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Abstract—Jamming attacks continue to pose a significant threat
to next-generation wireless networks, including Beyond 5G (B5G)
and 6G, by disrupting communication through intentional inter-
ference. In this paper, we introduce JAmming detection method
baSed on Modulation scheme IdeNtification and Outlier Detec-
tor of un-jammed data (JASMIN), a novel jamming detection
method designed to operate effectively across a broad range of
network protocols and jamming scenarios. JASMIN relies solely
on unjammed data during its training phase and utilizes two
primary components in its detection phase: a Modulation Scheme
Identification (MSI) model that classifies the legitimate signal’s
modulation format, and an Outlier Detector (OD) that quantifies
channel noise. By comparing the predicted modulation scheme
over multiple time windows with the OD’s measurements of
noise, JASMIN identifies abnormal interference that indicates
the presence of jamming—regardless of the specific jamming
strategy (e.g., constant, periodic, reactive). We demonstrate the
efficacy of JASMIN on an SDR-based testbed implementing an
IEEE 802.11p (V2X) communication network, employing three
USRP B210 devices operating at 5.9 GHz. Evaluation results
show an overall accuracy of 99.92% under a wide range of
SNR levels. Additionally, JASMIN’s real-time compatibility and
minimal computational overhead make it a compelling solution
for modern wireless systems. To foster further innovation, we
publicly release the dataset utilized in our experiments.
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I. INTRODUCTION

The advent of Beyond 5G (B5G) and 6G networks marks
a significant advancement in communication technologies, of-
fering ultra-low latency, enhanced bandwidth, and high-speed
connectivity. These networks are tailored to meet the demands
of advanced applications such as autonomous driving, wireless
power transfer, and extended reality. However, despite progress
across various layers of communication, vulnerabilities in the
physical layer pose a critical risk, potentially undermining
the transformative potential of these technologies. Among
physical-layer threats, jamming attacks stand out as both
highly effective and challenging to counteract. These attacks
disrupt communication by introducing interference on the same
frequency as the target signal, and they manifest in three
primary forms with distinct characteristics.

Constant jamming, the simplest form, involves continuous
high-power interference across the transmission bandwidth,
causing a significant reduction in the Signal-to-Noise Ra-
tio (SNR). Its simplicity makes it easy to implement and,

simultaneously, highly disruptive to network operations. In
contrast, periodic jamming introduces interference at regular
intervals, allowing brief periods of normal communication.
This approach can exploit timing vulnerabilities in the network
and demands precise synchronization with the target signal.
Its intermittent nature complicates detection, as it may mimic
normal network fluctuations and appear less conspicuous.
Reactive jamming represents the most sophisticated type of
attack. It transmits interference only when legitimate signals
are detected, thereby conserving energy and enabling targeted
disruptions. This approach remains passive until legitimate
transmissions occur, making it particularly difficult to detect
and requiring advanced mechanisms to pinpoint the source of
interference.

The timely and accurate detection of jamming attacks is
critical for the implementation of effective countermeasures,
ensuring the performance and security of networks, especially
in the domain of autonomous vehicles. To address this is-
sue, various detection techniques have been proposed in the
literature. Advanced artificial intelligence (AI) models, such
as Convolutional Neural Networks (CNNs), Long Short-Term
Memory (LSTM) networks, Random Forest, and XGBoost
[1]-[5], have demonstrated significant potential in detecting
jamming attacks across diverse network performance scenar-
ios. Despite these advances, existing methods lack univer-
sal effectiveness, particularly against sophisticated jamming
techniques like periodic and reactive jamming. Furthermore,
many approaches rely on training datasets that are not readily
available from real-world systems, limiting their adaptability
to specific channel conditions. In order to overcome these
limitations, we propose JAmming detection method baSed on
Modulation scheme IdeNtification and Outlier Detector of un-
jammed data (JASMIN), a novel jamming detection method
designed to address all types of jamming attacks. JASMIN is
agnostic in respect of the used communication protocol and
central operating frequency and eliminates the dependency on
jamming data during the training phase.

