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Abstract. Self-Supervised Learning (SSL) for Vision Transformers (ViTs)
has recently demonstrated considerable potential as a pre-training strat-
egy for a variety of computer vision tasks, including image classification
and segmentation, both in standard and few-shot downstream contexts.
Two pre-training objectives dominate the landscape of SSL techniques:
Contrastive Learning and Masked Image Modeling. Features (or tokens)
extracted from the final transformer attention block –specifically, the
keys, queries, and values– as well as features obtained after the final
block’s feed-forward layer, have become a common foundation for ad-
dressing downstream tasks. However, in many existing approaches, these
pre-trained ViT features are further processed through additional trans-
formation layers, often involving lightweight heads or combined with dis-
tillation, to achieve superior task performance. Although such methods
can improve task outcomes, to the best of our knowledge, a compre-
hensive analysis of the intrinsic representation capabilities of unaltered
ViT features has yet to be conducted. This study aims to bridge this
gap by systematically evaluating the use of these unmodified features
across image classification and segmentation tasks, in both standard and
few-shot contexts. The classification and segmentation rules that we use
are either hyperplane based (as in logistic regression) or cosine-similarity
based, both of which rely on the presence of interpretable directions in
the ViT’s latent space. Based on the previous rules and without the use of
additional feature transformations, we conduct an analysis across token
types, tasks, and pre-trained ViT models. This study provides insights
into the optimal choice for token type and decision rule based on the
task, context, and the pre-training objective, while reporting detailed
findings on two widely-used datasets.

Keywords: ViT · SSL · DiNO · MAE · Directions · Hyperplane · Cosine
Similarity
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1 Introduction

Vision transformers [14, 37, 18, 23, 21], have shown exceptional performance in
addressing complex computer vision and multi-modal tasks [8, 40, 32, 39]. How-
ever, their effectiveness is highly dependent on the size of the training dataset,
requiring an extensive amount of data to generalize effectively and avoid over-
fitting. Training these models from scratch is resource-intensive, both in terms
of computational power and processing time. Given that related tasks, such as
classification and segmentation, often share foundational knowledge, training
separate models for each task from scratch is inefficient. Therefore, it has been
proposed to train a large model once, using substantial data and resources to
capture general knowledge, and then specialize or distill this model for specific
downstream tasks by leveraging the knowledge acquired during the initial train-
ing phase.

Self-supervision, based on Masked Image Modeling (MIM) [19, 2, 7] or Con-
trastive Learning (CL) [6, 11, 7], has been proposed as a way for ViTs to capture
this general knowledge from large datasets without the need for explicit labels.
However, to achieve top performance, in most approaches [43, 42, 17, 20] the pre-
trained ViT features undergo further transformations before the final prediction,
in order to align the feature representations with the solution of the downstream
task. Moreover, different methods utilize various feature types –such as query-
key-value pairs from the last attention block, or the output tokens of the final
feed forward layer– and employ diverse decision rules, being either hyperplane-
based or direction similarity-based. Even though these approaches have demon-
strated their effectiveness in solving downstream tasks, yet to our knowledge, a
comprehensive evaluation of the intrinsic representation capabilities of unaltered
self-supervised ViT features is missing from the literature.

In this work, we present a comprehensive analysis of the representational
power of unaltered features from two self-supervised ViTs, pre-trained on a large
dataset [35] using the previously mentioned self-supervision objectives [19, 6]. To
the best of our knowledge, this is the first study to examine all of the following
aspects simultaneously: a) two ViTs pre-trained with different self-supervised
objectives b) the five possible token types from the last transformer layer –
keys, queries, values, and features before and after the final feed-forward block–
c) two downstream tasks: image classification and segmentation, across both
standard and 1-way-k-shot contexts and d) two commonly used prediction
methods (or, as otherwise mentioned, decision rules), based on either hyper-
plane separation (linear probing) or cosine similarity.

We find that the hyperplane decision rule is more effective in semantic sep-
arability across most experiments, indicating that the cosine similarity between
the tokens of these pretrained models is a suboptimal semantic proximity met-
ric. Furthermore, our experiments indicate that the optimal token type depends
heavily on the pre-training objective, task, context and decision rule –with some
previously overlooked tokens proving to be the most effective. Beyond practical
guidelines, our work challenges existing intuitions about ViT token interpreta-
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tions and underscores the need for a deeper understanding of the role of each
computational block within ViT layers.

2 Related Work

Self-Supervised Pre-Training Self-supervised pre-training [44] stands out
as the leading method towards developing vision, vision-language, and various
multi-modal foundation models [5, 39, 48]. The core strategies in this field in-
volve CL, MIM, or an integration of both. On the one hand, CL methods [7, 41,
10, 11] utilize image augmentation techniques to generate views with similar or
dissimilar semantic content, which, in turn, are considered for feature alignment.
On the other hand, representation learning in MIM methods [2, 30, 40] is driven
by masking patches and then reconstructing pixels or features.

