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Abstract—Programmable Wireless Environments aim to ren-
der the communication environment a controllable, software-
defined medium. Reconfigurable Intelligent Surfaces (RISes) are
the key enabling technology, which can offer the real-time
capability to manipulate impinging waves. RISes are expected to
be widely deployed in B5G/6G networks to serve a large number
of users simultaneously. Despite numerous analyses highlighting
the benefits of utilizing previously unexploitable propagation
factors through the use of RISes, there is a lack of analysis
regarding their relation to the concept of network resource,
their allocation to users/stakeholders and their fair pricing. Thus,
this paper models RISes as networked resources. Based on this
definition, the PRIME algorithm is proposed, the first algorithm
for RIS resource allocation and joint pricing. PRIME strives
for proportionality between the offered end-user performance
level and the corresponding resource pricing, promoting fairness.
The algorithm is evaluated through full-wave electromagnetic
simulations, for various RIS functionalities and frequency bands.

Index Terms—RIS, resource allocation, multiplexing, pricing.

I. INTRODUCTION

The advent of new technologies towards Beyond-5G (B5G)
and 6G wireless communications has fundamentally changed
our perception of future communication paradigms. Until now,
the propagation environment has been considered a given
and uncontrollable factor, with phenomena such as fading
and scattering being treated stochastically. However, in new
wireless technologies, the environment is viewed as a set
of programmable resources that can be optimally configured,
transforming the entire system setting into a Programmable
Wireless Environments (PWE) [1].

The main technology driving this transformation are the
Reconfigurable Intelligent Surfaces (RISes). An RIS can in-
teract with impinging electromagnetic (EM) waves in real-
time and in a software-defined manner [2]. This interaction

A. Papadopoulos is with the Computer Science Engineering
Department, University of Ioannina, Ioannina, Greece and with
the Information Technologies Institute, CERTH, Greece (e-mail:
a.papadopoulos@uoi.gr/alexpap@iti.gr).

D. Tyrovolas is with Aristotle University of Thessaloniki, Greece (email:
tyrovolas@auth.gr).

A. Lalas and K. Votis are with the Information Technologies Institute,
CERTH, Greece (e-mails:{lalas, kvotis}@iti.gr

S. Schmid is with TU Berlin and Fraunhofer SIT, Berlin, Germany (email:
stefan.schmid@tu-berlin.de).

S. Ioannidis, Technical University of Chania, Greece (sotiris@ece.tuc.gr).
G. K. Karagiannidis, Aristotle University of Thessaloniki, Greece; Cyber

Security Systems and Applied AI Research Center, Lebanese American
University, Lebanon (geokarag@auth.gr).

C. K. Liaskos is with the Computer Science Engineering Department,
University of Ioannina, Ioannina and with the Foundation for Research and
Technology Hellas (FORTH), Greece (e-mail:cliaskos@uoi.gr).

aims to effectively utilize previously uncontrollable resources,
such as the scattering behavior of passive objects, significantly
improving the Quality of Service (QoS) for users.

At the system level, PWEs are created by coating all planar
surfaces within an area with RISes. Each separate RIS can
then be programmed in terms of its interaction with impinging
waves, e.g., creating cascading paths and reaching non-line-of-
sight areas (nLos). In this context, the EM propagation within
a space can be dynamically manipulated, benefiting the users
in real-time [1].

As noted, he most characteristic feature of PWEs is their
capability to reconstruct LoS channels between base stations
and users. However, this is not the most challenging feature
of PWEs. Signals can also be kept away from specific areas,
creating "quiet zones" within the network and enhancing its
physical security [3]. Additionally, PWEs can enhance safety
through improved object detection and localization features
[4]. Lastly, the significant impact of the Doppler effect [5],
especially in V2X communication links, can be mitigated by
ensuring the direction of arrival of signal remains perpendic-
ular to the trajectory of a mobile user.

Within the PWE, as with almost any other components in
a communication network, each RIS unit will need to simul-
taneously serve multiple users with different requirements. In
networking terms, each RIS is a resource that should be share-
able among users. The definition of the RIS-as-a-resource,
and its efficient allocation across multiple users should be
clearly described, in orded to be integrated to the policy of the
stakeholder managing the infrastructure containing the PWE.

The transformation of well-established resource allocation
strategies in already existing technologies [6] can boost the
same procedures in the context of PWEs. One such strategy is
the division of a RIS unit into multiple virtual ones [7]. Beyond
existing knowledge, dedicated frameworks for serving multiple
users with RIS have already been proposed and discussed [8].
Nonetheless, a gap exists in the precise manner in which the
RIS resource will be defined and be allocated to network users
in accordance with their pricing levels, in accordance with
their service-level agreements.