In this context, our research contributions are as fol-
lows:

e  We propose and introduce JASMIN, a novel jamming
detection method capable of achieving high detection
accuracy across various communication protocols.

e  We evaluate the proposed method using a physical,
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Fig. 1: The training (left) and the operating phase (right) of the JASMIN method

software-defined radio (SDR)-based setup that emu-
lates a Vehicle-to-Everything (V2X) testbed.

e  We publicly release the training and evaluation data to
foster collaboration and further advancements in the
field.

The rest of this paper is organized as follows. Section II
presents an overview of related studies. In Section III, we detail
the workflow of the proposed method. Section IV describes
the SDR-based setup and the generated data used for training
and evaluation purposes. In Section V, we explain the process
of fine-tuning the components of JASMIN using un-jammed
data. Section VI evaluates the performance of the proposed
method in detecting jamming attacks. Finally, Section VII
provides concluding remarks and insights derived from this
study.

II. RELATED STUDIES

The proposed jamming detection method relies on the
receiver’s ability to identify the modulation scheme used by the
transmitter. Consequently, we review the current state of the art
in both modulation scheme identification (MSI) and jamming
detection techniques. Furthermore, we provide the accuracy
levels of existing methods as a benchmark to evaluate the
performance of our solution. As concernts MSI, various neural
network architectures have been applied achieving high accu-
racy across diverse SNR conditions. For example, a ResNet
model with six residual blocks was trained on a combination of
real and synthetic datasets covering 24 modulation schemes, at-
taining 99.8% accuracy for SNRs above 10 dB and maintaining
90% accuracy near 0 dB [6]. Alternatively, a CNN with custom
layers designed for Automatic Modulation Classification was
trained on synthetic data with varying SNR levels using a
two-step pre-training and fine-tuning process. This CNN-based
model achieved 100% accuracy for SNRs exceeding 4 dB and
retained 70% accuracy close to 0 dB [7].

In addition to CNNs and ResNets, LSTM networks have

been effectively utilized for this task. One such model consists
of three stacked LSTM layers followed by four fully connected
layers, trained on the In-phase and quadrature (I/Q) samples of
signals under various noise conditions. This LSTM architecture
delivers 98% accuracy for SNRs above 12 dB and sustains
60% accuracy as the SNR approaches 0 dB [8]. Another
LSTM-based approach employs a two-layer configuration with
128 units, trained on amplitude and phase inputs using the
RadioML2016.10a synthetic dataset. This model demonstrates
an average accuracy of 90% across an SNR range from 0 to
20 dB, highlighting its robustness in varying noise environ-
ments [9]. A variety of machine learning and deep learning
techniques have also been effectively utilized for jamming
detection, consistently achieving high accuracy across different
scenarios. One method employs features such as bad packet
ratio, received signal strength, and clear channel assessment,
utilizing algorithms like Random Forest, SVM, and MLP
to reach 97.5% accuracy [1]. Another approach leverages
channel and performance metrics, including Noise and Channel
Busy Ratio and Packet Delivery Ratio, with Random Forest
classifiers achieving over 95% accuracy [2].

Advanced deep learning models further enhance jamming
detection performance. For instance, two-layer LSTM net-
works using Quality of Services (QoS) metrics attain 95.5%
accuracy [3]. Shallow feed-forward neural networks that in-
corporate delivery rate and SNR metrics have demonstrated
accuracies between 95% and 99% [4]. Additionally, combining
statistical features with algorithms like XGBoost and Light-
GBM achieves up to 99% accuracy [10]. Convolutional ap-
proaches utilizing spectrograms with CNNs and conventional
encoders identify jammed cases through significantly higher
reconstruction errors, while autoencoders processing 1/Q com-
ponents achieve 99.7% accuracy [5], [11]. These studies un-
derscore the robustness of both traditional machine learning
and deep learning techniques in detecting jamming under
various conditions. In several studies, the datasets include



jamming signals generated by reactive jammers, simulating
more realistic and dynamic interference patterns. For example,
the method proposed in [2] specifically addresses both constant
and reactive jammers in 802.11 networks, achieving over 94%
accuracy even in outdoor mobile scenarios. Moreover, some
works [12] extend beyond detection to classify the type of
jamming attack, such as distinguishing between constant and
smart (reactive) jammers.