Within ViTs, MIM approaches, largely represented by Masked Autoencoders
(MAEs) [19, 45], typically require supervised fine-tuning to achieve compet-
itive performance on downstream tasks [19, 2, 45, 50, 53, 27]. These models tend
to exhibit narrow self-attention receptive fields [49] and capture texture-based
features, making them best suited for dense prediction tasks such as object de-
tection [29]. They also tend to exhibit great scaling with an increasing number
of parameters which can be attributed to the high attention-map variance be-
tween transformer heads, meaning that a larger portion of the network can being
utilized during fine-tuning [29].

ViTs trained with a CL framework, such as DiNO [6], generate semantic-level
feature representations [1], allowing them to serve as universal feature extractors
without further fine-tuning [38]. Similar to other contrastive learning meth-
ods, the self-attention maps of a ViT pre-trained with a DiNO objective, have
a broad receptive field, effectively capturing global patterns, but CL also faces
the challenge of collapse into homogeneity [29], leading to similar self-attention
maps for all heads. This limitation has motivated the development of hybrid
SSL techniques that combine MIM and CL learning objectives to address their
respective limitations [28, 29, 24, 31].
Transfer-Learning Self-Supervised ViTs on Downstream Tasks In dense
prediction tasks, the patch tokens of the final encoder layer are commonly used as
regional embeddings [39, 47, 19], while the corresponding class token ([CLS]) re-
mains the standard representation for image classification [14, 6, 50]. The ability
of DiNO to induce discriminative saliency maps in the self-attention mechanism
of ViTs [6] has inspired the extraction of features directly from the self-attention
blocks. Beyond the vanilla approach that uses the class token for image classifi-
cation tasks, various techniques have been explored that leverage the key tokens
in the self-attention block of a frozen DiNO backbone (a ViT pre-trained with
the DiNO objective), to tackle unsupervised segmentation and localization tasks
[36, 43, 42], often employing a cosine similarity-based signal. Alternative meth-
ods that utilize a similar backbone seek to distill its knowledge in both standard
[17] and few-shot [20] contexts through lightweight heads, using the backbone
as a means to detect semantic similarities within the data.
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Unlike CL which is able to build strong frozen backbones, MIM pre-training
is best capitalized with task-specific fine-tuning. In [50], a MAE is pre-trained on
a face dataset and subsequently fine-tuned on a dataset with facial expressions
for facial affective analysis. In the medical domain, where annotated data are
more scarce, self-pre-training [53] has been proposed as the paradigm of pre-
training a MAE directly on the data of the downstream task. Subsequently, the
learned encoder can be combined with a trainable linear head or a convolutional
decoder to demonstrate superior performance compared to supervised baselines
or baselines pre-trained on out-of-domain data. Beyond masking pixels, the MIM
objective can be utilized to train lightweight student models that learn to recon-
struct masked features from a larger state-of-the-art teacher, providing efficient
solutions to solve the downstream segmentation task [46].

Relation to the Present Work In contrast to other studies that shed light on
self-supervised ViTs from varying perspectives [11, 29, 49, 33, 26], our research
adopts a latent space probing approach, regularly explored in mechanistic in-
terpretability [51, 15, 16, 13, 34]. To our knowledge, this study is the first to
rigorously evaluate the effectiveness of tokens derived from a frozen MAE to
solve downstream tasks. This is even without taking into account the extensive
breadth of this study on variation in token types, decision rules, and down-
stream tasks and contexts. Instead, previous work tends to prefer DiNO features
for segmentation tasks with works considering frozen MAE features being al-
most non-existent, possibly due to the known fact that MIM works better when
fine-tuned. Yet, a quantitative evaluation of the effectiveness of MAE’s features
compared to DINO’s is currently missing, and our work addresses this gap with
a detailed analysis. Our findings suggest that for semantic segmentation, while
the downstream performance of MAE’s features is inferior to DINO’s, in some
aspects the gap between them is not as large as one might initially believe.