In this context, our research contributions are as follows:
• We define the notion of RIS as a networked system

resource.
• Subsequently, we present the first resource allocation al-

gorithm, aligned to our resource definition. The algorithm
supports multiple RIS functionality types and can be
adapted to any pricing policy. A fair pricing policy is
provided as a default.
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• We evaluate the algorithm’s efficiency via realistic, full-
wave EM simulations. Moreover, we deduce the computa-
tional complexity of the algorithm, noting its applicability
to real-world scenarios.

The rest of this paper is organized as follows: Section II
provides the prerequisite knowledge. Section III presents the
related studies. Section IV defines the notion of RIS as a net-
worked resource, while Section V elaborates on the resource
allocation algorithm proposed in this paper. The evaluation
of the algorithm is presented in Section VI. Section VII
discusses potential research challenges, and Section VIII offers
conclusions.

II. PREREQUISITES

The RIS technology is based on the principles of meta-
materials, which are artificially engineered structures cre-
ated by connecting basic units known as unit cells. From
a macroscopic perspective, a RIS appears as a thin, planar,
and rectangular device, resembling a tile, composed of an
array of these unit cells. Within these tiles, various active
elements [9], such as PIN diodes [10] or MEMS [11], [12],
are embedded. Controlling these active elements enables the
RIS to manipulate impinging EM waves propagation across
its surface in a software-defined manner.

Specifically, when an EM wave impinges on the RIS sur-
face, it induces a specific current distribution. This distribution
is strongly connected with the state of all of its active elements,
which is referred to as the RIS configuration. By properly
determining the RIS configuration, the incident EM wave can
be effectively manipulated, leading to various macroscopic
responses, known as RIS functionalities. These include beam
steering, beam splitting, perfect absorption, modulation of the
wavefront’s phase, amplitude, and/or polarization, as well as
wavefront sensing [13].

Defining the optimal RIS configuration for a specific func-
tionality is a complex and time-consuming optimization task
[14]. Therefore, it is not usually feasible to compute this during
the RIS operation phase. Instead, this task is completed during
the manufacturing phase. During this phase, the functionalities
supported by the RIS unit are matched with the optimal RIS
configuration by combining knowledge gained from physics
insights and metaheuristic tools, within a simulation tool or
prototyped measurement system [14]. These mappings are
saved in a Codebook Database. Consequently, once the RIS
is in the operation phase and needs to achieve a specific
functionality, it only needs to retrieve the corresponding entry
from the codebook [1].

The RIS technology is towards its integration into current
communication networks. Thus, it will soon need robust
mechanisms to serve multiple users simultaneously. The most
efficient and straightforward way to make real-time serving
of multiple users feasible is through the multiplexing of
codebook entries [15]. This means that multiple users share
the RIS elements, whose values are determined based on all
the respective codebook entries.

An algorithm that can efficiently multiplex the codebook
entries is COMMON [15], [16]. The COMMON algorithm

Algorithm 1: Codebook Multiplexing Algorithm
(COMMON)
Input: Dimensions of RIS (M,N ), Number of users

K, discretization parameter Nd, Codebook Entries
CEk

Output: Common RIS configuration CC(M,N)
Initialization: Discrete Entries DEk

Discretization function fdis(Nd):
1: for k = 1 to K do
2: DEk ← fdis(CEk, Nd)
3: end for
4: Initialize CC(M,N) to store the final RIS configuration
5: for each element (m,n) in CC do
6: Initialize an empty list values
7: for k = 1 to K do
8: Append DEk(m,n) to values
9: end for

Determine each element value with the most frequent
one

10: CC(m,n)← ComputeMostFrequent(values)
11: end for
12: return CC

retrieves the codebook entries for the users from the respective
database, pre-processes them, and then sets each RIS element
to the most frequent value among the codebook entries result-
ing to the final, common RIS configuration. Its workflow is
presented in Alg. 1.

The RIS resource allocation procedure, in addition to the
definition of the common RIS configuration, also requires a
pricing mechanism to ensure that the sharing of RIS elements
leads to the proper distribution of the resources to each user.
Since COMMON lacks such a mechanism, in this paper, we
introduce the PRIME algorithm (Sec. V).

III. RELATED WORK

The research bibliography includes numerous proposals for
the dynamic allocation of resources in various networks types.
The primary challenge faced by the proposed algorithms,
known as schedulers, is balancing the task of ensuring the
satisfaction of a dynamically changing number of users’
performance with the imperative of minimizing the allocation
decision time [6]. Additionally, within the same network, there
may be diverse user groups with different pricing offers. These
pricing differences should be considered in the performance
results to ensure fairness [17].