Building on existing knowledge, we propose a method
designed to achieve high effectiveness and accuracy across
all types of jamming attacks while being applicable to all
communication protocols. The workflow of JASMIN is de-
picted in Fig. 1. During the training phase, the MSI module
is trained across various SNR levels to reliably identify the
modulation scheme employed by the transmitter (7'z). Con-
currently, an Outlier Detector (OD) component is trained to
quantify the noise introduced by the communication channel,
thereby establishing a baseline profile for normal noise levels.
In the operational phase, if interference caused by a jammer
affects the signal received by the receiver (Rx) in any manner,
the outputs of the MSI and OD modules are evaluated over
a specific timeframe. If the Rz does not detect the same
modulation scheme consistently during this period, or if the
OD identifies a noise level exceeding the predefined normal
threshold, a jamming attack is detected. The dual-decision
process distinguishes true jamming from non-malicious dis-
ruptions like distance or non-line-of-sight conditions.

ITII. JASMIN: A UNIFIED METHOD FOR JAMMING
DETECTION

JASMIN is designed to provide robust and accurate jam-
ming detection in real-time across various network protocols,
including those aimed at B5G and 6G applications. The
method integrates two complementary modules—an MSI and
an OD—which together form a two-stage decision process.
A notable advantage of JASMIN is that it is trained solely
on unjammed data, thereby avoiding the challenges associated
with acquiring representative jamming datasets.

At its core, the MSI model (M) is responsible for deter-
mining the modulation scheme (e.g., BPSK, QPSK, 16-QAM,
64-QAM) of the received signal by analyzing sequences of
I/Q samples. This module is typically implemented using a
deep learning architecture which has been fine-tuned to handle
varying SNR conditions while maintaining high classification
accuracy. In normal operation, the MSI consistently iden-
tifies the modulation scheme employed by the transmitter.
Complementing the MSI, the OD module is tasked with
quantifying the channel noise through anomaly detection. For
each supported modulation, a dedicated OD model OD(m) is
trained to capture the characteristic noise profile of unjammed
signals. This involves computing metrics between the observed
constellation points and those expected from an ideal, noise-
free signal. During normal operation, the OD reports noise
levels that remain within a well-defined baseline range.

In the operational phase, that is illustrated in Alg. 1, the
receiver continuously buffers I/Q data over a preset time
window (7") and, once enough data are accumulated, the
MSI module generates multiple predictions (P). The prevalent
modulation scheme is then determined from these predictions,
and the corresponding OD model is employed to evaluate the
noise level across successive data segments. The decision to
trigger a jamming alert is based on two concurrent conditions:

Algorithm 1: Operating Phase of JAmming detection
method baSed on Modulation scheme IdeNtification
and Outlier Detector of un-jammed data (JASMIN)

1: Given:

2:  Pretrained MSI model M.

3:  Pretrained OD models {OD(m)}.

4 Scaler function S.
5:  Time-window length T'
6
7
8

Number of predictions in sequence P.
. Initialize: An empty data buffer B.
: while new I/Q samples are received do
Append incoming samples to B.
10:  Apply normalization: B < S(B).
11:  if the size of B reaches P x T samples then

©

12: Modulation Identification:
13: for i =1to P do
14: Let x¥ be the i-th packet of T" samples.
15: Obtain the modulation prediction
mi — M(x").
16: end for
17: Determine the prevalent modulation scheme:

m = mode{m1, ma,...,mp}.

18: Calculate the consistency ratio:

__ Number of packets with m; = 1

P
19: Outlier Analysis:
20: for i =1 to P do _
21: Compute the outlier label for packet x(*)

using OD(1h):
0 + 0D, x),

22: where ¢; = 1 indicates a normal (unjammed) packet
and ¢; = —1 indicates an anomalous (potentially
jammed) packet.

23: end for

24: Aggregate the outlier labels:

L = mode{l,42,...,0p}.

