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Abstract

Motivated by the increasing industry trends towards au-

tonomous driving, vehicles, and transportation we focus on

developing a traffic analysis framework for the automatic

exploitation of a large pool of available data relative to traf-

fic applications. We propose a cooperative detection and

tracking algorithm for the retrieval of vehicle trajectories in

video surveillance footage based on deep CNN features that

is ultimately used for two separate traffic analysis modali-

ties: (a) vehicle speed estimation based on a state of the

art fully automatic camera calibration algorithm and (b)

the detection of possibly abnormal events in the scene us-

ing robust optical flow descriptors of the detected vehicles

and Fisher vector representations of spatiotemporal visual

volumes. Finally we measure the performance of our pro-

posed methods in the NVIDIA AI CITY challenge evaluation

dataset.

1. Introduction

Smart city technologies for assistive transportation and

safe driving, make up one of the most intriguing domains

of computer science and have attracted significant atten-

tion during the last decade. Video surveillance, along with

various other types of monitoring infrastructure provide a

huge amount of exploitable data for extracting optimal traf-

fic management rules, increasing safety in busy streets, de-

tecting or predicting and preventing accidents and numer-

ous other applications of traffic monitoring. Moreover, in-

creasing industry trends towards autonomous driving, ve-

hicles, and transportation in general, is changing the land-

scape of traffic analysis. The visual content from traffic

cameras will, in the near future, also be used to manage au-

tonomous vehicle navigation, by sending information about

events elsewhere in the city, traffic conditions, pedestrian

congestion, to optimally guide vehicles.

The automated analysis of visual traffic data is neces-

sary to extract useful information in a reasonable amount of

time and with minimum human involvement in these cum-

bersome and extremely time consuming tasks. Many com-

puter vision algorithms have already been developed for the

automated analysis of traffic video data. Examples such as

automatic vehicle detection and tracking, speed and traf-

fic flow analysis, detection of abnormal events, have been

developed and their levels of accuracy are continuously in-

creasing. A big challenge, however, lies in the development

of fast and computationally efficient methods to be used in

actual real world scenarios that demand near real time solu-

tions.

In this work we develop a traffic analysis framework

combining two separate modalities. At first, we propose a

cooperative detection and tracking algorithm based on deep

CNN features to retrieve vehicle locations in surveillance

videos and discover their trajectories in subsequent frames.

The vehicle speeds are then approximated by an accurate

fully automatic camera calibration algorithm. Additionally,

abnormal events are detected based on optical flow descrip-

tors of the detected vehicles and a learned GMM visual vo-
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cabulary. Fisher vector representations of spatiotemporal

volumes aid in the retrieval of possible abnormal events in

the scene such as car crashes and stalled vehicles.

2. Related work

2.1. Speed estimation

Traffic flow analysis from surveillance cameras can be

decomposed to many different aspects of traffic understand-

ing, such as vehicle detection and tracking, counting, traffic

level classification and speed estimation. We focus here on

a brief review of the existing methods for speed estimation.

This task involves the translation of the displacement of pix-

els that belong to vehicles, into the real distances traveled

and so, it relies heavily on proper camera calibration. As a

result, most of the proposed algorithms focus on techniques

for accurate retrieval of camera intrinsic and extrinsic pa-

rameters, as well as inference of the scene scale since we

are only interested in the analysis of videos taken from a

single monocular camera.

Methods are generally categorized into semi-automatic

and fully-automatic. In the first case most of the calcula-

tions are performed automatically, but a user’s manual in-

put is required usually in the form of some known distance

in the scene. In a method from this category, [18] detected

and tracked the vehicles using GMM background subtrac-

tion and Kalman filters, calibrated assuming a zero pan pin-

hole camera model. In [9] the calibration is based on pat-

terns of lane markings on the road and image rectification

to cope with perspective projection. A simple method using

optical flow to compute displacement of pixels and relax-

ation of the perspective projection effect in [16] measured

the speed inside a rectangle region of interest using known

lane width as reference.