Moreover, many studies collectively advance the field of
network slicing and resource allocation, presenting diverse
methodologies to enhance network performance and efficiency.
For instance, addressing congestion and route efficiency, [18]
employs an optimization method to minimize congestion and
route lengths with fewer links between transmitters and re-
ceivers. In mobile edge computing systems, [19] investigates
network slicing using a combination of heuristic tools and
Lyapunov optimization techniques to maximize the operator’s
revenue both in the short and long term.
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Fig. 1: The resource allocation procedure in a RIS-assisted environment with the integration of PRIME algorithm.

Additionally, [20] presents a radio access network (RAN)
slicing method that flexibly allocates RAN resources using
deep reinforcement learning. The challenge of fairly sharing
multiple resources when network resources are insufficient is
addressed in [21], which proposes an optimization framework
using the Ordered Weighted Average operator. Lastly, the
study [22] proposes a machine learning-based RAN slicing
allocation strategy, incorporating LSTM models to maximize
spectrum efficiency and maintain service satisfaction ratios
despite user mobility.

Another well-established tool for resource allocation is

virtual switching. It has emerged as a pivotal technique for re-
source allocation and network slicing, where the core network
is virtualized to serve different users. This is demonstrated
in [23], which implements virtual networking in data centers
and cloud computing infrastructures. Similarly, in [24], the
authors introduce an iterative optimization framework for
resource allocation among the network owner, the cloud owner,
and the slice network owner to ensure optimal bandwidth
distribution. Finally, in [25], the Virtual Network Embedding
Problem is analyzed, utilizing randomized rounding of Lin-
ear Programming solutions for resource allocation. Building
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on this approach, [7] introduces the concept of a Virtual
Programmable Metasurface (VPM), an idea closely aligned
with the widely known Virtual Machine concept. VPMs are
designed as software entities that encapsulate a specific subset
of the RIS physical elements, simplifying their management
and control.

Concerning specifically the optimization of RIS-assisted
networks, several proposals have been made. In [26], rein-
forcement learning is used to optimize the transmit power
of base stations and the state of RIS elements. This issue
is also discussed in [27], where a supervised solution is
proposed. In [28], the maximization of the network’s energy
efficiency is addressed using the SCA method. Lastly, in [29],
federated learning is employed to minimize the system’s power
expenditure.

The common goal of the mentioned papers is to optimize
the network’s parameters, thereby obtaining significant perfor-
mance gains for the users. However, the method of allocating
these resources to the network’s users is a different challenge,
and the suggested frameworks for this task are notably limited.

In [8], a resource-sharing model for PWE is introduced.
The primary concept involves the concurrent provision of
multiple functionalities through the segmentation of each RIS.
Each RIS tile or group of tiles is assigned to specific tasks.
The proposed algorithm then allocates competing user re-
quests based on weighted policies, ensuring a Time-Division-
Multiple-Access (TDMA) style of resource sharing in the
PWE. Similarly, in [30], RIS multi-tasking involves the use of
time duty-cycling, where each user is allocated specific time
slots during which they are served by a RIS unit.

It is essential to consider that the RIS unit manages the
desired manipulation of EM waves due to its total area.
Splitting the RIS into multiple segments may lead to lower
performance for all users. As for TDMA, this method requires
stringent synchronization. Additionally, latency due to the
alignment of the elements’ values at the hardware level with
the desired values in each time-frame must be considered.
Furthermore, due to the nature of TDMA, when a specific
user is served by the RIS unit, no gains are achieved for the
remaining users.

In contrast, in our previous work [15], we proposed the
COMMON algorithm, which is presented here as Alg.1. This
algorithm efficiently multiplexes the RIS configurations of
each user into a common one, thereby enabling the concurrent
serving of multiple users.

PRIME is the first algorithm dedicated to allocating RIS
resources to multiple users with different pricing levels. As
depicted in Fig.1, PRIME is integrated into the Telecom-
munication Stakeholder Operation Center. Users participate
in the network based on the defined pricing policy, and the
supported RIS functionalities are available as codebook entries
in the dedicated database. PRIME’s objective is to effectively
combine these two components.

The PRIME algorithm determines the common RIS con-
figuration by allocating its elements according to each user’s
pricing policy. This configuration is then sent to the RIS
controller to ensure proper alignment of the microscopic RIS
state. Users with higher pricing levels have a greater influence

on the RIS configuration, ensuring a proportional relationship
between user performance and pricing level.

IV. DEFINITION OF RIS AS NETWORK RESOURCE

In order to define the notion of the RIS resource, we
employ the notion of EM functions [31]. As noted, these are
macroscopic descriptors of the manipulation exerted by the
RIS to the impinging wave. They are expressed in software
terms, i.e., as functions with well-defined input and output
data.