25: Decision Rule:

26: if y<lor L= —1 then

27: Set jamming_detection < True

28: else

29: Set jamming_detection < False

30: end if

31: Reset B for the next batch.

32:  end if

33: end while

(i) if the MSI predictions are inconsistent over the observation
window, or (ii) if the OD detects noise levels significantly
above the normal baseline. Meeting either of these criteria
results in a flagging of the current data batch as potentially
jammed.

This approach has several clear advantages. First, because
it does not depend on predefined jamming signatures or
protocol-specific features, JASMIN can be applied across
many communication standards. Second, training exclusively
on unjammed data simplifies deployment in environments
where jammed signals are rare or unavailable. Moreover, using
two independent yet complementary detection methods boosts
overall robustness; if one module fails to detect an attack,
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Fig. 2: Simulated scenario by SDR-setup.

the other can still identify it. Finally, the efficient design and
optimal parameter tuning allow JASMIN to generate thousands
of predictions per second, meeting the demands of real-time
security in dynamic wireless settings.

IV. EXPERIMENTAL SETUP & DATA COLLECTION

JASMIN is evaluated within the IEEE 802.11p protocol
[13], which is specifically designed for V2X networks. The
physical layer implementation employs three SDRs: one as
the base station, one representing the autonomous vehicle, and
one functioning as the jammer mainly simulated the scenario
illustrated in Fig. 2. These SDRs are primarily USRP B210
devices', equipped with omnidirectional antennas operating
at 5.9 GHz. Each USRP connects to a host computer via
USB 3.0 and is configured using GNU Radio®. The host
computers are NVIDIA Orin Jetson units?, selected for their
high performance, energy efficiency, and compatibility with
GNU Radio’s Linux-based signal processing framework. These
units manage critical SDR tasks, including real-time signal
processing, modulation, demodulation, and jamming detec-
tion.

The transmitter and receiver simulations are based on WiMe
[14]. The jammer replicates the transmitter flowgraph, injecting
white Gaussian noise with amplitude similar to the transmitter
to mimic interference. Detecting the jammer under these
conditions ensures straightforward identification of stronger
interference typical in jamming attacks. The transmitter em-
ploys OFDM with BPSK, QPSK, 16-QAM, and 64-QAM
modulation. Captured signals at the receiver are stored via API
into a shared database, enabling post-processing and jammer
detection model training. To ensure generalization, GNU Radio
dynamically varies transmitter, receiver, and jammer distances.
Transmission occurs under both jammed and unjammed sce-
narios across all modulation schemes. The UDP listener han-
dles data packets limited to 128 I/Q sample pairs.

A summary of the data is provided in Table I including
the number of packages and SNR levels’ description. For the
clear signal data, captured during both training and evaluation,
a wide range of SNR levels is observed, including also negative
values. This ensures that the dataset effectively simulates sce-
narios where the communication link experiences significant
noise without the presence of a jamming attack. Regarding

Uhttps://www.ettus.com/all-products/ub210-kit/

Zhttps://www.gnuradio.org/

3https://www.nvidia.com/en-eu/autonomous-machines/embedded-
systems/jetson-orin/

the jamming attack data, the system is evaluated under a
combination of reactive and periodic jamming. Specifically, the
jammer activates as soon as the receiver begins detecting the
transmitter’s signal and operates with a periodicity matching
that of the transmitter. This behavior results in packets with
highly positive SNR values, reflecting the jamming impact on
the communication link. The dataset is publicly available on
Zenodo®.

V. FINE TUNING OF JASMIN COMPONENTS

As previously noted, JASMIN comprises two primary com-
ponents: the MSI and the OD. Before deploying JASMIN for a
specific protocol, the training phase must be conducted. During
this phase, the Al tools selected by the network operator are
configured and fine-tuned according to the characteristics of
the protocol and normal data. This preparation ensures that
JASMIN is optimally adapted for effective operation within the
designated network environment. In our case, we have selected
an LSTM model for MSI and the Isolation Forest (IF) as OD.
The tools are fine-tuned based on the data extracted by the
SDR-based setup, fully described in Sec. IV.

