (e.g. when the predicted sentence is
similar to the reference one, with their only difference being “left” in place of “right”). In this
case, BLEU, and any standard metric, would still yield a high score, given that linguistically
the two sentences have a large overlap. Thus, the exact match of the generated captions
with the ground truth sentences of the image, in the very specific context of our benchmark,
is considered to be both reliable and fair. The same reasoning lies also in our choice to
not include even more advanced conventional metrics in our comparison (i.e. BERTScore,
which compensates for generative synonym creation), since their innate benefits would not
manifest and significantly alter the results, and more importantly, the performance order,
of the setups tested in this work.

Lastly, a predicted sentence is considered correct if it appears, regardless of its or-
der, anywhere within the ground truth paragraph of the image. We should note that,
before matching, a pre-processing step is applied to both ground truth and predicted
descriptions where redundant and trailing spaces are stripped and the text is lower-case to
ensure consistency and fairness in the comparison.

Given that the task focuses on generating captions that describe spatial relations
between objects in images, our evaluation metric consists of five different values, based on
the produced sentences, as follows:

Single-Sentence Accuracy: The accuracy of a single caption produced by the model
compared to the ground truth caption for a given image, considering spatial relations
described in one sentence.

Two-Sentence Accuracy: The accuracy of the first two sentences produced by the
model, measuring their alignment with the ground truth description.

Three-Sentence Accuracy: The accuracy of the first three sentences, extending the
evaluation to multiple sentence outputs.

All-Sentence Accuracy: The total number of sentences produced across the entire
dataset (for all images), comparing them against the corresponding ground truth captions
for spatial relations.

Image-Level Accuracy: This metric evaluates how well each image’s caption,
generated by the model, matches the ground truth, considering spatial relations and
object placements.

4.2. Formulaic Representation

In alignment with the prevailing consensus, we acknowledge that a single metric
cannot encapsulate all facets of performance in this complex task. Therefore, we introduce
a parametrizable metric designed to address two pivotal questions:

* A: What is the probability that a generated caption accurately describes a valid
spatial relationship?

*  B: What is the probability of an image being correctly captioned, i.e., to have at least
one caption correctly describing a spatial relationship in it?

Our models generate multiple sentences per image, forming a paragraph. Conse-
quently, multiple captions may correspond to a single image, and the number of generated
captions can vary across images. We define y as the number of sentences considered per
image, with y € {1,2,3, max}, where max represents the maximum number of captions
generated for an image.
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4.2.1. Sentence-Level Accuracy (Accya)

This metric evaluates the proportion of generated captions that exactly match the
ground truth captions for their respective images

n True (1 )

Accyp = ——=
Y NTrue + MFalse

where

®  NTe i the total number of generated captions that exactly match any ground truth
caption for their corresponding images.

®  Npyse i the total number of generated captions that do not match any ground truth
caption.
In the case where y = 1, each image contributes one caption, so #Tye + Mpase = N,

the total number of images.

4.2.2. Image-Level Accuracy (Accyp)

This metric assesses the proportion of images for which at least one generated caption

exactly matches a ground truth caption
N )
1 1y

AcCCmaxB = N Z ﬁ 2)
i=1 t

where

* N is the total number of images;

(i)
* nTrue

truth caption;

is the number of generated captions for image i that exactly match any ground

*  may; is the total number of captions generated for image i.

Note that for y € {1,2,3}, the image-level accuracy Accyp is equivalent to the sentence-
level accuracy Accya, as each image contributes the same number of captions.

This formulation provides a comprehensive framework for evaluating model perfor-
mance in generating spatially accurate captions, accommodating variability in the number
of captions per image.

4.3. Properties of the Metric

Granularity: The metric evaluates accuracy at both the sentence and image level,
ensuring that fine-grained performance across various levels of output (from individual
sentences to full image captions) is captured.

Spatial Context Awareness: It is specifically designed to capture the spatial relation-
ships between objects in the image, which is the core aspect of our task. This makes the
metric more relevant and targeted for spatial captioning tasks compared to traditional
image captioning metrics.

Flexibility: By evaluating the accuracy of the first few sentences, as well as the total
number of sentences generated, the metric can give insights into both the precision of initial
predictions and the ability of the model to generate comprehensive and consistent captions.

Sentence-Level Accuracy: The proposed metric goes beyond overall accuracy and
measures the correctness of individual sentences, which is crucial in multi-sentence cap-
tioning tasks where each sentence might describe different aspects of spatial relationships.

Image-Level Evaluation: By including an image-level accuracy measure, the metric
assesses how well the entire set of generated sentences matches the overall ground truth
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description for each image, enabling a different evaluation perspective that might be more
suitable to some uses.