For instance, the PLANAR_ABSORB(−→r ) → ∅ function
describes the full absorption of a planar wave impinging on
the RIS from a direction −→r . The PLANAR_STEER(−→r )→−→d
describes the reflection or refraction of a wave impinging from
direction −→r to direction −→d . The PLANAR_SPLIT (−→r ) →[{−→

d1, p1

}
, . . .

]
described the reflection or refraction of the

impinging wave into a set of different directions, −→d i, each
carrying a portion, pi, of the power of the original, impinging
wave. Notice that function, f , must have a corresponding
set of RIS element states, σij , such that σij → f . In other
words, setting the RIS elements to the states σij yields the
macroscopic function f . The definition of σij depends on the
RIS design and can be, e.g., cell phases, cell impedances, or
even voltages applied to embedded actuators.

The above EM function examples are ideal in terms of
performance. In practice, each has a degree of efficiency, ϵ,
when implemented, e.g., due to material losses, RIS design
specifications or RIS multitasking (i.e., serving two or more
EM functions at the same time). Extending the notation,
we can exemplary write PLANAR_ABSORB(−→r ) → ϵ, and
ϵ : PLANAR_STEER(−→r )→−→d . The definition of ϵ can be
adapted depending on the set system specifications. E.g.,
for PLANAR_ABSORB(−→r ), it can be defined as either the
maximum reflected or refracted power towards any direction,
or as the attenuation degree of the impinging wave. For
PLANAR_STEER it can be defined as the gain towards the
intended direction of departure, the ratio of power towards −→d
divided by the total reradiated power, etc.

Complimenting the requirements for defining the RIS re-
source notion, note that a RIS has been shown to be able
to serve many EM functions simultaneously [15]. In par-
ticular, for a set of functions ϵ1 : f1 → σ

(1)
ij , . . ., ϵk :

fk → σ
(k)
ij , . . ., ϵn : fn → σ

(n)
ij , there exists a single

σij : σij

(
σ
(1)
ij , . . . , σ

(k)
ij , . . . σ

(n)
ij

)
such that:

σij → {ϵ′1 : f1, . . . , ϵ
′
k : fk, . . . , ϵ

′
n : fn} . (1)

Notice that the merging of σ
(1)
ij , . . . , σ

(k)
ij , . . . σ

(n)
ij into σij

yields the same functions, but alters the efficiency of each.
With the above definitions, we proceed to define the notion

of the RIS resource, by first drawing a parallelism to a more
common and well-understood resource, the CPU. A CPU is a
resource shared by applications. When a single application is
running on a CPU, it is allotted the full number of clock ticks
per second that the specific CPU can offer. When a number
of additional applications is running on the same CPU, the
original application gets a reduced number of clock ticks.
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The resource slice is the ratio of the new allotted clock ticks,
divided by the full number of clock ticks allotted when ran
alone on the CPU.

Based on the above, we define the following:

Definition 1. A RIS is a resource that is shared by macro-
scopic EM functions.

Moreover:

Definition 2. The resource slice allotted to an EM function,
f , is defined as the ratio r such that

rf =
ϵ′

ϵ
(2)

where ϵ is the efficiency of f when hosted alone on the RIS,
and ϵ′ is its efficiency when hosted with other EM functions
on the same RIS, σij → {ϵ′ : f, . . . , ϵ′k : fk, . . . , ϵ

′
n : fn} .

V. PRIME: A NOVEL ALGORITHM SCHEME FOR SHARING
& PRICING

In this section, we present the PRIcing-based Multiplexing
of codebook Entries (PRIME) algorithm. PRIME, mainly, is
dedicated to the definition of rf factor of Eq. 2 and its
workflow is presented in Alg. 2. It is designed for allocation
of the RIS resources via the pricing-based multiplexing of
codebook entries. PRIME ensures that each user’s performance
reflects their pricing level.

The required inputs for the algorithm include the dimensions
of the RIS (M,N ), the total number of users K utilizing the
RIS unit for enhanced performance within the communication
network, and a discretization parameter Nd. Additionally, the
algorithm must have access to the Codebook Database, which
contains the entries for the optimal RIS configuration for each
user. It is important to note that the computation of these
codebook entries is not part of the algorithm and is assumed
to be an input.

The adaptation of the PRIME to the existing pricing levels
of the stakeholders’ police is established via the definition of
the Payment Factor (PF). The PF is an integer and positive
value assigned to each user once they enter the resource allo-
cation procedure. Each stakeholder can define as many discrete
values for PFs as they want and assign values that reflect
quantitatively the differences in the performance received by
users with various pricing levels. The PFs of all the users have
to be given to the algorithm also as input.