There are fewer works on fully automatic camera cali-

bration methods. In [6] vanishing point detection from ve-

hicle movement using a diamond space accumulator is per-

formed and scale inference is computed by matching statis-

tically detected vehicles’ dimensions to mean dimensions of

real vehicles. [23] extends the previous work by matching

pre-made 3D vehicle models to the detected vehicles’ 3D

bounding boxes. An evolutionary algorithm for camera pa-

rameter extraction is used in [7], assuming constant speed

of vehicles, and its accuracy is increased by license plate

detection.

2.2. Anomaly detection

Methods dealing with anomaly detection in traffic videos

can roughly be separated into two main categories. The first

category comprises of methods that apply their models on

raw image data, such as pixel location or other low level

features. One recent work in this category is that of [4],

using hierarchical feature representations and a Gaussian

Process Regression (GPR) framework to build a low-level

and a high-level codebook respectively. Anomalies are then

detected, after the integration of local and global anomaly

detectors. Probabilistic topic models are also proposed in

a variety of works to capture spatiotemporal changes in

traffic scenarios. The most typical works include the hi-

erarchical Bayesian models of [25] which model the scene

in two layers, the new Markov Clustering Topic Model

of [11], the Probabilistic Latent Sequential Motifs intro-

duced by [24] and the Dependent Dirichlet Process-Hidden

Markov Model (DDP-HMM) framework proposed in [15].

In all cases anomalies are determined in a probabilistic

global framework. The main drawback of all these meth-

ods is their computational cost, which is usually high due to

the complexity of their models. At the same time they deal

with modeling at the pixel level, ignoring more complicated

structures such as the objects themselves, thus missing im-

portant information.

The second category involves methods based on trajec-

tory extraction and analysis. Objects, or even pixels are

firstly localized and tracked to obtain their patterns, which

are then clustered or modeled to represent the dominant

underlying motions. A work in this category is that of

Salemi et al. [21] where object trajectories are modeled

using kernel density estimations, while a unified Markov

Chain Monte Carlo (MCMC) sampling-based scheme is

then used to generate the most likely paths. Anomalies are

detected based on the estimated probability density of the

next state by comparing the actual measurements of objects

with the predicted tracks. A different approach is followed

in [14], where three different levels of semantics are consid-

ered after tracking all moving objects in the video. Rules of

normal events are automatically extracted at each level and

anomalies are defined as the events deviating from these

rules. In [13] a collection of trajectories is sent as an in-

put to a two-stage inference model based on a probabilistic

framework, while in [27] trajectory segmentation and multi-

instance learning are used for the detection of local anoma-

lies. Finally, trajectory clustering and a single class Support

Vector Machine (SVM) framework is used by [19].

3. Traffic flow analysis

A robust algorithm for detection and tracking of mov-

ing vehicles from surveillance camera footage operates at

the basis of our traffic flow analysis system. Passing vehi-

cles have to be successfully detected in each frame and then

subsequently tracked as they follow their full trajectory on

screen. The task is simultaneously performed in a coopera-

tive manner by two separate modalities: (a) a generic object

detector, specifically trained to discover bounding boxes of

vehicles at an adjustable detection rate, and (b) a tracker

which accepts new image patches as input queries and is as-

signed to discover the most probable position of each query
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Figure 1. Illustration of three orthogonal vanishing points detected

in a highway scene.

in subsequent frames. This finally leads to the incremental

construction of the movement trajectories for each individ-

ual vehicle that has been captured by the detector at some

point in the frame sequence.

To accurately compute the velocities of a detected vehi-

cle, known pixel coordinates of the corresponding trajectory

in the image plane have to be back-projected in real world

coordinates in the road plane. Then, given a vehicle’s trav-

eled distance in meters and the time duration in seconds, ve-

locities can be calculated. The frame per second capture ra-

tio of the recorded videos is known and can be used to com-

pute time intervals in seconds between consecutive frames.