A. MSI model

As already mentioned, the selected Al tool for the MSI
is an LSTM model. It is designed for sequence classification
tasks and operates on input sequences with a shape of (128,
2), representing a data package of I/Q samples. The LSTM
consists of 128 units to learn temporal dependencies in the
data, followed by a dropout layer with a rate of 0.5 to reduce
overfitting. The output layer is a dense layer with a softmax
activation function for multi-class classification. The model
is trained using the categorical cross-entropy loss function,
the Adam optimizer, and accuracy as the evaluation metric.
Training is performed over 100 epochs, with early stopping
employed to halt training when the validation performance
stops improving. Figure 3 displays the confusion matrix for
the MSI, while Table II summarizes the performance metrics
and accuracy for each modulation scheme. The MSI achieves
high accuracy across all schemes. The model achieves high
accuracy (overall: 97.57%), performing robustly even at low
SNR (BPSK: -1.2 dB, QPSK: -17.3 dB, 16-QAM: -28.24 dB,
64-QAM: -15.16 dB). At SNR below 0 dB, accuracy ( 75%)
aligns with existing literature; above 0 dB, accuracy reaches
99.5%. The model remains lightweight and efficient.

B. Outlier Detector

An IF is employed as the primary outlier detector for
jamming identification. The IF is trained exclusively on normal
data to learn the typical noise characteristics of each modula-
tion scheme, and once trained, it flags any samples with noise
levels significantly deviating from these norms as potential
jamming attacks. To assess how closely the received 1/Q
samples match the expected constellation points, the relative
square error (RSE) is computed as follows:

Zf\il (yl - yt)Q
Zf\il(y% - 5)2

. . 2

In this equation, the term (y; — ;)" represents the squared
distance between the observed sample and its nearest point in
the ideal constellation of each modulation scheme, while (yl —

RSE =

“https://doi.org/10.5281/zenodo. 15145234



TABLE I: Summary of the training & evaluation data

Modulation Clear Signal Jamming Signal

Num of Mean Var Max Min Num of Mean Var Max Min

Packages SNR (dB) SNR (dB) SNR (dB)  SNR (dB) Packages SNR (dB) SNR (dB) SNR (dB)  SNR (dB)

Training Data
BPSK 7617 15.12 17.93 18.88 —1.2
QPSK 12775 14.93 25.21 23.44 —17.34
16-QAM 9188 13.85 30.12 23.64 —28.21
64-QAM 3876 11.29 27.52 19.6 —15.16
Evaluation Data

BPSK 2539 15 17.76 18.47 —6.83 8465 —5.59 22.4 18.94 —52.82
QPSK 4259 15.1 25.01 22.41 —16.36 9098 —2.34 27.68 19.6 —51.31
16-QAM 3063 14.16 30.12 23.35 —25.43 16539 —5.89 24.64 22.47 —51.84
64-QAM 1292 10.95 27.49 19.11 —14.47 22978 —6.97 19.72 19.4 —50.71

Confusion Matrix (Percentages)
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Fig. 3: Confusion Matrix of MSI (%)

TABLE II: Modulation Scheme Identification Results

Modulation Scheme  Precision Recall  F1-Score  Accuracy
BPSK 1.0000 0.9988 0.9994 -
QAM16 0.9476 0.9794 0.9632

QAMO64 0.9576 0.8916 0.9234

QPSK 0.9873 0.9847 0.9860

Macro Avg 0.9731 0.9637 0.9680

Weighted Avg 0.9758 0.9757 0.9756 -
Overall Results 0.9758 0.9757 97.57%

g)2 quantifies the squared distance from the observed sample
to the average point of the packet. Packets, each consisting of
128 samples, are analyzed using this measure, and empirical
results indicate that an RSE below 0.1 is generally associated
with unjammed packets.

The proportion of packets with an RSE exceeding 0.1 is
utilized to set the contamination parameter in the IF, which
reflects the assumed fraction of outliers in the training data.
This parameter is adapted to each modulation scheme based
on the observed outlier rates: while lower rates are seen
with schemes like BPSK (0.12%), higher modulation orders
such as QAMI16 and QAMG64 exhibit rates of 14.56% and

25.15%, respectively, with QPSK observing a moderate rate
of 5.64%.