PRIME begins by retrieving the codebook entries, CE,
matching the user requests for a RIS functionality. Next, it
discretizes all the elements of CE based on the discretization
parameter Nd leading to the DE matrices. Using the PF
values, the algorithm then creates an equal number of replicas
for each DEk, which is why PFs must be natural numbers.
After generating all the replicas of the discretized values, the
algorithm determines the common RIS configuration, CC, by
selecting the most frequent values among the replicas for each
RIS element. As is evident, users with higher PF values have
a greater influence on the CC due to the increased number of
replicas of their entries that participate in the final selection,
ensuring the pricing part of the PRIME.

Algorithm 2: PRIcing-based Multiplexing of code-
book Entries (PRIME)
Input: Dimensions of RIS (M,N ), Number of users K,

discretization parameter Nd, Codebook Entries CEk,
Payment Factors PFk

Output: Common RIS configuration CC(M,N)
Initialization: Discretize CEk to DEk

Discretization function fdis(Nd):
1: for k = 1 to K do
2: DEk ← fdis(CEk, Nd)
3: end for

Replica Creation based on Payment Factors:
4: Initialize an empty list replicas
5: for k = 1 to K do
6: Append DEk to PFk replicas
7: end for
8: Initialize CC(M,N) to store the final RIS

configuration
Determine each element value with the most frequent
one

9: for each element (m,n) in CC do
10: CC(m,n)← ComputeMostFrequent(replicas)
11: end for
12: return CC

The evaluation of the algorithm’s feasibility in real-world
applications is closely tied to the computational time required
for pricing-based codebook entries multiplexing. Analyzing
the algorithm’s workflow, the computational complexity de-
pends on PF values, the dimensions of the RIS unit, and the
total number of users.

First, the algorithm discretizes the codebook entries for each
user across the RIS elements, resulting in a computational
complexity of O(KMN). Next, the algorithm generates con-
figuration replicas based on each user’s PF values, adding
another layer of complexity. These replicas are then combined,
resulting in a computational complexity proportional to the
number of users and their respective PFs. Consequently, this
part of the algorithm incurs a complexity equivalent to the
sum of all PF values, denoted as O(

∑
PF ). Therefore, the

overall computational complexity of the PRIME algorithm is
expressed as O(KMN +

∑
PF ).

VI. EVALUATION

In this section, the PRIME algorithm is evaluated using full-
wave EM simulations. We investigate the critical relationship
between each user’s received performance and their respective
PF. A novel efficiency metric is defined, allowing for the
comparison of PRIME with alternative approaches. Finally,
we discuss the computational time required for PRIME on
different hardware setups.

A. PRIME application based on full-wave EM simulations

First, we assess the capability of the PRIME algorithm
to efficiently allocate the RIS elements according to each
user’s pricing level, as expressed by the PF. The evaluation is
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conducted using full-wave EM simulations. In the following,
we present the evaluation setup, the application of PRIME
algorithm and a discussion of the main conclusions.

1) System Model: The communication network consists of
4 different base stations. The total number of users are 5 and
there is one RIS unit. To encompass a more general concept,
two users are served by the same base station, while the
remaining three are served by different ones.

2) Scenario: The LoS connection between the users and
their respective base stations is blocked. The users are posi-
tioned opposite a RIS unit with the goal of restoring the LoS
connection. The RIS unit elements are shared among the five
users. The resource allocation is established via a PF assigned
to each user. Each user’s PF is unique.

3) Physical layer: The RIS unit used during the full-wave
EM simulations has been introduced in our previous work [14].
In this design, depicted in Fig. 2, the RIS unit cells consist
of gaps between square metal patches, bridged by lumped
complex impedance loads. These patches are positioned on
a metal-backed dielectric substrate and a thin metal sheet that
serves as a ground plane. Specifically, the substrate is Rogers
RT/Duroid 5880, which has an electric permittivity, εr, of 2.2,
a tangent loss, tan δ, of 0.0009, and a thickness of 1.016
mm. The ground plane, like the square patches, is a perfect
conductor with a thickness of 17.5 µm. There are 6 square
patches on the y-axis and 12 on the x-axis. The number of
tunable loads is 66. This cell design eliminates transmission
and offers wide angular and spectral bandwidth. The value of
its embedded load allows control over the amplitude and phase
of the reflected wave in the x polarization.

4) Metrics of Performance: The EM energy flow between
the base station (BS) and the user (UE) is estimated using
the S21 parameter [32]. The S21 parameter, also known as
the transmission coefficient, measures the signal transmission
from port 1 to port 2 in a network. In our case, we compute
the S21 parameter between each user and their respective
base station. When the transmission coefficient is very low,
it indicates that the LoS between the BS and the UE is
blocked. The goal of positioning the RIS is to provide the
BS → RIS → UE path to maximize the transmission
coefficient for each user.