Regarding DiNO, methods such as [17, 36, 43, 1, 20, 42] address the unsu-
pervised segmentation task using token feature transformations derived from
a frozen backbone. In our work, we differentiate and take a step back to meticu-
lously assess the effectiveness of DiNO’s vanilla tokens (without any transforma-
tions or extra processing) on downstream tasks using annotations, revealing to
some extent the best starting point of those previous approaches. Furthermore,
many previous approaches [36, 17, 43, 20, 42] have applied the cosine similarity
rule to the tokens of a frozen DINO backbone, utilizing it as an implicit su-
pervisory signal for semantic similarities. However to our knowledge, a rigorous
assessment of its potential is missing from the literature and our work aims
to address this, by being the first to assess the effectiveness of DiNO’s features
with the cosine rule on semantic tasks with ground-truth labels. Our work is also
unique in providing a thorough study over the representation power of different
token types, being either the attention layer’s queries, keys, values, or tokens
from either side of the final feed forward transformer block, expanding on the
shallow analysis of [6]. In principle, our findings are aligned with previous work
that prefers to use the attention layer’s key tokens for semantic segmentation
[36, 43, 1, 42] but also highlights a detailed comparison with the alternative to-
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kens. Finally, image classification based on the two SSL approaches is also less
explored in the literature [6, 20], and our work provides a detailed analysis, in
terms similar to the segmentation task.

3 Approach

As briefly stated in the preface, our work aspires to address the following ques-
tions that innately arise when employing pre-trained ViTs in downstream tasks:

– Which self-supervised pre-training objective (MIM, CL, implemented by
MAE and DiNO respectively) produces frozen backbones, which are more
aligned to each downstream task (classification, segmentation)?

– Which ViT token types (queries q, keys k, values v from the final ViT’s
self-attention block or tokens x1,x2 from either side of the transformer feed
forward block) provide semantically meaningful representations?

– Which decision rule (hyperplane based, cosine similarity based) should be
utilized to separate the feature space into semantic regions?

Additionally, we also consider two downstream contexts: standard (where a
plethora of labeled examples are available for learning a decision rule) and few-
shot (where only a limited number of samples are available for the same purpose).
In the following subsections, we aim to clarify these research questions by con-
ducting experiments with combinatorial variability across pre-trained models,
tasks, contexts, decision rules, and token types.

3.1 Self-supervised Pre-Training Objectives

This study concentrates on two well-known SSL ViT architectures: MAE [19]
and DiNO [6]. MAE is part of the group of pre-training techniques focused on
masked image modeling, whereas DiNO aligns with self-distillation and con-
trastive learning approaches. For the sake of computational efficiency, we opted
for the smallest pre-trained ViT models accessible to the public (DiNO: ViT-S/8
21M parameters, MAE: ViT-B/16 86M parameters).

3.2 Downstream Tasks

We investigate the semantic representation power of ViT tokens in two exem-
plary downstream tasks: image classification and semantic segmentation. In the
context of image classification, we develop a subset of ImageNet [35] resembling
ImageNet-Tiny [22], constructed by randomly selecting 550 samples for each
of ImageNet-Tiny’s 200 classes. For image segmentation, we utilize the Bro-
den dataset [3], which consolidates multiple datasets that are densely annotated
[9, 12, 4, 25, 52]. Broden encompasses 1197 concepts distributed across approxi-
mately 63K images within 5 distinct concept categories (object, part, material,
texture, color). In this research, we have excluded the color category to focus
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on the remaining categories which are deemed to hold greater semantic signifi-
cance. Fig. 1 demonstrates the extensive annotations present in Broden, which
incorporate low-level concept categories, such as material and texture, alongside
high-level concepts, such as object and scene.

Fig. 1: Broden samples. Each image in the dataset is associated with multiple seg-
mentation maps, covering six primary categories (color, object, part, material, scene,
texture). For instance, the image in the left has a color and a material category-
mapping whereas the image on the right a color and an object segmentation map.

We address both tasks through a unified binary classification framework, tak-
ing inspiration from [51]. Using independent binary classifiers offers a straight-
forward yet effective learning scheme suited for Broden’s multilabel annotation
structure. For image classification, we use the [CLS] token as a global feature rep-
resentation of the entire image, whereas for semantic segmentation, we leverage
the corresponding patch tokens to represent individual regions. Consequently,
each object –whether the entire image for classification or an image-region for
segmentation– is represented by a single feature vector, which serves as input to
a set of binary classifiers. In other words, beyond the typical image classification
task, the segmentation task is tackled by treating it as a patch classification
problem.

3.3 Token Types

In our analysis we account for various token types derived from the final trans-
former layer to address the downstream tasks. We consider the query q, key k,
and value v tokens of the self-attention block (Fig. 2 top), the output of the
self-attention block, denoted as x1 and the output tokens of the feed forward
block (MLP), referred to as x2 (Fig. 2 bottom).
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Fig. 2: (Top) Multi-head attention schematic diagram. q,k,v ∈ RD depict the queries,
keys, values tokens respectively, with D representing the ViT’s embedding dimension.
(Bottom) Schematic diagram of the transformer’s final layer, where LN denotes layer
normalization and SA represents the multi-head self-attention mechanism. Note that
the final normalization layer (LN) is applied exclusively at the last transformer layer.
We denote x1 ∈ RD the transformer tokens prior to the MLP and the second layer
normalization layer, while x2 ∈ RD the output-tokens after the MLP (layer output).