5. Benchmark and Results
5.1. Description of the Models Tested

For our benchmarking, we utilized a combination of popular Hugging Face [25] pre-
trained models for the vision and language modalities. Specifically, we fine-tuned the
pre-trained versions of ViT (Vision Transformer) (vit-base-patch16-224 from the google /vit-
base-patch16-224 repository), DeiT (Data-efficient Image Transformer) (deit-base-patch16-
224 from the facebook/deit-base-patch16-224 repository), and DPT (Dense Prediction
Transformer) (dpt-large from the Intel/dpt-large repository) as vision encoders, paired
with GPT-2 (gpt2 from the gpt2 repository) and BERT (bert-base-uncased from the bert-
base-uncased repository) as text decoders, the latter with special provisions. We should
note here that we chose to focus on powerful, yet small, edge-device-ready architectures,
on a limited number of encoder-decoder combinations that would allow for reasonable
experiment durations. We consider the main contribution of our work to be the spatial
extension of the COCO dataset, while the benchmark study serves the supplementary
purpose of demonstrating a first use of the dataset, utilizing somewhat basic architectures
in an interesting combinatorial context. Below is a description of each model and how they
were employed in the context of this work.

5.1.1. Vision Encoders

ViT (Vision Transformer): Dosovitskiy et al. [9] treats images as sequences of fixed-
size patches, which are then fed into a transformer model to capture long-range depen-
dencies within the image. We fine-tuned it on our spatially enriched dataset to leverage
its ability to model spatial relationships between objects in images. Being synonymous
with the state of the art, the ViT encoder is easily the go-to option for almost any vision
task nowadays.

DeiT (Data-Efficient Image Transformer): Touvron et al. [26] is an efficient variant of
the ViT model, designed to require fewer training resources without sacrificing performance.
By incorporating distillation from a convolutional neural network (CNN), DeiT achieves
competitive results with significantly reduced computational cost. We selected DeiT for its
efficiency in fine-tuning on our spatially enriched dataset.

DPT (Dense Prediction Transformer): Ranftl et al. [27] is another variant of the
Vision Transformer, optimized for dense prediction tasks such as depth estimation and
segmentation. Although DPT was originally designed for dense pixel-level predictions, we
tested it here on a high-level spatial reasoning task in the context of IC. The ability of DPT
to capture fine-grained spatial relationships and context within images made it a valuable
addition to the set of encoders used in this benchmark.

5.1.2. Text Decoders

GPT-2 (Generative Pretrained Transformer 2): Radford et al. [10] is a large-scale
transformer model designed for autoregressive text generation. The implementation we
used has been pre-trained on large amounts of text data and is capable of generating
coherent and contextually appropriate text based on a given prompt. We used GPT-2 as
one of the two options for the text decoder to generate captions from the image features
extracted by the ViT, DeiT, or DPT encoders, respectively.

BERT (Bidirectional Encoder Representations from Transformers): Devlin et al. [28]
is a bidirectional transformer model designed for a variety of language understanding
tasks. Unlike GPT-2, BERT is trained to understand context in both directions (left-to-
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right and right-to-left), which allows it to perform exceptionally well on tasks such as
question answering, sentiment analysis, and text classification. BERT’s ability to handle
complex, bidirectional dependencies made it a strong candidate for tasks requiring a
nuanced understanding of spatial relationships between objects. In its primal form, BERT is
an encoder architecture. Although not common in the literature, BERT in the Hugging Face
framework can be adapted to behave as a decoder. This involves the addition of a language-
modeling head, tweaking the model manually to attend to encoder outputs, implement the
cross-attention scheme, and define a generation-boundaries workaround that involves the
re-purposing of ‘PAD’ tokens for all ‘EOS’, ‘CLS’, and ‘PAD’ functionalities.

5.2. Fine-Tuning

For all encoder—decoder combinations, we fine-tuned the produced models in an
end-to-end manner. This enabled the models to adapt their feature extraction capabilities
to the specific requirements of generating spatially aware captions or answering spatiality-
related questions. We used the AdamW [29] optimizer with a learning rate of 5 x 107°
and weight decay of 1 x 10~ across all experimental instances, and employed cosine
annealing learning rate scheduling to promote fast convergence. Cross-entropy loss was
used for caption generation. To streamline our training pipeline and manage configurations
more elegantly, we employed the Hydra [30] framework and we used MLflow to log and
visualize training metrics throughout the fine-tuning process.

5.3. Benchmarking and Experimental Setup

For our purposes, we evaluated the performance of each encoder—decoder combi-
nation, assessing how well each model can generate accurate and detailed captions that
recognize the objects in the images and describe correctly the spatial relationships between
them, as captured by our chosen metrics. We should note here that for the auto-regressive
caption generation we used greed-decoding, performing no sampling. In our experiments,
all models were trained for 50 epochs using a batch size of 8 and an image resolution of
224. We used a maximum token length of 500 and employed an iterable dataset setup.
All training was conducted on two NVIDIA RTX 3090 GPUs, each with 24 GB of VRAM,
using data parallelism. The system was powered by an Intel(R) Core(TM) i9-10900X CPU
@ 3.70GHz with 64 GB of RAM.