5) Tools & Creation of The Codebook Database: The full-
wave EM simulations that are utilized for the evaluation of
the PRIME algorithm have been conducted via measurements
in an open solver called openEMS [33]. (For the remainder,
"measurements" refer to full-wave EM simulation results.)

As mentioned previously, only the pricing-based multiplex-
ing, not the computation of the codebook entries, is part of the
PRIME algorithm. Therefore, the optimal RIS configuration
for each user when served individually by the RIS must
be measured and saved in the Codebook Dataset. For this
procedure, we use the Physics Informed Codebook Compila-
tion Software (PICCS) introduced in [14]. PICCS combines
physics insights with metaheuristic tools. In our case, the
optimization for computing the codebook entries is based
on the NSGA-II algorithm [34]. This procedure generates a
codebook entry for each user, consisting of 66 values for

Fig. 2: The design of the RIS unit used in EM measurements
for PRIME evaluation.
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Fig. 3: Boxplot of the PF per pricing level of the combinations.

impedance capacitance. The impedance values range from 0.4
to 0.9 µF.

6) PRIME operation: The PRIME algorithm retrieves the
codebook entries from the Codebook Database and multiplexes
them according to the PFs assigned to each user. For the sake
of generality of the evaluation, 205 combinations of PFs are
assigned to the users. (For the remainder, the term combination
will refer to the set of PF values that are assigned to the users
each time.) The assignment of the PFs is a random procedure.
The values vary from 1 to 20. The PRIME uses a discretization
parameter of 0.05 for the determination of the common RIS
configuration, CC.

In Fig. 3, the values of the PF combinations are depicted.
Users with higher PF values have an average PF of 16.8 with
a standard deviation of 3.07, whereas users with lower PF
values have an average PF of 4.8 with a deviation of 2.82.
Within each combination, since no user shares the same PF
value with another, five distinct pricing levels are formed.

The measurements of S21 for each user, once the RIS is set
with CC, are computed for each combination of PFs. Since
the use of PICCS ensures that the codebook entries include the
optimal RIS configuration for serving each user individually,
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with PRIME.

the performance for the allocation of RIS resources with
respect to user k during combination c is calculated as follows:

Pkc =
S21optk − S21kc

S21optk
(3)

The performance values for each user during the different
combinations are depicted in Fig. 4. The average values for
users, from highest to lowest, are 98%, 94%, 93%, and 87%,
with variations of 2%, 5%, 4%, 3%, and 2%, respectively.
As is evident, the measurements confirm that the PRIME can
effectively allocate the RIS resources via the proper sharing
of its elements for multiple users with different pricing levels.

B. Relationship between PF and the users’ performance levels

An aspect that requires further assessment is the relationship
between each user’s PF and their performance. PRIME offers
a linear relationship between the assigned to each user PF and
the received performance [16]. This relationship is verified in
Fig.5, where three random combinations and their respective
PFs and performance values are illustrated.

The intercept of this line primarily represents the minimum
efficiency level, indicating the performance that a basic user
receives. The slope of the line denotes the performance en-
hancement achieved with the addition of each PF unit, as de-
fined by telecommunication stakeholders. Accurate estimation
of the intercept and slope in each network, combined with the
PF assigned to each user, allows for easy approximation of
their performance.

he intercept and the slope of PRIME’s performance line are
strongly influenced by the total number of users [16]. As a
next step, we also investigate how the intercept and the slope
are affected by the users’ PF. This analysis aims to determine
how the performance of a specific user with a given pricing
level can be affected by the other users participating in the
same network. To this end, we perform a correlation analysis
between the PF assigned to all users and the performance
received by an individual user.
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Fig. 5: The linear relationship between users’ PF and perfor-
mance with the usage of PRIME.
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Fig. 6: The correlation matrix among all users’ performance
and PF values.

The correlation measures the strength and direction of the
relationship between two variables, ranging from -1 (perfect
negative correlation) to 1 (perfect positive correlation), with 0
indicating no correlation. As mentioned previously, no users
have the same PF value in any combination. Therefore, we can
shape five different pricing levels. Subsequently, we investigate
the correlation between each PF value and the corresponding
performance. The results are illustrated in Fig. 6.

The highest correlation is observed between each user
group’s PF values and their respective performance (major di-
agonal elements in Fig. 6). However, there is also a significant
correlation with other PF user groups, ranging from 0.3572 to
0.7153. The highest correlations are seen in the groups with
mid-level PF values, with a notable correlation greater than
0.6297, indicating a relatively strong relationship.