Each IF model is trained on packets comprising 128 con-
stellation points where each point is described by its real and
imaginary parts, yielding an initial shape of (128, 2). However,
a point-wise Manhattan distance is computed to transform
these points into an input feature with a shape of (128,1).
This approach was adopted without decoupling the real and
imaginary components, and because the various constellations
are symmetric, the reduction of points to the first quadrant
simplifies the procedure. In particular, for BPSK packets, only
the real component is used. To further enhance the training
process, random intra-packet point permutations are employed
as an augmentation strategy, acknowledging that jamming
detection is primarily influenced by the spatial location of
the constellation points rather than their order. The IF is
implemented with 150 base estimators (trees), a configuration
that ensures the model is well-tuned to detect anomalies based
on the inherent noise and structural characteristics of the
channel across different modulation schemes.

VI. EVALUATION

To evaluate JASMIN, we use the second dataset, which
contains both normal (clear) and jammed data for all supported
modulation schemes. This dataset was not available during
the training phase of the models. Also in this case, the clear
signals were captured under various SNR levels, while the
jammed signals were generated using a combination of reactive
and periodic jamming attacks. In Alg. 1, we integrate the
LSTM model, denoted as M, with the Isolation Forest for each
modulation scheme, denoted as OD(m). The time window T
is set equal to the data package size of 128 I/Q samples, and
the parameter P was fine-tuned and selected to be 21. Given
that the receiver operates at 10 MHz, JASMIN can generate
more than 3,500 predictions per second, thereby ensuring the
physical security of the network. The scaler of the LSTM
model is integrated as S.

When testing the outlier detection models on the jammed
data, the percentages of outliers detected for each modulation
scheme are as follows: 87.21% for BPSK, 76.19% for QPSK,
94.08% for QAM-16, and 96.52% for QAM-64. These fig-
ures indicate that the models are effective in anticipating the
increased noise due to the presence of jamming.

Table III presents the performance metrics for each modula-
tion scheme, showing that the model achieves perfect detection
of jamming attacks in BPSK, 16-QAM, and 64-QAM. In
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TABLE III: JASMIN Results Per Modulation Scheme and
Overall

Modulation Class Precision Recall F1-Score  Accuracy
BPSK e looo  Loooo  looooo 0%
OPSK il Voo 0s9sa6  oserer 3%
6OAM el Tooom  tooo  Looooo 1%
GHOAM e Lowo  Looon  Looom 1%
Ovnll e Vom0 09900  0ososs 9%

the case of QPSK, the accuracy is slightly lower at 99.63%.
Overall, the model exhibits a precision of 0.99318 for clear
signals and 1 for jammed signals, with a recall of 1 for clear
signals and 0.99909 for jammed signals, leading to an overall
accuracy of 99.92%. Figure 4 presents the confusion matrix for
JASMIN, which further underscores its high accuracy. Notably,
only small portion of QPSK packages (76 out of 9098) were
incorrectly labeled as clear signals when they were, in fact,
subject to a jamming attack, and no clear signal package was
mistakenly identified as jammed.

VII. CONCLUSION

This paper has introduced JASMIN, a unified jamming
detection method capable of detecting a wide variety of attack
strategies—constant, periodic, and reactive—while remaining
agnostic to specific network protocols. By leveraging a two-
stage decision process that integrates Modulation Scheme
Identification (MSI) and a dedicated Outlier Detector (OD),
JASMIN reliably discerns abnormal interference in real time
without relying on jammed data for training. Our evaluation
on an SDR-based IEEE 802.11p (V2X) testbed, comprising
multiple USRP devices operating at 5.9 GHz, demonstrates
the method’s high effectiveness, achieving a detection accuracy
of 99.92% across a broad range of SNR conditions. These
results underscore the method’s versatility and robustness,
confirming its suitability for beyond-5G networks and other

critical wireless systems. In an effort to encourage broader
exploration of physical-layer security, we publicly release our
dataset, inviting the research community to further refine and
extend jamming defense strategies in modern communication
infrastructures.
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