3.4 Classifier Decision Rules

We examine the semantic separability of ViT tokens using two different decision
rules: hyperplane-based and cosine similarity-based. As illustrated in Fig. 3, each
classification rule is associated with a distinct decision boundary, dissecting the
feature space into two disjoint subspaces.

Specifically, the hyperplane rule is comprised of a normal vector w and a
bias term b, defining the orientation and position of the hyperplane respectively.
A feature vector z is classified positively if wTz − b ≥ 0. In contrast, the cosine
decision rule defines a convex cone via a conical axis vector α and an angular
threshold θ, such that z is positively classified if arccos( z

∥z∥2
· α
∥α∥2

) ≤ θ, with ·
denoting the dot product.

Fig. 3: Classifier decision rules. (Left) Hyperplane classifier (w, b). (Right) Co-
sine similarity classifier (α, θ). Each classifier dissects the feature space into two
disjoints subspaces. Positively classified samples are depicted in blue, while neg-
atively classified samples are illustrated in red.
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Fig. 4: Hyperplane decision rule: The class token represents the global image content,
while individual image regions are represented by their corresponding patch tokens. A
hyperplane is learned for each image class or semantic concept to distinguish positive
samples from negative ones.

Concept Templates: Both decision rules are associated with a class-specific
(in image classification) or concept-specific (in semantic segmentation) direc-
tional vector, a threshold and a projection function, which altogether may be
utilized to classify a feature vector for the downstream task. We use the term
concept template to encompass these attributes and also refrain from making ex-
plicit distinction regarding the label type of each downstream task (image class
vs patch concept) as we treat both tasks within a common framework of simi-
lar principles. In the rest of the paper we will mostly refer to the downstream
task’s labels as concept labels, when in fact for image classification these labels
correspond to image classes.

Formally, given the dimensionality of the embedding space D, a feature vector
z ∈ RD and a concept c ∈ N, the concept template is a triplet τc := (d, t, f),
where d ∈ RD is the directional vector, t ∈ R is the threshold and f(z;d) :
RD → R is the projection function.

The concept template τc detects the existence of concept c in the feature
vector z (positive classification) if:

f(z;d) ≥ t (1)

In the case of a hyperplane decision rule: d := w, t := b and f(z;w) := wTz,
while for a cosine decision rule: d := α, t := cos(θ) and f(z;α) := 1

∥α∥2 ∥z∥2
αTz.

Based on the underlying decision rule, we distinguish two cases of concept tem-
plates: hyperplane-templates and cosine-templates.

3.5 Analysis Framework

This section provides details on how we learn the concept templates. In this and
the rest of the sections, we often use the terms concept template and classifier
interchangeably, preferring the former to emphasize its geometric interpretation
and the latter to focus on its functional application.

Hyperplane Templates: To compute hyperplane templates, for each concept,
we learn a hyperplane classifier (w, b) with the process illustrated in Fig. 4.



Which Direction to Choose ? 9

Fig. 5: Cosine similarity decision rule: In the few-shot context, the concept template’s
direction is derived by averaging intra-class token representations extracted from the
support set. Specifically, a token originating from the query image set is classified
positively if the cosine similarity between the token and the template’s direction exceeds
a threshold θ.

Given a training feature dataset Df : {(zi, ci), i = 1, . . . , N}, where zi ∈ RD

represents the feature vector of an object (image/image-region) and ci ∈ N
represents its ground-truth label, we construct a positive sample pool for each
concept c, denoted as D+

c = {zi | (zi, ci) ∈ Df , ci = c}, and a corresponding
negative sample pool, D−

c = {zi | (zi, ci) ∈ Df , ci ̸= c}, where |D−
c | ≫ |D+

c |. In
semantic segmentation, when forming the negative sample pool for a concept ci,
we only consider concepts within the same primary category as ci. To manage the
significant class imbalance between the two sample pools, we initially limit the
size ratio of D−

c : D+
c to be no more than 20 : 1 by random subsampling. During

template learning, we conduct five rounds of hard negative mining, following
[51]. In each of these rounds, the hyperplane template is fitted to the mined
dataset over 3 epochs, ensuring a positive-to-negative sample ratio of 1 : 2.
The evaluation of each learned template is performed on a reserved test-set
(approximately 10K image samples for ImageNet and 18K image samples for
Broden from its validation split) via a set of balanced binary classification
metrics.