Having detected the correlation between user groups and
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Fig. 7: Boxplot of the slope (left) and the intercept (right) of
the performance line based on the PFs of the pricing levels.

performances, the objective analysis for intercept and slope
of the performance line follows. For this task, we scale the
PF values during each combination. Therefore, each scaled
PF value is mapped in relation to the PF values of the rest
users. After this action, each scaled PF is aligned with the
respective performance, and the intercept and the slope factors
are computed. The respective boxplot is illustrated in Fig. 7.

The mean value of the slope is 0.0928, with a standard
deviation of 0.0185. For the intercept, the mean value is
0.8820, with a standard deviation of approximately 0.04.
This indicates that PRIME ensures that all users can achieve
performance levels between 84% and 92%, while users with
higher PF values can approach 100% performance. A higher
PF ensures that, irrespective of the PF values of the other users
and the total number of them, the performance will be close
to optimal.

C. Evaluation via a novel RIS resource allocation efficiency
metric

In this section, we present a proposal for a metric to
estimate the allocation efficiency for each user during the
RIS resource sharing. This metric is based on the deviation
between the configuration of the RIS elements when the user
is served alone (codebook entry, CE) and the common RIS
configuration (CC), as calculated in 4.

Dk(i, j) = CEk(i, j)− CC(i, j) (4)

It has been shown that the deviation in each RIS element
does not have the same effect on its macroscopic response. For
this reason, the metric also incorporates this physical aspect
by computing the contribution of each deviation using 5.

ADk(i, j) = Dk(i, j)× Con(i, j) (5)

The final efficiency per user is computed by subtracting 1
(the optimal case) from the sum of the resulting products of
Eq. 5, as:
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Fig. 8: Estimation of the RIS resource allocation achieved by
PRIME

effk = 1− Lossk = 1−
∑
i,j

ADk(i, j) (6)

Having computed the accurate performance for each user,
we use these measurements to evaluate the accuracy of the
proposed metric. Using the same combinations for PF values,
we also calculate the efficiency using this metric. The results
are presented in Fig. 8.

The average efficiency, from higher to lower PF, is 88%,
86%, 82%, 80%, and 77%, with deviations of 5%, 4%, 3%,
3%, and 3%, respectively. Comparing Fig. 4 and Fig. 8, it is
evident that the proposed metric has values approximately 8-
11% lower than the actual performance values. This indicates
that the proposed metric is a strict and reliable estimator
for assessing the efficiency of any allocation method for RIS
resources among multiple users with different pricing levels.

D. Comparison of PRIME and COMMON

COMMON can multiplex codebook entries so that the same
RIS unit can simultaneously serve multiple users. PRIME can
accomplish the same task, but with the added capability of
considering unique pricing levels for each user and assigning
priorities accordingly. Essentially, COMMON can be viewed
as a special case of PRIME where all users share the same
pricing level.

To compare COMMON and LEVEL, we use the efficiency
estimator from Sec. VI-C. We assume that a 100x100 RIS
unit is serving 10 users simultaneously, with a discretization
parameter of 0.05. As shown in Fig. 9, PRIME assigns PFs to
each user incrementally, starting from 1 and increasing to 10
(with User ID=1 assigned PF=1, User ID=2 assigned PF=2,
and so on).

Fig. 9 demonstrates that COMMON can effectively share
the RIS by multiplexing codebook entries, resulting in an
efficiency of approximately 57% for all 10 users. Regarding
the PRIME algorithm and the associated sharing and pricing
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Fig. 9: User efficiency for PRIME and COMMON algorithms

results, it is clear that the improved efficiency levels of high-PF
users do not come at the expense of others, ensuring network
fairness. The higher PF values can achieve efficiencies about
27% higher.

E. Required computational time with different hardware se-
tups

We also evaluate PRIME’s required time using different
hardware setups. Specifically, the first setup involves only
a CPU, while the second setup utilizes both a CPU and
a GPU. In both scenarios, the RIS dimensions are set to
M = N = 100. The total number of users ranges from 5
to 50, and the PF values vary from 5 to 100. The codebook
entries are multiplexed using MATLAB.

In the scenario where only the CPU is used, if the maximum
PF value is below 70 for all user counts, the computa-
tional time remains under 100 ms (Fig. 13a). For higher
PF maximum thresholds, the computational time increases
to approximately three times that, reaching about 350 ms.
Conversely, employing a GPU unit leads to a reduction in
these values by up to 6 times (Fig. 13b). Specifically, when
the PF maximum value does not exceed 70, the computational
time is within the range of 10-20 ms. Even in more demanding
cases, such as when there are 50 users and the PF maximum
value is 100, the required computational time is around 60 ms.