5.4. Results and Analysis

Table 2 summarizes the performance of various vision-text transformer combina-
tions evaluated on standard and proposed spatially aware metrics. Across all metrics,
the DeiT/BERT model consistently outperforms other architectures, achieving the highest
scores in Bleu (70.69), Rouge (79.62), and Meteor (78.06), indicating its superior linguistic
and semantic alignment capabilities, which is a surprising and useful result given that this
specific combination is not adequately highlighted in the existing literature.

When focusing on spatially grounded evaluation, DeiT/BERT also leads across all
custom metrics (Accya to Accmaxp), suggesting that this combination is more adept at cap-
turing and articulating spatial relations within captions. Notably, it achieves a substantial
lead in Accza (45.21) and Accmaxa (41.44), which measure deeper, sentence-level spatial
accuracy and overall caption-level correctness, respectively.

ViT/BERT follows closely in performance, especially in Accijp (51.54) and Accyp
(45.87), while DPT-based models generally underperform compared to ViT and DeiT
variants, indicating potential limitations in DPT’s spatial generalization capabilities for
this task. Additionally, GPT-2 decoders tend to lag behind BERT-based ones across most
metrics, reaffirming the benefits of BERT’s bidirectional encoding in capturing spatial and
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contextual dependencies within image-grounded descriptions, an aspect also not broadly
mentioned in the literature.

Table 2. Benchmark results for different vision encoder—text decoder combinations fine-tuned for
50 epochs. Best values are denoted in bold.

Performance Scores

ViT/GPT2 ViT/BERT DeiT/GPT2 DeiT/BERT DPT/GPT2 DPT/BERT

Bleu 68.9205 69.1500 69.5859 70.6920 69.3144 69.1059
Rouge 78.7030 78.8027 78.7846 79.6154 78.5726 78.2929
Meteor 77.0582 77.1043 77.2755 78.0631 76.8082 76.6636
Accia 51.4664 51.5399 50.6547 51.4155 47.7672 48.2565
Accon 44.8609 458751 45,6122 46.7670 43.9423 43.6683
Accap 42.1286 43.0079 43.8455 45.2108 41.9176 42.6292
AcCpaxa  38.6304 38.4833 39.8153 41.4448 39.2559 39.3343
Accmap 467449 46.6486 46.4213 47.4918 44.8170 44.8145

Overall, the results highlight the critical role of both the vision encoder and text
decoder in achieving high spatial reasoning accuracy, with DeiT/BERT emerging as the
most effective architecture under the spatially aware captioning benchmark.

6. Metrics Observations

We conducted a study to investigate how the metrics used in our benchmark correlate
with each other, drawing important insight as seen in Figure 7. We should note that, all
reported values are considered statistically significant with p < 0.01.

Pearson Correlation Coefficient
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Figure 7. Pearson correlation between the standard and proposed evaluation metrics.

¢ Avalue of 1.0 indicates perfect positive correlation.
¢ A value of 0.0 indicates no correlation.
¢ A value of <0 would indicate negative correlation (none observed here).

6.1. Key Observations

1.  Standard metrics are tightly correlated.
Metrics like Bleu and Rouge1l correlate strongly (>0.99), indicating
e  High agreement on the quality of the caption.
*  Redundancy—using all may provide limited additional insight.
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2. Custom spatial metrics correlate strongly among themselves. Examples include

e  Accip Vs. Accop: 0.978;
e  Accga VS. Accpaxa: 0.976.

This suggests coherence across custom metrics targeting different prediction depths.
3. There are variations of the custom vs. standard metrics which exhibit a
correlation gap.

e Meteor vs. Accqa: 0.87;
e Meteor vs. Accoa: 0.90;
e Meteor vs. Acczp: 0.95.

This indicates that there are varying levels of alignment depending on the targeted
prediction depth. Accia and Accpa seem the most valuable, providing insight possibly
lost if only standard metrics were to be used.

4.  MAX metrics are robust aggregators.
Accmaxa and Accpaxp show a very high correlation (0.985), implying near interchange-
ability. They also correlate consistently with other metrics, reflecting their role as
composite indicators.

6.2. Implications

The correlation analysis suggests that our metric family SCA provides a valid, stable,
and complementary evaluation signal for spatial image captioning. While traditional
metrics remain useful for assessing language fluency, they are insufficient for evaluating
spatial relationships. In contrast, SCA directly targets the core challenge of our task,
accurately capturing spatial relations between objects. Therefore, we recommend using
both types of metrics (especially the Accp and Accyp SCA variants, together with any of
the conventional metrics) to holistically evaluate spatial captioning models.

7. Conclusions

In this work we introduced SADAMB, a novel dataset designed to advance spatially
aware image captioning and visual question answering. To introduce our dataset im-
pactfully, we conducted a relatively unexplored vision encoder—text decoder combination
benchmark to discover and propose the most efficient architecture suitable for spatial image
captioning tasks. In this way, we also propose a new family of metrics, SCA, tailored to
evaluate spatial understanding in image captioning, providing deeper insights into the
models’ capabilities. Together, all these contributions aim to propel research in spatially
aware image captioning and visual question answering by offering robust data, knowledge,
and evaluation methodologies.
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