Cosine Templates: Since the cosine decision rule is frequently utilized in un-
supervised settings [36, 17, 43, 42, 20] including few-shot contexts, we explicitly
consider learning cosine-templates in a few-shot regime by constructing support-
query image sets for template learning and evaluation. The directional vector α
and similarity threshold t

.
= cos(θ) of cosine templates, are computed in a non-

parametric 1-way-k-shot setting. For a concept c ∈ N, we construct a support
image set Sc,k by randomly sampling k training images that contain c. Sc,k

is further processed to construct the respective positive and negative support
feature pools D+

c,k, D
−
c,k; Notice that for image classification D−

c,k = ∅, as every
image in the support set is mapped to a single feature vector ([CLS] token).
The cosine template’s directional vector α is then computed by averaging the



10 Y. Kaltampanidis et al.

positive support features:

α =
1

|D+
c,k|

∑
z∈D+

c,k

z (2)

while the angular threshold θ is computed by maximizing the F1-score of the
classifier τc on the support feature set :

θ = argmax
θ̂

(F1(θ̂, Dc,k;α, f)) (3)

where F1 is the F1 score of a classifier τc = (α, t, f) computed on the support
feature set Dc,k = D+

c,k ∪ D−
c,k, given the directional vector α and the cosine-

similarity projection function as f . Due to the fact that we use an empty D−
c,k

for image classification, in Eq. (3) we consider the smallest possible angle θ that
maximizes F1 score. The overall process is illustrated in Fig. 5. Furthermore, we
vary k ∈ {1, 5, 10, 50, 100, 500}, leveraging different proportions of the available
data. Finally, the templates are evaluated on a balanced randomly sampled query
test set of 50 positive and 50 negative images using the same set of balanced
binary classification metrics as in the hyperplane templates. Due to the stochastic
nature of this 1-way-k-shot setting, we average and present the results from
N = 10 independent trials reporting mean scores and their standard deviation.

4 Experimental Results

The subsequent subsections detail the outcomes of our comprehensive exper-
imental evaluation, structured by downstream task and decision rule. In our
analysis, the term token performance is used to denote the efficacy of concept
templates that incorporate a particular token. It is important to highlight that
for image classification tasks, the mentioned tokens refer to the [CLS] tokens,
while for image segmentation, they pertain to patch tokens. Lastly, we underline
that all the binary performance metrics presented in this work are balanced.

4.1 Task: Classification. Rule: Hyperplane

TLDR: We observe a substantial disparity in the classification performance of
the hyperplane template between the pre-trained MAE and DiNO models. While
MAE tokens resemble the performance of random classifiers, DiNO demonstrates
exceptional classification capacity. Specifically, DiNO’s x2 token is particularly
well-suited for classification tasks via linear probing, while MAE should not be
considered in this context.

Details: Fig. 6 (Left) compares MAE and DiNO tokens in terms of accuracy.
Most of MAE tokens approximately score an accuracy of 0.5, which is equivalent
to a random classifier. This may be attributed to the fact that the [CLS] token
is not participating in the MAE’s loss function. In contrast, DiNO attains its
maximum accuracy with x2 (0.946). A detailed analysis of DiNO’s token per-
formance is presented in Fig. 6 (Right). We observe near-perfect precision for
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Fig. 6: Hyperplane-template classification: (Left) Accuracy between DiNO and
MAE tokens. (Right) Precision, recall and F1 metrics for DiNO tokens.

q, k, v, and x2 (> 0.99), while x1 achieves a precision of 0.96. This enables
the construction of a hyperplane with minimal false positives (FP) across all
tokens. Furthermore, x2 exhibits the highest recall (0.89), followed by v (0.80),
q (0.72) and k (0.65). These results indicate that x2 provides the optimal linear
separability of semantic concepts.

Notably, x1 demonstrates the lowest performance across all evaluated met-
rics. To better understand this phenomenon, we also assess the performance of
x1 after layer normalization, which we denote as xn. Table 1 presents the impact
of the normalization layer on DiNO’s x1 hyperplane classification metrics. Layer
normalization positively affects the semantic linear separability of the feature
space. However, a more detailed analysis of the effects of layer normalization is
beyond the scope of this work.

Table 1: Layer normalization effects on DiNO’s x1 performance metrics.
DiNO Accuracy Precision Recall F1

x1 0.714 0.959 0.427 0.550
xn 0.940 0.997 0.884 0.935
x2 0.946 0.997 0.894 0.941

4.2 Task: Classification. Rule: Cosine

TLDR: Similar to hyperplane-based classification, DINO outperforms MAE un-
der the cosine similarity decision rule. Notably, DINO’s x1 token achieves the
highest accuracy and F1 scores. Furthermore, MAE shows substantial improve-
ment with cosine templates compared to the hyperplane decision rule, with its
k token yielding the highest accuracy and F1 score in this context. Finally, in-
creasing the support set size beyond 50 samples results in diminishing gains in
average accuracy and F1 scores for both models.
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Fig. 7: Cosine-template classification with k = 500 support samples per concept.
(Left) Precision and recall comparison between MAE and DiNO tokens. (Right)
Accuracy and F1 score comparison. The error bars denote the standard deviation
across 10 independent trials.