What is not directly available however, is a way to translate

displacement of pixels in the image plane to the real dis-

tance in meters a particular vehicle has traveled in a given

amount of time. In order to calculate this precisely and ef-

fectively, an algorithm for automatic camera calibration is

needed. Once camera parameters have been discovered and

a few basic assumptions tailored to this specific application

have been integrated, pixel coordinates in the image plane

can be successfully back-projected to 3D world coordinates

in the road plane and therefore real vehicle displacements

can be measured.

3.1. Camera calibration

In order to automatically obtain camera parameters of a

traffic surveillance scene, we deploy the algorithm proposed

by [6] which is based on detection of two vanishing points.

As examined in [23], knowledge of two vanishing points is

enough to calculate camera intrinsic parameters. Moreover,

the third vanishing point position can be easily found by

application of orthogonality. The model makes some basic

assumptions for zero pixel skew, square shaped pixels and

location of the principal point in the center of the image that

produce tolerable errors. In this work we are interested in

finding 3D coordinates belonging to vehicle trajectories, so

the model is only used to retrieve points lying on the road

plane, and is not applied to find arbitrary 3D locations in the

images.

The method resorts to vehicle motion analysis in the

scene as a means of retrieving the first vanishing point

whose direction is parallel to the road and coincides with the

stream of traffic. The detection algorithm uses the Hough

transform on successfully tracked trajectory points based on

parallel coordinates, mapping the projective plane onto a fi-

nite space, the so-called diamond space, as detailed in [5].

In order to detect good features to track, background sub-

traction is performed to limit the candidates to possibly only

vehicle edges. Then, using the KLT tracker, features that

are correlated with significant movement are interpreted as

small straight fragments of valid trajectories and are al-

lowed to vote in the diamond space accumulator. Based

on the highest number of votes, the first vanishing point

coordinates are retrieved. To discover the location of the

second vanishing point, which is perpendicular to the first

and parallel to the road plane, the diamond space accumula-

tor is used again in the same manner but with the following

constrains: edges supporting the first are excluded this time

and an assumption of approximately horizontal scene hori-

zon filters out nearly vertical edges. Again, the point with

the most votes is selected as the second vanishing point.

Once the first two vanishing points u, v have been found,

we follow the calculations as in [23] to obtain the third van-

ishing point w, the focal length f and the road plane normal

vector −→n = w

|w̄| which defines the road plane up to a scale.

To back-project a 3D image plane point p = [px, py, f ]
onto the road plane R with the center of the camera projec-

tion in O = [0, 0, 0], we calculate the intersection
−→
Op ∩R

using the normal plane vector to express R. However, the

distance of the road plane to the camera center is still un-

known as −→n only describes the direction of R up to a scale.

This means that any distance we calculate from 3D points

is not expressed directly in real units of distance, but rather

is normalized by the scale d. To overcome this we can

apply back-projection of two 3D points in the scene with

known distance in meters (or other unit) and solve for d.

The original paper adopts a different method for scale in-

ference which includes fitting pre-made 3D car models in

3D bounding boxes in order to make the procedure fully

automatic with no required user input. Figure 1 illustrates

the three vanishing point orientations as detected from the

algorithm, as well as the horizon line.

3.2. Vehicle detection and tracking

For the purpose of detecting vehicles in video frames we

chose to extract deep image representations from a CNN

and predict pixel coordinates of bounding boxes using a

deep CNN object detector. We adopt a modification of the

robust Faster-RCNN, originally introduced in [20] that is

tailored for generic object detection in image samples. A

more thorough evaluation of this model and comparisons
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Figure 2. Visualization of detected vehicles and their trajectories.

with other SoA deep object detection architectures is pre-

sented in [12]. More specifically we adopted the Faster-

RCNN-resnet101 architecture that achieves a good trade

off between speed/accuracy. This model incorporates the

resnet101 [8] deep feature extractor and a region proposal

network along with a bounding box classifier and coor-

dinate regressors. We chose this architecture because it

achieves very fast object detection by using a single feed-

forward convolutional network to directly predict classes

and bounding boxes of objects.