Furthermore, it is acknowledged that MATLAB is rec-
ognized for its relatively slower performance compared to
other programming languages like C/C++ or Fortran. This
underscores the practicality of the proposed algorithm in
determining RIS configurations to efficiently serve multiple
users with high PF values in realistic scenarios, particularly in
terms of computational demands.

F. Resource allocation in RIS-cascaded links

In a RIS-assisted environment, multiple RIS units will be
placed in order to serve simultaneously many users. Firstly,
we consider that 5 users are served from 2 RIS units that are
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Fig. 10: Heatmaps of the PRIME’s required computational
time with respect to the total number of users and the
maximum PF value.

50× 50. For each user-RIS pair, the CE has been computed
during the manufacturing phase. The user could be served by
the same or different base station. Moroevoer, the operation
frequency remains agnostic. The only essential for PRIME
information is the CE. The PFs vary from 1 to 10.

In the Fig. 11, the efficiency of each user is illustrated as
the average of the efficiency of each RIS unit as it has been
defined in Sec. VI-C. As it is clear the PRIME can also allocate
efficiently in this cascaded scenario.

However, the even more interesting and realistic scenario is
the existance of multiple users with multiple RIS that try to
be served in a communication link where any user is served
by specific RIS and not from all of them. A such example is
described in

VII. OPEN CHALLENGES

In this paper, we presented PRIME, the first algorithm dedi-
cated to RIS resource allocation for users with different pricing
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Fig. 11: The average efficiency of 5 users with 2 RIS units

levels, based on the multiplexing of codebook entries. The
development of more algorithms aligned with the definition
of the RIS-NET should continue, with these algorithms being
evaluated against each other to establish the optimal solution
in terms of performance and computational complexity.

These algorithms should focus on controlling the acceptable
deviation between the individual codebook entries and the
common RIS configuration. Furthermore, the cooperation of
existing powerful metaheuristic tools should also be examined.
Another topic to explore is the case of a full PWE, where
multiple RIS units participate in the resource allocation of
multi-hop communication links. In all these activities, the
estimator proposed and evaluated in this paper could be
utilized for accurate and fast computations.

An additional open challenge is leveraging the sharing
ability of these algorithms to achieve more complex RIS
functionalities. An indicative example of such functionality
is beam splitting. In current approaches, beam splitting is
treated as a complex optimization problem that tries to define
the RIS configuration based on multiple users’ positions.
Instead, it could be addressed as a simple, pricing-based or
not, multiplexing of various beam steering cases.

VIII. CONCLUSION

In this paper, we defined the notion of RIS as a share-able
resource. This definition involves a mathematical procedure
that aligns the sharing method of RIS elements to minimize
the performance loss between the single-user scenario and the
multi-user case. In this procedure, the pricing level of each
user is used to assign a proportional weight.

Moreover, we propose and present PRIME, the first algo-
rithm dedicated to pricing-based RIS resource allocation. We
evaluate PRIME using full-wave electromagnetic simulations,
which enhance the accuracy of the extracted results. We also
discuss the linear relationship between each user’s pricing level
and their received performance. The computational complex-
ity and required computational time with different hardware
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Fig. 12: Cascaded link of 5 users with 5 RIS units.

setups indicate that PRIME can be effectively applied in real-
world scenarios.
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[32] M. Stănculescu et al., “Using s parameters in wireless power transfer
analysis,” in 2017 10th International Symposium on Advanced Topics in
Electrical Engineering (ATEE), pp. 107–112, IEEE, 2017.

[33] A. Papadopoulos et al., “An open platform for simulating the physical
layer of 6g communication systems with multiple intelligent surfaces,”
in 2022 18th International Conference on Network and Service Man-
agement (CNSM), pp. 359–363, IEEE, 2022.

[34] S. Luke, Essentials of Metaheuristics. Lulu, second ed., 2013. Available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.


	I Introduction
	II Prerequisites
	III Related Work
	IV Definition of RIS as Network Resource
	V PRIME: A Novel Algorithm Scheme for Sharing & Pricing
	VI Evaluation
	VI-A PRIME application based on full-wave EM simulations
	VI-A1 System Model
	VI-A2 Scenario
	VI-A3 Physical layer
	VI-A4 Metrics of Performance
	VI-A5 Tools & Creation of The Codebook Database
	VI-A6 PRIME operation

	VI-B Relationship between PF and the users' performance levels
	VI-C Evaluation via a novel RIS resource allocation efficiency metric
	VI-D Comparison of PRIME and COMMON
	VI-E Required computational time with different hardware setups
	VI-F Resource allocation in RIS-cascaded links

	VII Open Challenges
	VIII Conclusion
	References