Details: Fig. 7 shows the classification metrics for DiNO and MAE tokens
using the cosine decision rule, averaged over 10 independent trials with k = 500
support images per concept. DiNO’s x1 emerges as the optimal token, achiev-
ing the highest accuracy (0.958 ± 0.01) and F1 score (0.958 ± 0.01), while q
and k perform similarly. Although all DiNO tokens demonstrate high precision,
v and x2 exhibit the lowest recall in this setting. For MAE, k achieves the
highest accuracy (0.812 ± 0.03) and F1 score (0.824 ± 0.02), while q and v
demonstrate similar performance. Notably, x2 exhibits the highest recall (0.929
± 0.02), making it particularly well-suited for critical risk detection applications
where minimizing false negatives (FN) is essential.

Fig. 8: Cosine-template classification accuracy for k ∈ {1, 5, 10, 50, 100, 500} sup-
port samples per concept, for DiNO (Left) and MAE (Right). Error bars denote
standard deviation across 10 independent trials.

Fig. 8 illustrates the impact of k (number of support samples used to com-
pute cosine-templates) on model accuracy. Notably, performance gains diminish
significantly beyond 50 samples. However, increasing the number of support sam-
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ples leads to a more representative support set, thereby reducing the standard
deviation across trials.

4.3 Task: Segmentation. Rule: Hyperplane

TLDR: Both MAE and DINO demonstrate strong and comparable hyperplane-
template accuracy, yet inferior to the scores for image classification. Between the
two pre-trained models, DINO achieves a higher overall F1 score. Notably, k is
the optimal token in terms of overall accuracy and F1 score for both models.
However, while k consistently yields the highest F1 score across all concept cat-
egories in DINO, MAE shows a slight advantage for x2 over k when considering
textures, objects, or scenes.

Fig. 9: Hyperplane-template segmentation: (Left) Precision and recall compari-
son between MAE and DiNO tokens. (Right) Accuracy and F1 score comparison
between MAE and DiNO tokens.

Details: Fig. 9 presents the overall hyperplane-template segmentation per-
formance of DiNO and MAE tokens. Among DiNO tokens, k achieves the high-
est accuracy (0.721) and F1 score (0.684), while v attains similar accuracy (-
0.001) but a slightly lower F1 score (-0.01). DiNO’s x2 exhibits the highest preci-
sion (0.899) making it particularly well-suited for quality assurance applications
where minimizing false positives (FP) is essential. MAE’s k achieves the highest
accuracy (0.721), while x2 attains the highest F1 score (0.645). Comparing the
two, k appears to be the optimal choice, with a significantly higher accuracy
(+0.07) and only a slight reduction in F1 score (-0.01). On the other hand, v
demonstrates the highest precision (0.899), while x2 excels in recall (0.716). No-
tably, x2 shows a substantial precision drop compared to x1 (-0.24), coupled
with a significant recall increase (+0.27). This suggests that critical semantic
information may be lost in x2, likely in favor of low-level textural patterns, as
x2 tokens are processed through a decoder for masked patch reconstruction.

Fig. 10 presents the F1 scores of hyperplane templates, grouped by seman-
tic category. DiNO’s k token consistently outperforms others regardless of the
semantic category. Among all concept categories, DiNO performs better in part
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Fig. 10: F1 score for DiNO (Left) and MAE (Right) templates, grouped by la-
bel category. The scores for each concept template, are grouped and averaged
according to their Broden primary semantic category (material, object, part,
scene, texture).

(0.817), material (0.786), and texture (0.765) but is less effective in object (0.682)
and scene (0.637) categories. This pattern suggests that DiNO’s k token excels at
segmenting fine-grained semantic concepts, aligning with prior findings [1]. For
MAE, the k token achieves the highest F1 scores in part (0.734) and material
(0.727), whereas x2 leads in object (0.606), scene (0.676), and texture (0.734).
Notably, the most significant disparity occurs in the part category, where k sig-
nificantly outperforms x2 (+0.08). Interestingly DiNO achieves higher F1 score
compared to MAE, in all categories except for scene (-0.13).

Fig. 11 further examines precision and recall across concept categories. In
terms of precision, DiNO’s x2 token achieves the highest overall score (Fig. 9), a
trend that persists across most categories, except for texture, where x1 exhibits
superior precision (+0.09). For MAE, v achieves the highest precision in object
and part categories, while x1 is the most precise in material, scene, and texture.
Notably, MAE’s x1 consistently outperforms x2 in precision across all Broden
categories. When analyzing recall, DiNO’s k token demonstrates the best per-
formance in material, object, and part categories, whereas q and v emerge as
the top-performing tokens for scene and texture, respectively. Regarding recall
for MAE, x2 consistently performs best across all categories.