The core functionality of our tracker is based on the KCF

tracking algorithm that was proposed in [10]. The vehi-

cle detector is used initially in order to detect vehicles ev-

ery r video frames and initialize the new vehicle candidate

database with new entries. Bounding box coordinates are

stored over time so that full trajectories can be build. For

every new ID its corresponding class label and a detec-

tion score is saved as well. Immediately after, the algo-

rithm checks the new detections from the candidate pool

for overlaps with already existing recent trajectories. Then,

based on an IoU score check it rejects found boxes that ex-

ceed an overlap threshold to avoid creating multiple iden-

tities for the same vehicle. Next, we feed the KCF tracker

with the remaining boxes in order to localize their position

throughout sequential video frames. Future detections of

already tracked vehicles are also utilized in order to rectify

the bounding boxes of the monitored vehicles. When a de-

tection is missed, we relocalize the bounding box relying

only on KCF update coordinates, while when the algorithm

does not not localize any tracked vehicle for l sequential

video frames the vehicle is presumed to have traveled off

the frame. To tackle overlaps between True Positive (TP)

cases, which translates to when a correctly tracked vehicle

passes in front of another confusing the tracker, we chose

to merge the trajectories at the current frame and assign the

oldest ID to the resulting trajectory. Figure 2 depicts bound-

ing boxes and trajectories of vehicles successfully detected

and tracked using our proposed algorithm.

3.3. Velocity estimation

To estimate the velocity of a tracked vehicle at frame

f we feed the KLT tracker with points inside the previous

box instance of frame f-1 and produce several displacement

calculations for each point. We then back-project all the

displacement pixel pairs to the road plane according to the

calibration parameters that have been found on that specific

scene and select the median displacement as the true value.

To calculate the velocity v in m/s we divide the true distance

with the time duration of a frame which is equal to 1/fps
sec.

4. Anomaly Detection in Traffic Scenes

4.1. Video Representation

In order to deal with the challenging nature of traffic

videos derived from real surveillance systems, the proposed

scheme should exhibit features such as generality, scalabil-

ity, independence in external conditions (e.g. illumination

changes, camera motion etc) and also simplicity for com-

putational reasons. To this end, a framework based on the

object detection described in the previous section is pro-

posed. More specifically, an early descriptor for each track

is formed in a pre-defined time window, while Fisher en-

coding follows to efficiently capture the whole frame’s dy-

namics.

The early descriptor concerning each object in the scene

consists of the concatenation of all the values describing

object’s speed and position in a specific spatiotemporal vol-

ume. More precisely, the early descriptor for a specific de-

tected object in a window of t frames is given by:

D = {OF1, . . . , OFt, px1, py1, . . . , pxt, pyt} (1)

where OFt stands for the average value of the optical flow

magnitudes corresponding to the object’s bounding box at

frame t, while pxt and pyt represent the position of the cen-

ter of the bounding box in xy-axis at frame t.
Subsequently, all early descriptors extracted from a

particular video sequence are led into a Fisher encoding

scheme. This way, a visual vocabulary based on the most

discriminating features of the whole video is built, and

a more efficient representation is provided. The compu-

tation of the most discriminating samples is performed

by applying unsupervised clustering (Gaussian Mixture

Model (GMM)) in the shallow representation hyperspace,

as formed by the feature collection of each video.

Let {µj ,Σj , πj ; j ∈ RL} be the set of parameters for

L Gaussian models, with µj , Σj and πj standing respec-

tively for the mean, the covariance and the prior proba-

bility weights of the jth Gaussian. Assuming that the D-

dimensional early descriptor is represented as xi ∈ RD; i =
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{1, . . . , N}, with N denoting the total number of descrip-

tors, Fisher encoding is then built upon the first and second

order statistics:

f1j =
1

N
√
πj

N
∑

i=1

qijσ
−1

j (xi − µj)

f2j =
1

N
√

2πj

N
∑

i=1

qij [
(xi − µj)

2

σ2

j

− 1]

(2)

where qij is the Gaussian soft assignment of descriptor xi

to the jth Gaussian and is given by:

qij =
exp[− 1

2
(xi − µj)

TΣ−1

j (xi − µj)]
∑L

t=1
exp[− 1

2
(xi − µt)TΣ

−1

j (xi − µt)]
(3)

Distances as calculated by Eq. 2 are next concatenated to

form the final Fisher vector, FX = [f11, f21, . . . , f1L, f2L],
characterizing each trajectory.

In order to deal with noise due to camera motion, each

video is split into sequences of a one shot, and the pro-

posed scheme is applied separately in each of them. Tran-

sitional clips are completely ignored by the process while

clips consisted only of a small number of frames are dis-

carded. The detection of camera motion is based on the esti-

mation of global optical flow magnitudes per frame, and an

experimentally defined threshold determines the presence

of general motion. Despite the simplicity of the method,

real world situations of this kind are managed in an efficient

way, as proved by the experiments.

4.2. Anomaly detection

In order to infer about anomalous trajectories, the Sup-

port Vector Method For Novelty Detection of [22] is

adopted. Support Vector Machines (SVMs) are chosen, as

they generally exhibit good performance relatively to other

machine learning methods at a low computational cost,

while at the same time they are able to handle large data

sets, which generally appear in real life situations.

The goal is to find an appropriate hyperplane that sepa-

rates the training data from the origin, maximizing the dis-

tance and removing potential outliers. Thus, its purpose

can be expressed in the terms of the following minimiza-

tion problem:

minw,ξ̇i,ρ

1

2
||w||2 + 1

νn

n
∑

i=1

ξ̇i − ρ (4)

subject to:

(w − φ(xi)) ≥ ρ− ξ̇i, ∀i = 1, . . . , n (5)

ξ̇i ≥ 0, ∀i = 1, . . . , n (6)

where xi ∈ X ,i ∈ [1, . . . , n] stands for the n training data,

w, ρ define the created hyperplane, ξ̇i represents slack vari-

ables contributing to a soft margin and ν is a constant be-

longing to the space [0, 1]. The role of the parameter ν is

quite important as it sets an upper bound on the fraction of

outliers and at the same time defines a lower bound on the

fraction of support vectors. The above minimization prob-

lem is solved by Lagrangian techniques, which lead to a

consistent decision function that determines scores for each

trajectory.

After the estimation of final scores, anomalous trajecto-

ries are defined as those that have a total score value greater

than 3σ, with σ representing the standard deviation of all

scores found in the particular video sequence. The proposed

method is found to work efficiently in challenging traffic

datasets, surpassing SoA methods, and detecting even the

most challenging anomalous events.

5. Experiments and evaluation

We evaluated our traffic analysis methods in the NVIDIA

AI CITY challenge [2]. Teams that entered the competition

had the opportunity to experiment and evaluate their algo-

rithms on three separate traffic analysis challenge tracks:

(a) traffic flow analysis that focused on speed estimation of

vehicles, (b) anomaly detection, for the detection of anoma-

lous events such as car crashes or stalled vehicles and (c)

multi-camera vehicle detection and re-identification. More-

over,a real-world evaluation dataset was made available for

each track. In the sections that follow we present the exper-

iments that took place and our evaluation scores for the first

two tracks of the challenge.

5.1. Traffic flow analysis track

The dataset that was provided for the speed estimation

track is composed of 27 videos and each one is a sequence

of 1800 high definition resolution frames. The recorded

videos depict highway traffic at several locations from vari-

ous viewpoints. The camera in most of the videos is static,

except at some locations where small trembling can be spot-

ted, presumably due to windy conditions. Some videos also

contain duplicate sequential frames at an unpredictable rate

for an unknown reason which makes vehicles appear static.

We presumed that when such frames appear no real time has

passed and we chose to copy previous speed estimates.