Cross-model comparisons reveal that MAE’s v or x1 tokens achieve higher
precision than DiNO in part, scene, and texture categories, while DiNO to-
kens exhibit superior precision in material and object categories, reinforcing its
strength in segmenting individual structures.

4.4 Task: Segmentation. Rule: Cosine

TLDR: For both MAE and DiNO, the utilization of the cosine-decision rule is
evidently inferior to hyperplane-templates, as their overall accuracy across all
concepts is not significantly superior to a random-classifier (≈ 0.6). However,
both models can achieve notable accuracy and F1 scores for textural concepts.
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Fig. 11: Precision (Top) and recall (Bottom) for DiNO (Left) and MAE (Right)
tokens, grouped by label category.

Details: Fig. 12 presents the overall segmentation metrics for DiNO and
MAE tokens under the cosine decision rule, averaged over 10 trials with k = 500
support images per concept. In both models, q tokens achieve the highest ac-
curacy (DiNO: 0.574, MAE: 0.622) and F1 scores (DiNO: 0.419, MAE: 0.464).
While MAE outperforms DiNO, both models perform significantly worse com-
pared to the hyperplane decision rule, highlighting the limitations of the cosine
decision rule in this setting.

Fig. 12: Cosine-template segmentation with k = 500 support samples per con-
cept. (Left) Precision and recall comparison between MAE and DiNO tokens.
(Right) Accuracy and F1 score comparison. The error bars denote the standard
deviation across 10 independent trials.
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Fig. 13: Cosine-template segmentation with k = 500 support samples per con-
cept. (Top) Accuracy for DiNO (Left) and MAE (Right) tokens, grouped by
label category. (Bottom) F1 score for DiNO (Left) and MAE (Right) tokens,
grouped by label category. The error bars denote the standard deviation across
10 independent trials.

Figure 13 shows the accuracy and F1 scores for cosine templates, grouped
by semantic category. Notably, both models perform well on textural concepts,
and partially well (low accuracy, but higher F1 score) on scenes. MAE’s q token
achieves an average accuracy of 0.840 and an F1 score of 0.844, while DiNO’s
x2 token reaches an average accuracy of 0.744 and an F1 score of 0.765. Fig. 14
illustrates the impact of k (number of support samples used to compute cosine-
templates) on model accuracy. Similar to cosine-template classification, perfor-
mance gains diminish significantly beyond 50 samples.

4.5 Qualitative Results

In the following subsection, we qualitatively examine the segmentation capa-
bilities of learned concept templates on unseen image samples. Based on our
previous analysis, we use the k tokens for hyperplane templates and the q tokens
for cosine templates for both DiNO and MAE.

In Fig. 15, we present image samples organized by their primary category
(material, object, part, scene, texture). Within each category, we select five rep-
resentative concepts, and examine one image sample per concept. The selected
concepts are chosen to ensure a balanced representation of DiNO hyperplane
template performance, incorporating both the highest and lowest F1 scores. To



Which Direction to Choose ? 17

Fig. 14: Cosine-template segmentation accuracy for k ∈ {1, 5, 10, 50, 100, 500}
support samples per concept, for DiNO (Left), MAE (Right). Error bars denote
standard deviation across 10 independent trials.

improve visualization clarity, the representative image is selected from the test
set based on the largest area coverage of the corresponding concept. Addition-
ally, for each image sample, we provide its ground truth segmentation mask (GT
Mask) alongside the predicted masks generated by hyperplane-based (DiNO-C,
MAE-C) and cosine decision rule-based (DiNO-C, MAE-C) template models.

In Fig. 16, we present segmentation visualizations for the concept labels with
the highest F1 scores. Specifically, for each model (DiNO, MAE) and decision
rule (hyperplane, cosine), we identify the top-five concept labels based on their
F1 scores. For each selected concept, we showcase segmentation masks for five
image samples where the template achieves the highest intersection over union
(IoU).

4.6 Summary

Our post-hoc concept direction analysis provides insights into the representation
power of pretrained DiNO and MAE models, offering guidelines for practical
applications while raising questions for future work. A key observation is that the
hyperplane classification rule consistently delivers better semantic separability
than the cosine counterpart in both classification and segmentation downstream
tasks. While MAE’s [CLS] tokens seem to be an exception to this finding, we
demonstrated that cosine distance between tokens is a suboptimal intra-class
similarity metric.

Additionally, we showed that depending on the downstream task, context,
and pretraining objective, different ViT tokens –some of which had not been
extensively explored in the literature– yield better semantic separability. This
challenges current intuitions regarding the interpretation of query, key, and value
tokens within transformer architectures and highlights the importance of under-
standing the role of each block within a transformer layer.