In order to tailor our model for vehicle detection we

acquired the Faster-RCNN-resnet101 previously trained on

the COCO dataset [17] and we further tuned it to the DE-

TRAC dataset [26]. We choose to penalize the localization

and classification losses of the second stage with the same

weight, training for 140K steps using a momentum opti-

mizer with a learning rate schedule which was initialized at

0.0005 and decreased progressively. We used random hori-

zontal flips of the input bounding boxes during training as a
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means of data augmentation. Furthermore, we experiment

with the detection rate setting it to r = [3, 5] frames per de-

tection. Through empirical cross validation we set the target

miss threshold l to 3 consecutive frames and the merge IoU

threshold to 0.8.

The overall score S1 of this track incorporates a measure

of the quality of the detections and the accuracy of the speed

measurement and is defined as:

S1 = DR ∗ (1−NRMSE)

where, DR is the detection rate and NRMSE is the normal-

ized root mean square error (RMSE) of speed estimation. A

vehicle is said to be detected if it was localized in at least

30% of frames it appeared in and NRMSE is the normal-

ized RMSE across all submissions, obtained via min-max

normalization. Our vehicle detector and tracker manages to

achieve a high detection rate score of 89% for both detec-

tion settings. The RMSE score of our speed estimator is

27.30 which appears to be higher that other teams partic-

ipating in the challenge since our final Normalized RMSE

score is 1. Further investigation needs to take place in or-

der to detect the possible inefficiencies of our approach and

further improve the accuracy of our estimations.

5.2. Anomaly detection track

The NVIDIA dataset for anomaly detection track com-

prises of 100 videos of 15 minutes each, at 800 × 410 res-

olution. It constitutes a challenging dataset as it contains a

great variety of real traffic scenarios, severe camera motion,

different weather conditions, illumination changes, occlu-

sions and many low resolution shots.

In our effort to handle video sequences containing a vari-

ety of camera motions, such as zoom in/out or even a com-

plete change of view, we choose to divide them into sub

clips characterized by static view, so as to develop differ-

ent models in each of them. This was deemed necessary, as

scene dynamics may change dramatically and the existence

of a single model seems to be completely inadequate. Cam-

era motion is detected according to frame’s average value

of optical flow’s magnitudes, with a value greater than 5 in-

dicating that a severe motion is present and the frames that

follow are ignored until a static view is restored. Then the

training of a new model takes place.

In order to exploit temporal information, proposed al-

gorithm is applied in a time window of 50 frames, to ex-

tract sufficient information from the video, while captur-

ing anomalies on time. Trajectories whose length is smaller

than 20 are discarded as possible sources of noise, while the

rest of them are led to a Fisher-GMM scheme, with 25 clus-

ter centers. Subsequently, a one class SVM with a Gaussian

kernel is deployed with ν = 0.1, so as to create a hyper-

plane characterizing existing trajectories. Anomalous in-

stances arise from scores exceeding 3σ, with σ representing

the standard deviation of all scores found in the particular

video sequence.

Evaluation is based on anomaly detection performance,

measured by the F1-score, and detection time error, mea-

sured by RMSE. More specifically the score is calculated

as:

S2 = F1 ∗ (1−NRMSE)

where a true-positive (TP) detection will be considered as

the predicted anomaly within 5 minutes absolute time dis-

tance of the true anomaly that has the highest confidence

score, a false-positive (FP) is a predicted anomaly that is not

a TP for some anomaly and a false-negative (FN) is a true

anomaly that was not predicted. RMSE is calculated be-

tween the ground truth anomaly time and the predicted time

for all TP predictions. NRMSE is the normalized RMSE

obtained from min-max normalization across all submis-

sions. We managed to reach an F1-score of 0.33 and our

detection time RMSE was 227. Overall, we managed to sur-

pass two other competing teams but we were outperformed

by four.

6. Conclusion

We proposed a traffic analysis framework comprised

of two major modularities: a cooperative detection and

tracking algorithm for vehicle trajectory discovery which

is ultimately used for the estimation of their speed and an

anomaly detection algorithm that analyses visual content so

as to discover in an efficient manner possible abnormalities

such as car crashes and stalled vehicles from countless min-

utes of video surveillance footage that may be used in order

to alert authorities of dangerous situations.
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