Furthermore, when utilizing pretrained DiNO and MAE models in down-
stream tasks, the following observations should be mentioned: For image clas-
sification, DiNO’s x2 token combined with the hyperplane classification rule
results in optimal classification results. Respectively, MAE’s tokens should not
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(a) Material: Skin, leather, paper, fabric, card-
board.

(b) Object: Sky, hovel, bulletin-board, board,
windmill.

(c) Part: Cloud, keyboard, button-panel, foot-
board, stretcher.

(d) Scene: Snowy mountain, cottage garden,
kitchen, liquor store, signal box.

(e) Texture: Chequered, knitted, honeycombed,
perforated, gauzy.

Fig. 15: Segmentation visualizations for DiNO and MAE templates using cosine
(DiNO-C, MAE-C) and hyperplane (DiNO-H, MAE-H) decision rules. Each fig-
ure showcases five unseen images from a specific concept category (material,
object, part, scene, texture)

be considered in this context as they produce random image classifiers. When
labels are sparse and a few-shot context is required, DiNO’s x1 is better aligned
with the cosine classification rule compared to other token types. We also observe



Which Direction to Choose ? 19

(a) DiNO hyperplane rule: Train, airplane,
flower, hair, skin.

(b) DiNO cosine rule: Zigzag, chequered, sky,
farm, mountain

(c) MAE hyperplane rule: Cloud, wheel, person,
horse, motorcycle.

(d) MAE cosine rule: Chequered, honeycombed,
dotted, mountain, forest road

Fig. 16: Segmentation visualizations for DiNO and MAE utilizing cosine and
hyperplane decision rules. Each figure presents segmentation masks of unseen
samples, produced by a particular model (DiNO, MAE) and decision rule (cosine,
hyperplane). We showcase five samples per concept, highlighting the top five
concepts with the highest F1 scores.

that a support set size of 50 samples represents the point at which performance
gains begin to significantly diminish.

For semantic segmentation tasks, the models achieve their highest scores
when leveraging their respective k tokens and the hyperplane decision rule.
While DiNO outperforms MAE, the latter’s strong performance in this con-
text highlights that masked image modeling could serve as an important pretext
(sub)task in the development of foundational vision transformers. Furthermore,
DiNO’s k tokens achieve the highest performance across all object categories, a
trend that’s not evident in MAE. Finally, in a few-shot context, both models’
overall performance across all concept categories is inadequate. However, the
q token for both DiNO and MAE provides excellent separability for textural
concepts.
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5 Limitations

While our study provides a thorough analysis of self-supervised ViT properties
across various pre-training objectives, token types, decision rules, downstream
tasks, and contexts, it has certain limitations. A primary constraint was compu-
tational resources, which restricted our evaluation solely to ViT tokens extracted
from the final transformer layer. Additionally, we treat image segmentation as a
non-overlapping patch-level classification rather than pixel-level classification.
Since ViT-based segmentation methods using frozen backbones [17] perform
spatial interpolation of the feature maps to restore the spatial dimensionality
of the input space prior to classification, our approach does not significantly
deviate from this norm. Finally, regarding classification via the cosine decision
rule, we did not account for feature-space centering prior to the computation of
cosine-similarity between features. While it would be interesting to investigate
its effects, we will consider it in future works.

6 Conclusion

Our work conducted an in-depth post-hoc concept direction analysis to evaluate
the representational power of pretrained DiNO and MAE token types in classifi-
cation and segmentation downstream tasks. We examined their performance in
both standard and few-shot learning contexts, utilizing hyperplane and cosine-
similarity decision rules. Our findings show that the cosine decision rule –often
used in unsupervised learning approaches– consistently results in inferior seman-
tic separability compared to its hyperplane counterpart. We also demonstrate
that the optimal token type selection is highly dependent on these factors, while
confirming that masked modeling effectively constructs competent backbones for
image segmentation tasks.

Future research toward the development of foundational vision architectures
should focus on deepening our understanding and interpretation of ViT to-
kens (arising from the unintuitive and possibly unexpected efficiency of key
and query tokens, disproving the hypothesis that value tokens possess supe-
riority), as well as assessing the efficacy of transformer layers, particularly under
self-supervised pretraining objectives. Additionally, in unsupervised learning ap-
plications –where the cosine distance between ViT tokens is commonly used as
an intra-class similarity metric– exploring semantic proximity metrics beyond
cosine similarity could enhance downstream task performance. Alternatively, a
possible future research direction could be to work towards pre-training meth-
ods that will enforce interpretable concept alignment through the cosine rule,
offering imminent enhancement of many existing unsupervised works that rely
on a self-supervised backbone.
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